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Abstract. In this paper, we study the subcritical dissipative quasi-geostrophic equa-
tion. By using the Littlewood Paley theory, Fourier analysis and standard techniques

we prove that there exists v a unique global-in-time solution for small initial data be-
3—2a+22

longing to the critical Fourier-Besov-Morrey spaces FN, A ; " . Moreover, we show

the asymptotic behavior of the global solution v. i.e., [[v(t)|| , , 12 decays to zero
FN,T

pAA
as time goes to infinity.
AMS Subject Classifications: 35A01, 35A02, 35k30, 35K08, 35Q35

Chinese Library Classifications: 0175.27

Key Words: 2D quasi-geostrophic equation; subcritical dissipation; Littlewood-Paley theory;
global well-posedness; long time behavior of the solution; Fourier-Besov-Morrey spaces.

1 Introduction

In this article, we consider the following Cauchy problem for the two-dimensional quasi-
geostrophic equation (2DGQ) with subcritical dissipation « >1/2.

00 +kA*v+u,-Vo=0, x€cR? t>0,
Uy = (—Rov,M10), (1.1)
v(0,x) =0vp(x),
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where R;=0dy,(—A)~ 172 i=1,2, are the Riesz transforms, a>>1/2 is a real number, k>0 is a
dissipative coefficient (when k=0 Eq. (1.1) becomes the two-dimensional non-dissipative
quasi-geostrophic equation ). Notice that (1.1) is called subcritical when a >1/2, critical
when a« =1/2 and supercritical when a <1/2. A is the operator defined by the fractional
power of —A:

Av=(-A)%v, F(Av)=F((~B)*0)=[gF(v),

and more generally

F(A0) =F((~)") =[¢* F (o),

where F is the Fourier transform. The scalar function v(x,t) represents the potential
temperature, and u, is the divergence free velocity which is determined by the Riesz
transformation of v. Since we are concerned with the dissipative case, we assume k=1
for the sake of simplicity.

The 2D quasi-geostrophic equation is an important model in geophysical fluid dy-
namics, which represents the potential temperature dynamics of atmospheric and ocean
flow. For further information on the physical background of this equation, see [1, 2]
and the references therein. It is well known that Eq. (1.1) is comparable to the three-
dimensional Navier-Stokes equations (see [3-5]).

There is a rich literature about global-in-time well-posedness for fluid dynamics PDEs
in different spaces, where the smallness conditions are taken in norms of critical spaces
(i.e., the norm is invariant under the scaling of the equation/system). For instance, for
Navier-Stokes equations, 2D quasi-geostrophic equations, and related models, we have
well-posedness results in the critical case of the following spaces: Lebesgue space L7 [6,7],
Marcinkiewicz space L7 [8,9], Morrey spaces M, [10], Besov-Morrey spaces N}, ,
[11], Fourier-Besov spaces ]:B;,q [5,12], Fourier-Herz spaces F Bi = BS [13], Fourler—
Besov-Morrey spaces FN° "y [14-19], and BMO~! [20], among others Moreover, in
some of the above references, one can find results on decay and/or asymptotic behavior
of solutions, such as the works [6-11,19].

Now, we recall the scaling property of the equations:
if v solves (1.1) with initial data vy, then v, with v, (x,t):= = 21 ('yx,’yz“t) is also a
solution to (1.1) with the initial data
2150 (yx). (1.2)
Definition 1.1. A critical space for initial data of Eq. (1.1) is any Banach space E C S’ (R")
whose norm is invariant under the scaling (1.2) for all v >0, i.e.

00,y (X):=7

190,45 () [~ llvo(x) [l -

A=2

In accordance with these scales, we can show that the space f/\/ ? is critical

for (1.1). In this respect, there are several papers on global-in-time well—posedness for
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(1.1) in various critical spaces. For instance, Chae and Lee [21] established the global
well-posedness for any small initial data in the Besov space B%Ez”‘ for a < 3, Bae [22] get

14220
the global existence with small initial data belongs to the critical Besov spaces 5, ;"

with p <o, and Benameur & Benhamed [23] obtained the global existence of (1.1) with
subcritical dissipation in the critical Lei-Lin spaces X* which are defined as (see [3, 24]):
ForseR

X ®R)={res ®; [ P IFOlaE<e], a3

with the norm

IFlle= [ 1EFIF@)lee: (14

Recently, Benhamed and Abusalim [25] studied the asymptotic behavior of (1.1) in Lei-
Lin space X'172* with subcritical dissipation. Other related results can be found in [6,26~
28].

This paper plans to analyze the existence of the global solution of the 2D quasi-
geostrophic equation in the framework of critical Fourier-Besov-Morrey spaces. Fur-
thermore, we obtain the long time decay property of a given global solution for (1.1)
(asymptotic behavior). Our results extend and complement some previous works such
as [5,23,25]. Before stating our results, let us first define our setting.

Denote the set of all polynomials by P and the Morrey spaces by M;,‘ with norm

_A
1£llaay = sup supr 7 {| fll Ly ((xp,r) <00
xo€R" r>0

We define

1
. A1 q
FNpg= feS'\mnfnm;M:(zzﬁ‘f qoijM2> <o, (L5)

jez

where { ¢;} is the Littlewood-Paley decomposition (see Section 2 for details).
For the convenience of description, we use F N ;’ A to denote the homogenous Fourier-

Besov-Morrey spaces, H® to denote the usual homogeneous Sobolev space, and x 4 to de-
note the indicator function of a set A. For f, we denote us:=(—%of,R;f). Let X, Y be
Banach spaces, we denote

[l xny = llollx+lvlly and [[(v,w)x:=[lol[x+[lwllx,

C will denote constants which can be different at different places, A ~ B means that there
are two constants C1,C, > 0 such that

C1B<A<L(GB,
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V <W denotes the estimate V < CW for some constant C > 1, and p’ is the conjugate of p
satisfying %—k% =1for1<p<co.

In order to solve Eq. (1.1), we consider the following equivalent integral equation
coming from Duhamels principle

v(t) =Ha(t)vo+B(v,0)(1), (1.6)

where H, := e~ (=%)" denotes the fractional heat semigroup operator, which can be re-
garded as the convolution operator with the kernel K;(x) = F (e "), and

Bo)(6) =~ [ Ha(t=1) (o)) ()T (17)
First, we show the existence of global solutions for (1.1).

Theorem 1.1. (Well-posedness) Let 1 <p<oo, 1< q <oo, 0<A<2and } <a<2+2:2 )‘ 2 There
A 2

exists a constant B> 0 such that for any vy € ]-"./\/p v " satisfying ||vo| 3 a2 < B, Eq.
FN
pAa
(1.1) admits a unique global solution

pt A2 A2
vec<]R+ FN2 )mcl <1R+ FN >

pAq pAq

such that

[0l <llvoll 4 pnsz.
Lo (IR+ NSATA’f)mﬂl (IR+ prX: 2) - FN;,A;H !

Remark 1.1. Taking n=2,ay =1=—a13,a11 =a2 =0, ‘—|§| j=1,2, B=1)intheex-
pressions (1.2) to (1.5) in [19], we obtain the 2DQG (1. 1) Then using Theorem 3.1 in [19],

3—2a— 24
we obtain a well-posedness result in Fourier-Besov-Morrey spaces FN pA :; " for (1) in
the subcritical case, which is related to Theorem 1.1 but is different. It is worth noticing

_2-A )\
thatin [19] it is used the persistence norm BC <1R S F. ./\/ > while Chemin-Lerner type
3—20— 24
norms are employed in our Theorem 1.1, namely the norms of £* <1RJr FN T )
2-A
1R+
and £ (]R FNpM >

Next, we present an asymptotic behavior result for solutions in the context of Fourier-
Besov-Morrey spaces.

Theorem 1.2. (Asymptotic behavior) Let 2 <a<1,1<p, g<2,0<A<2—p,andve

3— 204+)‘ 2
C|{R",FN A be a global solution of (1.1) given by Theorem 1.1. Then,

th—r>nooH ( )H ;;2:-%—% =0.
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2 Preliminaries

In this section, we give some notations and recall basic properties of Fourier-Besov-
Morrey spaces, which will be used throughout the article.

The Fourier-Besov-Morrey spaces, presented in [19], are built by using a type of local-
ization on Morrey spaces. The function spaces M;‘ are defined as follows.

Definition 2.1. ([10]) Let 1<p<ocoand 0 <A <n.

o The homogeneous Morrey space M?, is the set of all functions f € LV (B(xo,r)) such that
_A
£y = sup supr 7 [| £l o (B(xo,ry) <00 (2.1)

xg€R" r>0

where B(xo,r) is the open ball in R" centered at xo and with radius r > 0. The space M;‘
endowed with the norm || f|| M} is a Banach space.

When p=1, the L' -norm in (2.1) is understood as the total variation of the measure f
on B(xo,r) and M;‘ as a subspace of Radon measures. When A =0, we have Mg =LP.

o The mixed Morrey-sequence space 17(M) consists of all sequences { fi}icz of measurable
functions in R" such that ||{f;}icz ||lq(M;A7) <oo. For {fi}ticz € lq(M;‘) we define

1

q

I{fiYiezllmamy) = <Z ||ﬂ||?\/ﬂ> :
jez P

The proofs of the results discussed in this work are based on a dyadic partition of uni-
ty in the Fourier variables, known as the homogeneous Littlewood-Paley decomposition.
We present briefly this construction below. For more detail, we refer the reader to [29].

Let f € S'(R"). Define the Fourier transform as

F@=Fr@)=n) ! [ e f(x)d
and its inverse Fourier transform as
fo=Ffm=r)t [ @r@de.
Let ¢ € S(R?) be such that 0< ¢ <1 and supp(¢) C {¢€R?:3 <|¢| <8} and

Z ) <2_j§) =1, forall {#0.

jez
We denote ‘
#i(©)=9(272), 5(O= ¥ 9:(2)

k<j—1



6 A. Azanzal, C. Allalou, S. Melliani and A. Abbassi/ J. Partial Diff. Eq., 36 (2023), pp. 1-21

and
hx)=F o(x), g(x)=F '6(x).

We now present some frequency localization operators:

Ajf=F‘1¢j*f=2d"/R h(2ly) f(x—y)dy,
= ) Mf=F 1o f= 2‘”/ g(2y) flx—y)dy.

k<j-1

where A;=5;—S5;_ is a frequency projection to the annulus {|¢]| ~2/} and S; is a frequency
to the ball {|¢]| <2/}.
From the definition of A]- and S j, one easily derives that

AjArf =0, if |j—k|>2,
Aj (Sk-1fArf) =0, if [j—k|>5,
Aif =g;if.

The following Bony paraproduct decomposition will be applied throughout the paper.

uo="T,o+Tu+R(u,0),
where
T, o= Z Sj_luAjv, R(u,v)= ZA]-nAjv, A]-v: Z Aj/v.
i€z jez /'=jl=t
Lemma 2.1. ([19])
Let 1<p1,p2,p3<ocand 0 < )\1, Az,)\g < n.
(i) (Holder’s inequality) Let % = —+— and % 7 % + %, then we have
180l < £l Il 22
(ii) (Young's inequality) If p € L and g € MP}, then
l=8llypy < l@lloligllyp (2.3)

where * denotes the standard convolution operator.
Now, we recall the Bernstein-type lemma in Fourier variables in Morrey spaces.

Lemma 2.2. ([19]) Let 1<g<p<o0,0< Ay, A2 <1, % < ”‘T/\Z and let <y be a multi-index. If
supp(f) C{|&| < A2/}, then there is a constant C >0 independent of f and j such that

1) Fllyp <l A - (2.4)
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We give the definition of the homogeneous Fourier-Besov spaces F'B“;lq [5].

Definition 2.2. (Homogeneous Fourier-Besov spaces) Let 1< p,q <oo and s € R. The homoge-
neous Fourier-Besov space F'B;,q is defined as the set of all distributions f € S'\P, P is the set of
all polynomials, such that the norm ||f|| zs is finite, where

pAa

s | (a2t of])" forgeoo

1 fllpps = ‘ (2.5)
P suijZZJSHgo]fHLP for g =oco.

S

2,77 that

Remark 2.1. ([30]) Notice that in the case p=g we have an equivalent norm on FB
is

I£lsss, ~ ([ P71 @1rac) g

Let us now recall the definition of Fourier-Besov-Morrey spaces FN, , - (R"), see [19].

Definition 2.3. (Homogeneous Fourier-Besov-Morrey spaces) Let 1 <p,g<oo, 0<A <n
and s € R. The homogeneous Fourier-Besov-Morrey space FN pAq 18 defined as the set of all
distributions f € S'\'P, P is the set of all polynomials, such that the norm HfHJ-'N;M is finite,
where

q q
for < oo
M

sup]-eZZjSH(pijMA for g=oco.
P

def (Zjezzjsq H G”jf‘

1fll7ns,, = (2.6)

Note that the space FN° w,q(R") equipped with the norm (2.6) is a Banach space. Since Mg =L?,

we have FN ;,O,q = F'B;,q , and }7\/'15,0,1 = x° where x° is the Lei-Lin space [23].

Lemma 2.3. The derivation 0% : FN. ;X':' — FN,, , is a bounded operator.
Proof. We have
10zvllzvs,, =I{2" 9j0z0} ezl aay) = 1£2° 95181* 0} ez [l (ma)

S22 00 ez lngaag) S ol e 27)

where in (2.7) we used the fact that |¢| ~2/ for all j € Z. O

Remark 2.2. As a consequence of Lemma 2.3, we have the following estimates:

Idivo)lras,, Slolaa,  1800ex,, Sloleyse.
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Proposition 2.1. ([18]) (Sobolev-type embedding) For pa < py and sy <s; satisfying

n— )Lz n— )Ll
S» + =51 + ’
P2 P1
we have the continuous inclusion
51 52
]:Npl A1 ‘Fsz A2,r2

forall 1<r; <rp <oco.
The definition of mixed space-time spaces is given below.

Definition 2.4. ([18]) Let seR,1<p<oc0,1<g,0<00,0<A<n,and [=[0,T), T € (0,00]. The
space-time norm is defined on u(t,x) by

1
q
l(t, )| o1, 7075,,) = {22”5 Ajull], M) } ,

JEZ

and denote by L (I, FN',, ) o) the set of distributions in S'(RxR") /P with finite .|| zo (s (LFNS,.)
norm.

By virtue of the Minkowski inequality, we have
U (LFN ) = L0 (LFN; ), ifp<a, 2.8)
£ (LFN ) =1 (LFNG ), 0>, (2.9)

where

1
I
[Jue(t, x)HLP LFN ) </H“ HINS dT>

At the end of this section, we will recall an existence and uniqueness result for an
abstract operator equation in a Banach space that will be used to show Theorem 1.1 in
the sequel. For the proof, we refer the reader to see [31,32].

Lemma 2.4. Let X be a Banach space with norm ||-||x and B: X x X+—— X be a bounded bilinear
operator satisfying

1B(u,0) || x <nllullx]lvllx
for all u,v € X and a constant > 0. Then, if 0 <e < ﬁ and if y € X such that ||y||x <e,
the equation x :=y-+B(x,x) has a solution X in X such that ||X||x <2¢. This solution is the

only one in the ball B(0,2¢). Moreover, the solution depends continuously on y in the sense: if
IV |Ix <& x'=y'+B(x',x"), and ||x||x <2¢, then

_ 1
Il < gy I .
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3 Linear estimates in Fourier-Besov-Morrey spaces

We present some important lemmas from [33].

Lemma3.1. Let T>0,0<A<3,1<p<00,1<q,p<00,scRand ugp e ]:N;,A,q' Then there
exists a constant C >0 such that

He—“—A)“(')uo(

N\ <Cllu s . 3.1
U([O,T),]-‘/\fp;,zg) <Cl OHFNPM 3-1)

Lemma 3.2. Let 0<T<00,5€R,0<A<3,1<p<00,1<g,0,r<oco and 1<r <p. There exists
a constant C >0 such that

forall f€L7([0,T),FN, ).

t
/ ef(fﬁ)w(tfﬂf)f("[)d'l—
0

<C|lfll
£o(10,T), FA®

g2, 2
o
0 e(onF )

A4

4 Bilinear estimates in Fourier-Besov-Morrey spaces

In this section, we will establish the bilinear estimate which will be crucial in the proof of
Theorem 1.1.

Proposition 4.1. Set

o (R FN T At (RY AT
Y=L <1R FN, v, T JNLHREFN, ).

Under the hypothesis of Theorem 1.1, there exists a constant y >0 such that

1B, 9)lly <nllollyl¢lly, forallvpeY.

Proof. First, using Lemma 3.2 we have

+ P
4 pAg R*,FN, pAg

1B(o,)ly S,Huv'V%bHE1 (W FNs_zmpz) S |l div(uay) Hﬁ1 ( Hamz)

i
R ,}'J\/p,)\,q

5“1’[01!)“51( 4—2a+A;2>' 4.1)
Then, the remainder of the proof is to show that

4 pAg

o\ S . 4.2
||”v¢”£l<R+}_N4QHAI,}>NHUHYH¢HY (42)
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Recalling that u, = (—Rv,R1v). Since m = —iﬁﬁ(é),]’: 1,2, then
[l < [121]- (4.3)
Applying Bony para-product decomposition and quasi-orthogonality property for Littl-
ewood-Paley decomposition, for fixed j, we obtain
(I/lv¢ Z A Sk 11/{1;Ak1,[7 + Z A Sk 11./]Ak1/lv + Z A AkuvAkllJ)
[k—jl<4 k—jl<4 k=j-3
—.7l, 72,13
=+ 417

Then, by the triangle inequalities in My, and in 17(Z), we have

1
(42 A !
”MUIIJHE1 <1R+ }_N42a+A;2> - { 22] o qHA (”le)HLl R+ M)\)}

pAg jEZ

1

1
q

(4-2 (4-2
{22] “Jr qHIlHLl IR*M)‘ } {22] S qHIzHLl IR*M)‘)}

j€Z j€ezZ
1

q
(4—2a+2=%
{22] o qHISHLl ]R+M/\)}

j€Z
=:E1+E>+Es.
By Bernstein-type inequality (2.4) with |y| =0, we have

~ 12-2%2 ~ (2422 N
gl <25 ity |y 257 @i sy (4.4)

where we have used (4.3). Thus, using Young’s inequality in Morrey spaces (2.3) and the
estimate (4.4), we get

HI o R+ M) S Yo Sk—l”vAklP)HLl(IRtM;)

lk—jl<4
<) qukib\HLl(]RtM?,) Yo it oo re iy
k—jl<4 1<k—2
~ 24420
<) ||€0k¢||L1(]R+,Mg) Y 2+ ||(PIU||L°°(]R+,M?,)
lk—j|<4 1<k—2
~ 3—20+222)] _ ~
S Y lledllomeay Y 207720 0/0] o meany)
lk—j|<4 1<k—2

1

ol () (2 2 gl

pAg lk—jl<4 "I<k=2
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S paii2y 2 2PVl re a-
<IR FNpg >|k jl<4
Therefore, by using the Young inequality for series, one has
1
A
j(4—2a+22 k(
E; Slofl 32k A2 22]( SR Y. 2k2e=1) H(PklPHLl (R+,M})
Qoo <IR+,]-'NP,A,Q > jez k—j| <4
AN
; A=2 ~
<lel oy YL | T 2R ey
£w<m+,f/\/;fq+ p) jez \ k<4 (M)

<
I ) Wy ()

A4 A4

Similary, we get
Ez,s lP wl A2 0 A=2\ -
H H < ¥, Na 204472 >H H ( R, NPM )

pAA

For Es, first we use the Young inequality in Morrey spaces (2.3), the Bernstein-type in-
equality with || =0 together with the Holder inequality, to get

||I 1R+ ) < Yo AkuvAkll’)HLl (R*+,M))
k>j—3
/\
<)l Ak”v*AkED)HLl R+, M})
k>j—-3
Z | pritol| 2 (R+,M}) Z Hgol{b\HL‘”(IR*,Ll)
k>] 3 [I—k|<1
<Y @01l 11 R+,M}) Y. 2 ||€011/J||L°° (R+,M3)
s —k|<1
S Y ol (X 2% >,, Iol, .
k>] 3 12K<1 (]R* }-NS 204452 )

§||¢’|| <]R+ A 2) Y 2k(2=1) ||€0kv||L1 (R, M3)-

pAq k>] 3

Then, applying the Young inequality for series, we obtain

1
7y 4
(4—2a+2=%
S ) |2 (22 ol ) |

]R+’]:Np)\q ]GZ k>] 3

1
q

q
< (j—k)(4—2a+222) pk(3+222) |
S ||11L’||2oo (R+’FN3—2,X+%) { 2 ( E 2 P2 P ||q)kv||L1(Hg+,M;\)

pAg JEZ \k>j-3
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< R o 24204#2
91, (g ey 17 <R+£qu L

pAq
Syl a2y 1] 152\
(o))
(4—Dpp A2
where the condition a <2+ )‘2—;2 ensures that the series Zi§32l(4 22457 converges. This
finishes the proof of Proposition 4.1. O

Now, we will establish some crucial lemmas in the proof of Theorem 1.2.

Lemma 4.1. Let %<a<1,1§p,q§2and0§)\§2—p. Then we have

3a—2 2-2¢
ol a2 SOl llollge (4.5)

pAg

Proof. By using the definition of the Fourier-Besov-Morrey spaces, and Bernstein-type
inequality (2.4) with |y| =0, we have

HUH 3—2a+%
A4

(sameid),
:{jézj(a 20+2:2)g 4 K/lg}

1
5{Z2j(s—za+¥)q2f(2 ~1)g gl W)}q

jez
1
q

>} {22]2 9279 91| ey }

j>N

1

e

j<N

] ]
- {zwm - } 12220 {ZZZ“JHWHLz - }

= jez
<2<272«>Nuvupggz+2<2*3“>Nuvr|pgz,z-

~

From Remark 2.1, one can see that FB;, = H* and F'Bglz = L2. Then, by Taking N such
) 1/«
that 2N = (M) , we obtain

[0l ;2
ol ) = ol = e o2
Ol vra « oll - « 2—a a—
B < H« H* . < « ®
ol §TV”<WMJ e+ (o) ™ ol SIGE ol
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Lemma 4.2. Let %<a<1,1§p<ooand1§q§2. Then we have

Ifglli-e SUALlIEN_ soavazz FF eI 5oacaa- (4.6)

pAg pAg

Proof. To prove this lemma, we will follow the method described in the proof of Proposi-
tion 4.1, for fixed j, we have

Yo A(SkcifMg)+ Y. Ai(Sicaghf)+ Y Ai(AcfArg)
lk—j|<4 [k—j|<4 k>j-3
::II]1+II]2+II]3.

One can write

I

1
2 2
] LZ}

113H } =:J1+]2+]2.

I

2\ (1-a)
2j(1—«a
; Lz} +{Z:2
]GZ

{5

jEZ

I« =178l e < { y g0

jez

By using the Young inequality in Morrey spaces (2.3) and Bernstein-type inequality with
|7|=0, we have

] =2 il
Then
~1 R
L A i LRV S i ol
—jl<4 ki< 1<k
~ 1(2—2=4A ~
Z (> z< 217,
Jk—j|<4 1<k—2 M
~ 1(2—=22) 4 1(20—1) Al (20— ~
¥ lgly ¥ 20 R mnyen|g)
[k—jl<4 1<k—2 »
l,
= s £ 20) W
|k—j|<4 1<k—-2 pM
< Z 2k20€ D HngLZHfH 32a+/\;2'
‘k ]‘<4 p)\q

Multiplying by 2%(1-%), and taking I?>-norm of both sides in the above estimate, we obtain

NS NaelI8l s-aaze: (47)

Mq
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Similary,

H§1HL2

7= < L IAl.,

l<k

Sl & o kaH

—jl<4

Therefore, by the Young inequality for series, we get

1
2) 2

R<lglad Y20 [y 2
jez

k—j|<4

Slgled T X 200005 | g

il
jez \ k<4 My

SUM R I 2 ) 210

pA2 i<3

SJ _a+ A2y
Il o

pAg

where we have used Proposition 2.1 and the fact that « <1.
Now we deal with the third term J3, again employing Young’s inequality in Morrey
spaces (2.3), the Bernstein-type inequality with |y| =0, Holder’s inequality and the fact

that « <1, we obtain

B2 < Y- (A fA) < Y I(Befrdiglre
k>j-3 k>j-3
<Y lofle Y Nl
k>j-3 [1—k|<1
n 2422
S Y Mol Y 2% 7 ol
k>j-3 |I—k|<1
7 I(

ST lofle( T 2 [
k>j-3 [1—k|<1 pAq
k(

SIgl - saaz X 20| gifll e
pAg k>j-3

Thus

1
2

2
k(
JaSlgll ) soaeaza 3 2yt < 3 2y H(PkaLz>

A jEZ k>] 3
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2) 2
Slgll_ s-aeazz Z( )3 2(j_k)(1_”‘)2k“|\qka||Lz>

pAg jGZ ij—S

< a i(1—a)
NHgH]:NS*ZIX‘F% HfHFBM 22

pAG i<3

Sl e pede2-
HfHHaHngN;jf =

Combining J1, J» and J3, we conclude the desired result. O

5 Proof of Theorems

We are now ready to give the proof of Theorems 1.1 and 1.2.

5.1 Proof of Theorem 1.1

From Proposition 4.1, we have

1B, )|y <nllolly|[lly- (5.1)

By Lemma 3.1, we have the linear part in (1.6) satisfied

IHa(Dvolly < Collooll 5 aia2- (5.2)
NPM
So, if
. 1
[[o0]| sy < B with p= PP

then Lemma 2.4 together with the estimates (5.1) and (5.2) assures that Eq. (1.1) has a
unique global solution v € Y such that

lolly <2Collvoll 5 5ia2-
]_'
pAag

The continuity with respect to time is standard. U

5.2 Proof of Theorem 1.2

To show the asymtotic stability for the global solution, we follow ideas from [34], in which
the authors used standard interpolation in the Fourier space and energy estimates in L?,
(see [5,25,26]).

Let e>0, such that e <. For m €N, setting

Sw={E€R%|E <m and |5o(&)|<m}.
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Clearly

320442
-1 n
F (Xs,00) =00 in FN, ,

Then, there is my € IN such that

Hvo—}ul(?{sm@O)H sad2 S, Ym=mg.
FN

€
P2
pAg
Let m be a fixed integer such that m > my.

Set vo,m =F (xs,00), bom=1v0—F L(xs,00). Therefore, we have proved that

3— 2o¢+A —2

3-2a+ ATS

pAg

I\Jlm

Next, we consider the system

{atbm+A2“bm+ubm Vb, =0, x€R2t>0, 53)

b (0,x) =bom(x).

5-2,2-2 < 5. So we can conclude from Theorem 1.1 that

For all m >my, we have ||by | .

there exists a unique global solution
n 3-2a+452 1ot 3+A
bueC|RT,FN A NL (R .7-7\/ .

In addition, Vt >0 we have

320252
pAq

by, (t by, o S
H m( )H}'J\/3 20252 2"’” H (]I{+,]-'N3+Apz>

P4 pAa
Put
v=0—by+by=:0,+by,
with v is the solution of Eq. (1.1). Then, v,, is a solution of the system:

atvm +A2(xvm +u(}m va +u7]m me +ubm va :0, xe IRZ, t> O,

zx-i-)‘ 2

U (0,x) =00, (x )6.7-"./\/ P NL2.

Furthermore,

/\2 A=2
vm€C<1R+ Jf/\/3 2y >m£1<1R+ Jf/\/3+ )
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By taking the inner products in L?(IR?) with v,, and integrating by parts, we can get

1d
> dr vaHL2+ HA%mHLZ <|[<uty, Vb, vm >12|.
Since
1A 0 || 12 = l[om | -

Thus, Cauchy-Schwarz inequality, the estimate (4.3), Lemma 4.2, and Young’s inequality
give

1d

2dt

<|<div(tto,bn),on > 2| S | AT (o, b) |, A0 |2

o[ 72+ l[om 1

Slto, b || e vaHHﬂ N vabmHHH vaHHa

2
Slomlliz1bmll s oase [Oml[ g4 1mll 5 aiacz [[0m [
pAA pAA
2 2 2 2
Sloml[z210ml” 5 eace Flomllee +lbmll 5 as2 [om e
pAA pAA
Slowll T2 lbm]® o yeaz +lomll3e, (5.4)
FNSTT
2
where in (5.4) we used that ||b,, || , ,, 152 < < 5. Consequently,
pAg

2 2 2 2
g 10m |2+ 1om Vg S lloml[22llbml” 5y
A4

Integrating with respect to time, we obtain

ol [ Tomle S Howmle [ omlfslenl?. s iz 65

pAA
By Gronwalls lemma, we get
[omlI72 < 2o, mHLzeXp/ 1onl® +seaz Sllvomllzz, (5.6)
pAg
where the following fact is used in the last inequality:
Ll e <c
)\ A

Indeed, note that 4 <2, then by Minkowski’s inequality (2.9) we have
A 2
(1 FN, w5 )qu (1 FN, T ) (5.7)
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Thus, using (5.7) and Holder’s inequality for series, we get

2
. A2
b, < 21(3““7)‘ b
/H I” SA‘;“TZN Pim L2([0,6),M}) || g
13—2a+)‘—*2> i( L 3 ~ |2
< 22( v )22 [ ‘ b
~ P2 oo 127 r o amp |,
)\ 2 /\ 2
< 2](3 20+452 ‘ 2] 3+4=2 ‘
~ ] v Pl oy,
S b w2\ (1B H A
! Lw([o,t),f/\f;’fq+ ) ([ 4 FN )
2
S bl + 1|
" zw([o»)fNjﬁ,” ) £1<[0) 51:*)
SHbO,mHz 3 2a+9‘ : <C.
pAg
Combining (5.5) and (5.6), we obtain
t t
2 2 2 2 2
lomlEz+ [ Ioml < loomlEz+IoomlEs [ Nowl?. o2 <C.
0 0 ]:Np,A,q P
Applying Lemma 4.1, we get
lom|| 7, 2 NIIUmH ||Um||2-a~ (5.8)
pAg
Therefore, ,
(2. s anid2 Sloml 3 (5.9)

pAg
where we have used (5.6). Finally, by integrating in time between 0 and oo, we obtain

Jy Newl et 12 SC [ lomly (5:10)
Let us consider the following subset of [O,oo [:

£
A= {tzo, Jom (oot 2 5}.

Then, for all % <a<l,

J om0 s ez [ o s a4 (3) T 6
R?)

pAg 7 pAA (IR2)
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where i (A;) is the Lebesgue measure of A,.
Using the estimates (5.10) and (5.11), we get

A
pA)<ooand p(A) S (2) [ onl
For 1 >0, there exists fo € [0, (A¢) +1] such that tp ¢ A,. Then,

&
U (t - <.
” m( 0)” ;,;f,HATZ(Rz)_Z

Therefore we have

v(to =2 <|lom(fo o2 4| (to A2
[o(to)]] ;;qm,,z( : [[om (to) | NSAZMPZ ) [[bm (to) | Niﬁ”zm

< +Hb0,mH 3-20+4-2

]:Np,)\,q ’ (IRZ)

(VAN
Nlm NIm

_|_

N m

Consequently

v(to s A=2 <e. 5.12)
H ( )H]-'N;,AZ+APZ(II22) (

Now, we consider the quasi-geostrophic equations starting at t =t,.

0 Z+11g-VZ4+ANZ =0, xR t>0,
{t tuz Vet x (5.13)

Z(O,x) :Zo = ’()(to).

Using inequality (5.12) and Theorem 1.1, we infer that there exists a unique solution

n 320442 1 N 3+452
zeC <]R ,J:NP,A’q NL (R ,J:NP,A’q
of the problem (1.1).
The existence and uniqueness of a solution to the quasi-geostrophic equation gives
Vt>0, Z(t)=v(to+t). Then,

_ = _ < _ <e.
lolto Bl 5-2uaz2 - IZEON 52272 ]RZ)_HZoH aidz  SE

P
pAq ( pAq pAq (IRZ)

This completes the proof of Theorem 1.2. O

Remark 5.1. If k # 1, the results of Theorems 1.1 and 1.2 remain true, but with more
complicated calculations.
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