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Abstract. In this paper, we study the well-posedness and blow-up solutions for the
fractional Schrödinger equation with a Hartree-type nonlinearity together with a power-
type subcritical or critical perturbations. For nonradial initial data or radial initial data,
we prove the local well-posedness for the defocusing and the focusing cases with sub-
critical or critical nonlinearity. We obtain the global well-posedness for the defocusing
case, and for the focusing mass-subcritical case or mass-critical case with initial da-
ta small enough. We also investigate blow-up solutions for the focusing mass-critical
problem.
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1 Introduction

In this paper we consider the following Cauchy problem for the fractional nonlinear

Schrödinger equation

{

i∂tu=(−∆)α u+λ
(

|u|ku+
(

|x|−γ∗|u|2
)

u
)

, (t,x)∈R+×RN,

u(0,x)= ϕ(x), x∈RN ,
(1.1)
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where N≥1, 0<α<1, 0<γ<N, 0≤ k≤ 4α
N , λ=±1, ∗ denotes the convolution in RN , i is

the imaginary unit and u=u(t,x) :R×RN →C is the unknown complex-valued function.

The fractional Laplace operator (−∆)α is defined by

(−∆)α u=
1

(2π)N

∫

eix·ξ |ξ|2αF [u](ξ)dξ=F−1
[

|ξ|2αF [u](ξ)
]

,20

where F and F−1 are the Fourier transform and the Fourier inverse transform in RN ,

respectively. When λ=1, (1.1) is referred to be defocusing fractional NLS, while λ=−1,

(1.1) is referred to be focusing fractional NLS.

In recent years, there has been wide interest in applying fractional Laplacians to mod-

el physical phenomena. By extending the Feynman path integral from the Brownian-like

to the Lévy-like quantum mechanical paths, Laskin in [1,2] used the theory of functionals

over functional measure generated by the Lévy stochastic process to deduce the follow-

ing nonlinear fractional Schrödinger equation

i∂tu=(−∆)αu+ f (u), (1.2)

where 0 < α < 1, f (u) = |u|ku. The parameter 0 < α < 1 is the corresponding index of

the Lévy stable processes, see [1, 2]. Eq. (1.2) with α= 1
2 has been also used as models

to describe Boson stars. Recently, an optical realization of the fractional Schrödinger

equation was proposed by Longhi [3]. For the nonlinearity |u|pu, the well-posedness and

ill-posedness in the Sobolev space Hα have been investigated in [4, 5]. In [6], Boulenger,

Himmelsbach and Lenzmann have obtained a general criterion for blow-up of radial

solution of (1.1) with k≥ 4α
N and N ≥ 2. Although a general existence theorem for blow-

up solutions of this problem is still an open problem, it has been strongly supported by

numerical evidence [7].

Also, Eq. (1.2) has attracted more and more attention in both physics and mathemat-

ics, see [4–6, 8–16]. For the Hartree-type nonlinearity

f (u)=
(

|x|−γ∗|u|2
)

u,

Cho et al. in [8] proved existence and uniqueness of local and global solutions of (1.2).

In [9] the authors showed the existence of blow-up solutions. The dynamical proper-

ties of blow-up solutions have been investigated in [10, 11]. The stability and instability

of standing waves have been studied in [12]. For other kinds of fractional Schrödinger

equations in which the Hartree-type nonlinearity being replaced by a sublinearity, the

orbital stability of standing waves has been studied in [13, 14].

Recently, Bhattarai in [17] employed the concentration compactness techniques to

prove existence and stability of standing waves for the following nonlinear fractional

Schrödinger-Choquard equation

{

i∂tu=(−∆)αu−|u|ku−(|x|−γ∗|u|p)|u|p−2u, (t,x)∈ [0,T)×RN ,

u(0,x)= ϕ(x),
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where u :[0,T)×RN→C is the complex-valued function, N≥2, ϕ∈Hα, 0<α<1, 0<T≤∞,

0< k< 4α
N , 2≤ p< 1+ 2α+N−γ

N , γ∈ (0,N). Feng and Zhang in [18] proved existence and

stability of standing waves with k= 4α
N . We remark that when p=2, it reduces to (1.1); and

when 0< k< 4α
N , k= 4α

N and k> 4α
N the equation is referred as the L2-subcritical, L2-critical

and L2-supercritical.

In this paper, we are going to prove the well-posedness and blow-up solutions of the

above fractional Schrödinger-Choquard equation with p=2, i.e. (1.1).

We write the Cauchy problem (1.1) in the following integral form

u(t)=U(t)ϕ−i
∫ t

0
U
(

t−t′
)

(F(u)+G(u))
(

t′
)

dt′, (1.3)

where

G(u)=λ|u|ku, F(u)=λ
(

|x|−γ∗|u|2
)

u≡λKγ(u)u,

and U(t) is the unitary group defined by

U(t)ϕ(x)=
(

e−it(−∆)α

ϕ
)

(x)=
1

(2π)N

∫

RN
ei(x·ξ−t|ξ|2α) ϕ̂(ξ)dξ.

Here ϕ̂ denotes the Fourier transform i.e. ϕ̂(ξ)=
∫

RN e−ix·ξ ϕ(x)dx.

We note that (1.1) possesses some conservation laws. If the solution u of (1.1) has

sufficient decay at infinity and smoothness, it satisfies the conservation of mass

M(u(t)) :=‖u(t)‖L2 =‖ϕ‖L2 , (1.4)

and the conservation of energy

E(u(t))=E(ϕ), (1.5)

where E(u(t)) is defined by

E(u(t))=
1

2

∫

RN

∣

∣

∣
(−∆)

α
2 u(t,x)

∣

∣

∣

2
dx+

λ

k+2

∫

RN
|u(t,x)|k+2dx

+
λ

4

∫

RN

(

|x|−γ∗|u(t,x)|2
)

|u(t,x)|2dx

=
1

2

∥

∥

∥
(−∆)

α
2 u(t,·)

∥

∥

∥

2

L2
+

λ

k+2
‖u(t,·)‖k+2

Lk+2

+
λ

4

∫

RN

(

|x|−γ∗|u(t,x)|2
)

|u(t,x)|2dx (1.6)

and the energy space is Hα.

A pair (p,q) is said to be (general) admissible if they satisfy

p∈ [2,∞], q∈ [2,∞), (p,q,N) 6=(2,∞,2),
2

p
+

N

q
≤ N

2
. (1.7)
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For any pair (g,h), we define

γgh ≡
N

2
− N

h
− 2α

g
. (1.8)

Specially, for radially symmetric data, (p,q) satisfy the radial admissible condition,

p∈ [2,∞], q∈ [2,∞), (p,q) 6=
(

2,
4N−2

2N−3

)

,
2α

p
+

N

q
=

N

2
. (1.9)

We denote that [s] is the integer part of s, i.e. s=[s]+σ, where 0≤σ<1.

We will use Strichartz estimates in (general) admissible condition and radial admissi-

ble condition to prove the well-posedness.

Our first result is the following local well-posedness for (1.1) with nonradial data in

the sub-critical and critial nonlinearities.

Theorem 1.1. (Nonradial Local Well-posedness) Let N ≥ 1, α∈ (0,1)\{ 1
2 }, 0<γ< N and

0< k≤ 4α
N . Let s∈

[ γ
2 , N

2

)

such that

{

s> 1
2− α

2 , N=1,

s> N
2 −α, N≥2,

and if k is not an even integer, [s]≤ k holds. Then for all ϕ∈Hs, there exist T>0 and a unique

solution u to (1.1) satisfying

u∈C([0,T],Hs)∩L
p
loc

(

[0,T],Ws−γpq,q
)

for p>4 when N=1, p>2 when N≥2 and s>N/2−2α/p, where (p,q) is an admissible pair

satisfying (1.7) and γpq satisfy (1.8).

Moreover, if T<∞, then ‖u‖Hs →∞ when t→T−.

Next theorem is about the global well-posedness for the defocusing fractional NLS

and focusing fractional NLS with subcritical and critical nonlinearities.

Theorem 1.2. (Nonradial Global Well-posedness) Let N≥1, 0<α<1, 0<γ<N, 0<k≤ 4α
N

and s=α≥γ/2 with
{

α> 1
3 , N=1

α> N
4 , 2≤N<4.

Then for any ϕ∈ Hs, the solution u to (1.1) exists globally if one of the following conditions is

satisfied:

I. λ=1, i.e. defocusing case,

II. λ=−1, N≥2, 0< k< 4α
N and γ<2α, i.e. focusing subcritical nonlinearity case,

III. λ=−1, N≥2, k= 4α
N , γ=2α and ‖ϕ‖L2 is small enough, i.e. focusing critical nonlinearity

case.
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Then, we give the local and global well-posedness for (1.1) with radial data in the

sub-critical and critial nonlinearities.

Theorem 1.3. (Radial Local Well-posedness) Let N≥2, 0<γ<N, 0< k≤ 4α
N , α∈

[

N
2N−1 ,1

)

and s∈
[ γ

2 , N
2

)

. If k is not an even integer, [s]≤ k holds. Define

p=
4α(k+2)

k(N−2s)
, q=

N(k+2)

N+sk
.

Then for any ϕ∈Hs
rad, there exist T>0 and a unique solution u to (1.1) satisfying

u∈C([0,T],Hs
rad)∩L

p
loc

(

[0,T],W
s,q
rad

)

.

Moreover, if T<∞, then ‖u‖Hs →∞ when t→T−.

Theorem 1.4. (Radial Global Well-posedness) Let N≥2, 0<α<1, 0<γ<N, 0<k≤ 4α
N and

s=α≥γ/2. Then for any ϕ∈Hs
rad, the solution u to (1.1) exists globally if one of the following

conditions is satisfied:

I. λ=1, i.e. defocusing case,

II. λ=−1, 0< k< 4α
N and γ<2α , i.e. focusing subcritical nonlinearity case,

III. λ=−1, k= 4α
N , γ=2α and ‖ϕ‖L2 is small enough, i.e. focusing critical nonlinearity case.

Finally, we consider the blow-up dynamics of focusing fractional NLS (1.1) with λ=
−1.

Theorem 1.5. Let N ≥ 2, α∈ ( 1
2 ,1), k= 4α

N , γ= 2α, λ=−1 and ϕ∈ Hα
rad. Let u be such that

the corresponding solution to (1.1) exists on the maximal time T∗. If E(ϕ)< 0, then one of the

following statements holds true:

(1) u(t) blows up in finite time in the sense that T∗
<+∞ must hold.

(2) u(t) blows up infinite time such that

sup
t≥0

∥

∥

∥
(−∆)

α
2 u(·,t)

∥

∥

∥

L2
=∞. (1.10)

Remark 1.1. Content of your remarks. As explained by Boulenger, Himmelsbach and

Lenzmann [6], it is hard to expulse the possibility that the solutions may blow up at

infinite time. We can only show that the solutions can not be uniformly bounded if they

exist globally.

The rest of the paper is organized as follow. In Section 2, we introduce some important

facts and tools. In Section 3, we prove the local and global existence of nonradial solutions

via standard Strichartz estimates when 0< k≤ 4α
N (for k=0, we refer to [8]). In Section 4,

we obtain the local and global existence of radial solutions via radial Strichartz estimates

when 0 < k ≤ 4α
N . In the last section, we study the blow-up of radial solutions for the

focusing fractional NLS in the critical case, i.e. k= 4α
N and γ=2α.
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We will use the notations |∇| =
√
−∆, Ẇs,r = |∇|−s Lr(RN)

(

Ḣs =Ẇs,2
)

and Ws,r =

(1−∆)−s/2Lr(RN)
(

Hs=Ws,2
)

. The norm ‖F‖Lq(X) means
(∫

R
‖F(t,·)‖q

Xdt
)1/q

. We denote

the space L
q
T(B) by Lq(0,T;B) and its norm by ‖·‖L

q
T B

for some Banach space B, and also

Lq(B) with the norm ‖·‖Lq(B) by Lq(0,∞;B),1≤ q≤∞. If not specified, throughout this

paper, the notation A. B and A& B denote A≤CB and A≥C−1B, respectively. A∼ B

means that both A.B and A&B. C is a generic positive constant possibly depending on

N,α and γ.

2 Preliminaries

In this section, we present some facts which will be used to prove the local well-posedness.

Firstly, we give the Strichartz estimates.

Lemma 2.1. ([19, 20]) For N≥1 and α∈ (0,1)\{ 1
2}, the following estimates hold

∥

∥

∥
e−it(−∆)α

ϕ
∥

∥

∥

Lp(R,Lq)
.‖|∇|γpq ϕ‖L2 , (2.1)

∥

∥

∥

∥

∫ t

0
e−i(t−τ)(−∆)α

f (τ)dτ

∥

∥

∥

∥

Lp(R,Lq)

.
∥

∥|∇|γpq−γa′b′−2α f
∥

∥

La′(R,Lb′) , (2.2)

where (p,q), (a,b) are admissible pairs defined as (1.7), with

1

a
+

1

a′
=1,

1

b
+

1

b′
=1,

and γpq and γa′b′ are defined as (1.8), i.e.

γpq=
N

2
− N

q
− 2α

p
, γa′b′ =

N

2
− N

b′
− 2α

a′
. (2.3)

It is worthy noticing that for α∈(0,1)\{ 1
2} the admissible condition 2

p+
N
q ≤ N

2 implies

γpq > 0 for all admissible pairs (p,q) except (p,q) = (∞,2). This means that the above

Strichartz estimates have a loss of derivative. For radial data, the estimates (2.1) and (2.2)

hold true for N≥2,α∈ (0,1)\{ 1
2} and (p,q),(a,b) satisfy the radial admissible condition:

2

p
+

2N−1

q
≤ 2N−1

2
.

This condition allows us to choose (p,q) so that γpq = 0. More precisely, we have next

lemma.

Lemma 2.2. ([20–22]) For N≥2 and N
2N−1 ≤α<1,

∥

∥

∥
e−it(−∆)α

ϕ
∥

∥

∥

Lp(R,Lq)
.‖ϕ‖L2 , (2.4)
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∥

∥

∥

∥

∫ t

0
e−i(t−τ)(−∆)α

f (τ)dτ

∥

∥

∥

∥

Lp(R,Lq)

.‖ f‖La′(R,Lb′), (2.5)

where ϕ and f are radially symmetric and (p,q),(a,b) satisfy the radial admissible condition (1.9).

The following is the Leibniz rule for fractional derivatives.

Lemma 2.3. ([8, 23]) Let α∈ (0,1) and 1< p,pi <∞, 1<qi ≤∞ satisfying 1
p =

1
pi
+ 1

qi
. Then,

‖|∇|α(uv)‖Lp .‖|∇|αu‖Lp1 ‖v‖Lq1 +‖|∇|αv‖Lp2 ‖u‖Lq2 ,
∥

∥

∥
(1−∆)

α
2 (uv)

∥

∥

∥

Lp
.
∥

∥

∥
(1−∆)

α
2 u

∥

∥

∥

Lp1
‖v‖Lq1 +

∥

∥

∥
(1−∆)

α
2 v
∥

∥

∥

Lp2
‖u‖Lq2 .

The following fractional chain rule is basic for the estimates of the nonlinear terms.

Lemma 2.4. (Fractional Chain Rule [24]) Let F∈C1(C,C) and α∈(0,1). Then for 1<q≤q2<∞

and 1<q1≤∞ satisfying 1
q =

1
q1
+ 1

q2

‖|∇|αF(u)‖Lq .‖F′(u)‖Lq1 ‖|∇|αu‖Lq2 .

Applying the above chain rule to F(z)= |z|kz, we have

Lemma 2.5. ([23]) Let F(z)= |z|kz with k> 0, s≥ 0 and 1< p,p1 <∞, 1< q1 ≤∞ satisfying
1
p =

1
p1
+ k

q1
. If k is an even integer or k is not an even integer with [s]≤ k, then there exists C>0

such that for all u∈S ,

‖F(u)‖Ẇs,p ≤C‖u‖k
Lq1‖u‖Ẇs,p1 .

A similar estimate holds with Ẇs,p,Ẇs,p1-norms replaced by Ws,p,Ws,p1 norms.

Next, we recall a sharp Gagliardo-Nirenberg type inequality established by Boulenger,

Himmelsbach and Lenzmann [6] and Zhu [14].

Lemma 2.6. Let N≥2, 0<α<1 and 0< p< 4α
N−2α . Then, for all u∈Hα,

∫

RN
|u|p+2dx≤Copt

∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

pN
2α

L2
‖u‖(p+2)− pN

2α

L2 , (2.6)

where the optimal constant Copt is given by

Copt=

(

2α(p+2)−pN

pN

)

Np
4α 2α(p+2)

(2α(p+2)−pN)‖Q‖p

L2

,

and Q is a ground state solution of the following elliptic equation

(−∆)αQ+Q= |Q|pQ in R
N.

In particular, in the L2-critical case p= 4α
N , Copt=

2α+N
N‖Q‖p

L2

.
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Similarly, Feng and Zhang in [15] established the following sharp generalized Gagliardo-

Nirenberg type inequality for Hartree-type nonlinearities.

Lemma 2.7. Let α ∈ (0,1), N ≥ 1, 0 < γ < N such that 2N−γ
N−2α > 2, the following generalized

Gagliardo-Nirenberg inequality

∫

RN

(

|x|−γ∗|u|2
)

|u|2dx≤Cγ

(

∫

RN

∣

∣

∣
(−∆)

α
2 u

∣

∣

∣

2
dx

)

γ
2α
(

∫

RN
|u|2dx

)

4α−γ
2α

=Cγ‖u‖
γ
α

Ḣα ‖u‖4− γ
α

L2 (2.7)

holds and the best constant is

Cγ=
4α2

4α−γ

(

4α−γ

αγ

)
γ
2α

‖R‖−2
L2 ,

where R is the ground state of the elliptic equation

(−∆)αR+R−
(

|x|−γ∗|R|2
)

R=0.

Lemma 2.8. ([6]) Let N>1 and f :RN→R satisfy ∇ f ∈W1,∞
(

RN
)

. Then, for all u∈H
1
2

(

RN
)

,

it holds that
∣

∣

∣

∣

∫

RN
ū(x)∇ f (x)·∇u(x)dx

∣

∣

∣

∣

6C

(

∥

∥

∥
|∇| 1

2 u
∥

∥

∥

2

L2
+‖u‖L2

∥

∥

∥
|∇| 1

2 u
∥

∥

∥

L2

)

,

with some constant C>0 depending only on ‖∇ f‖W1,∞ and N.

3 Well-posedness for Nonradial Data

In this section, we show the local and global well-posedness for (1.1) in nonradially sym-

metric Sobolev spaces.

First we are going to prove Theorem 1.1, the local well-posedness, by applying the

contraction mapping argument via Strichartz estimates (2.1) and (2.2). The proof is di-

vided in two steps.

Proof. Step 1. First we note that, by the assumptions, s−γpq>
N
q and p> k. Let

X(T,ρ) :=
{

u∈L∞([0,T],Hs)∩Lp([0,T],Ws−γpq,q) :‖u‖L∞
T Hs+‖u‖L

p
TWs−γpq,q ≤ρ

}

,

equipped with the distance

dX(u,v) :=‖u−v‖L∞
T L2+‖u−v‖L

p
T W−γpq,q ,
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where ρ,T > 0 to be chosen later. It is easy to see that (X(T,ρ),dX) is a complete metric

space. Now we define a mapping N : u 7→N (u) on X(T,ρ) by

N (u)(t)=U(t)ϕ−i
∫ t

0
U
(

t−t′
)

(F(u)+G(u))
(

t′
)

dt′.

By the Strichartz estimates (2.1) and (2.2),

‖N (u)‖L∞
T Hs∩L

p
TWs−γpq,q .‖ϕ‖Hs+‖F(u)‖L1

T Hs+‖G(u)‖L1
T Hs . (3.1)

Now we estimate the right hand of (3.1). For s≥ γ/2, using the Hardy-Littlewood-

Sobolev inequality, Lemma 2.3, the Hardy type inequality

sup
x∈RN

∣

∣

∣

∣

∫

RN

|u(x−y)|2
|y|γ dy

∣

∣

∣

∣

.‖u‖2
Ḣγ/2 , (3.2)

and the Sobolev embedding Ḣγ/2 →֒ L2N/(N−γ), we have

‖F(u)‖L1
T Hs .T‖F(u)‖L∞

T Hs

.T
(

∥

∥Kγ

(

|u|2
)
∥

∥

L∞
T L∞ ‖u‖L∞

T Hs+
∥

∥Kγ

(

|u|2
)
∥

∥

L∞
T Ws,2N/γ‖u‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs+‖u‖2

L∞
T L2N/(N−γ)‖u‖L∞

T Hs

)

.T‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs

.Tρ3. (3.3)

For the last term of (3.1), we apply the fractional chain rule given in Lemma 2.5, the

Hölder inequality and the fact p> k to get

‖G(u)‖L1
T Hs =

∥

∥

∥
|u|ku

∥

∥

∥

L1
T Hs

.
∥

∥

∥
|u|k

∥

∥

∥

L1
T L∞

‖u‖L∞
T Hs

.‖u‖k
Lk

T L∞‖u‖L∞
T Hs

.T
1− k

p ‖u‖k
L

p
T L∞‖u‖L∞

T Hs .

Note the fact s−γpq>N/q and the Sobolev embedding Ws−γpq,q →֒ L∞, we get

‖G(u)‖L1
T Hs .T

1− k
p ‖u‖k

L
p
TWs−γpq,q‖u‖L∞

T Hs .T
1− k

p ρk+1. (3.4)

Hence, putting (3.3) and (3.4) into (3.1), we get

‖N (u)‖L∞
T Hs∩L

p
TWs−γpq,q ≤C(‖ϕ‖Hs+Tρ3+T

1− k
p ρk+1).
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Let ρ= 2C‖ϕ‖Hs and choose T such as C(Tρ2+T
1− k

p ρk)≤ 1
2 , then N maps X(T,ρ) into

itself.

Step 2. Now we show that N is a contraction map for sufficiently small T. Let

u,v∈X(T,ρ), using (2.2), we have

dX(N (u),N (v)).‖F(u)−F(v)‖L1
T L2+‖G(u)−G(v)‖L1

T L2 . (3.5)

Now, we start to estimate the right hand of (3.5). For the first term, we have

‖F(u)−F(v)‖L1
T L2

.T
∥

∥Kγ

(

|u|2
)

u−Kγ

(

|v|2
)

v
∥

∥

L∞
T L2

.T
(

∥

∥Kγ

(

|u|2
)

(u−v)
∥

∥

L∞
T L2+

∥

∥Kγ

(

|u|2−|v|2
)

v
∥

∥

L∞
T L2

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+

∥

∥Kγ

(

|u|2−|v|2
)∥

∥

L∞
T L2N/γ‖v‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+

∥

∥|u|2−|v|2
∥

∥

L∞
T L2N/(2N−γ)‖v‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+‖u−v‖L∞

T L2‖u+v‖L∞
T L2N/(N−γ)‖v‖L∞

T L2N/(N−γ)

)

.Tρ2dX(u,v). (3.6)

For the last term of (3.5), we get

‖G(u)−G(v)‖L1
T L2 =

∥

∥

∥|u|k u−|v|k v
∥

∥

∥

L1
T L2

.
(

‖u‖k
Lk

T L∞+‖v‖k
Lk

T L∞

)

‖u−v‖L∞
T L2

.T
1− k

p

(

‖u‖k
L

p
T L∞+‖v‖k

L
p
T L∞

)

‖u−v‖L∞
T L2

.T
1− k

p

(

‖u‖k
L

p
TWs−γpq,q+‖v‖k

L
p
TWs−γpq,q

)

‖u−v‖L∞
T L2

.T
1− k

p ρkdX(u,v). (3.7)

From (3.5)–(3.7), we have

dX(N (u),N (v)).C
(

Tρ2+T
1− k

p ρk
)

dX(u,v).

Then we choose T small enough such that

C(Tρ2+T
1− k

p ρk)≤ 1

2
,

the above estimate implies that the mapping N is a contraction. Then N admits a unique

fixed point in X(T,ρ), which is the solution of (1.1). This completes the proof of local

well-posedness.
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Next, we will prove Theorem 1.2, the global well-posedness for (1.1) in two cases:

λ=1, the defocusing case and λ=−1, the focusing case with subcritical/critical nonlin-

earities.

Proof of Theorem 1.2.

Proof. First we consider the defocusing case λ=1. Let T∗ be the maximal existence time.

We will prove that T∗ = ∞ by contradiction. Suppose that T∗
< ∞, then the local well-

posedness shows that

‖u‖L
q

T∗Ws−γpq,q =∞. (3.8)

From Theorem 1.1, the conservation laws (1.4) and (1.5), for any t < T∗, the solution u

satisfies
1

2
‖u(t)‖2

Hα ≤ 1

2
‖u(t)‖2

L2 +E(u)=
1

2
‖ϕ‖2

L2+E(ϕ).

From the estimate (3.1) with s=α, we have

‖u‖L
p
TWα−γpq,q ≤‖ϕ‖Hs+T‖u‖3

L∞
T Hα+T

1− k
p ‖u‖k

L
p
TWα−γpq,q‖u‖L∞

T Hα

. (‖ϕ‖2
L2+E(ϕ))

1
2 +T(‖ϕ‖2

L2+E(ϕ))
3
2

+T
1− k

p (‖ϕ‖2
L2 +E(ϕ))

1
2 ‖u‖k

L
p
TWα−γpq,q .

Thus for sufficiently small T depending only on ‖ϕ‖2
L2 +E(ϕ), we have

‖u‖Lp(Tj−1,Tj;W
α−γpq,q)≤C

(

‖ϕ‖2
L2+E(ϕ)

)

3
2 ,

where Tj−Tj−1=T. If T∗
<∞, then there exists M∈N such that (M−1)T<T∗≤MT. Let

Tj =(j−1)T, j=1,.. . ,M−1 and TM =T∗. Then we have

‖u‖p

Lp(0,T∗;Wα−γpq,q)
≤ ∑

1≤j≤M

‖u‖p

Lp(Tj−1,Tj;W
α−γpq,q)

≤
(

MC
(

‖ϕ‖2
L2+E(ϕ)

)

3
2

)p

<∞.

This contradicts to (3.8), and thus completes the proof of the defocusing case .

Next we consider the focusing case, λ=−1. From Lemmas 2.6 and 2.7,

∫

RN
|u|k+2dx≤Copt‖u‖

kN
2α

Ḣα ‖u‖(k+2)− kN
2α

L2 ,
∫

RN

(

|x|−γ∗|u|2
)

|u|2dx≤Cγ‖u‖
γ
α

Ḣα‖u‖4− γ
α

L2 ,
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we get

E(u(t))=
1

2
‖u‖2

Ḣα− 1

k+2
‖u‖k+2

Lk+2−
1

4

∫

RN

(

|x|−γ∗|u|2
)

|u|2dx

≥ 1

2
‖u‖2

Ḣα−
Copt

k+2
‖u‖

kN
2α

Ḣα‖u‖(k+2)− kN
2α

L2 −Cγ

4
‖u‖

γ
α

Ḣα‖u‖4− γ
α

L2

≥ 1

2
‖u‖2

Ḣα−
Copt

k+2
‖u‖

kN
2α

Ḣα‖ϕ‖(k+2)− kN
2α

L2 −Cγ

4
‖u‖

γ
α

Ḣα ‖ϕ‖4− γ
α

L2 .

For the condition II in Theorem 1.2, i.e. 0< k< 4α
N and γ<2α, using the Young inequality,

we can easily get

‖u(t)‖2
Ḣα . |E(ϕ)|.

For the condition III in Theorem 1.2, i.e. k= 4α
N , γ=2α and ‖ϕ‖L2 is suffciently small, the

above inequality still holds true. Therefore,

‖u(t)‖2
Hα ≤‖u(t)‖2

L2 +E(u)=‖ϕ‖2
L2 +E(ϕ).

Similar to the defocusing case, we can apply the contradiction argument to prove the

global well-posedness. This completes the proof of Theorem 1.2.

4 Well-posedness for Radial Data

In this section, we will show the local and global well-posedness for (1.1) with radial

initial data in Sobolev spaces. The proof is also based on the contraction mapping ar-

gument via Strichartz estimates (2.4) and (2.5). In the radial case, thanks to Strichartz

estimates without loss of derivatives, we have better local well-posedness comparing to

the nonradial case.

The proof of Theorem 1.3 is divided in two steps.

Proof. Step 1. It is easy to check that when (p,q) satisfies the radial admissible condition

(1.9), we can choose (m,n) so that

1

p′
=

1

p
+

k

m
,

1

q′
=

1

q
+

k

n
,

and we see that

θ≡ k

m
− k

p
=1− k(N−2s)

4α
∈ (0,1), q≤n=

qN

N−sq
.

The later fact gives the Sobolev embedding Ws,q →֒ Ln. Let (Y(T,ρ),dY) be the complete

metric space

Y(T,ρ)=
{

C([0,T],Hs
rad)∩L

p
T (W

s,q) :‖u‖L∞
T Hs+‖u‖L

p
TWs,q ≤ρ

}
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equipped with the distance

dY(u,v) :=‖u−v‖L∞
T L2+‖u−v‖L

p
T Lq .

As before we define a mapping N : u 7→N (u) on Y(T,ρ) by

N (u)(t)=U(t)ϕ−i
∫ t

0
U
(

t−t′
)

(F(u)+G(u))
(

t′
)

dt′.

From the radial Strichartz estimates (2.4) and (2.5), we obtain

‖N (u)‖L∞
T Hs∩L

p
TWs,q ≤‖ϕ‖Hs+‖F(u)‖L1

T Hs+‖G(u)‖
L

p′
T Ws,q′ , (4.1)

Now we estimate the right hand of (4.1). For s≥γ/2,

‖F(u)‖L1
T Hs .T‖F(u)‖L∞

T Hs

.T
(

∥

∥Kγ

(

|u|2
)
∥

∥

L∞
T L∞ ‖u‖L∞

T Hs+
∥

∥Kγ

(

|u|2
)
∥

∥

L∞
T Ws,2N/γ‖u‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs+‖u‖2

L∞
T L2N/(N−γ)‖u‖L∞

T Hs

)

.T‖u‖2
L∞

T Hγ/2‖u‖L∞
T Hs

.Tρ3. (4.2)

Here we have used the Hardy-Littlewood-Sobolev inequality, Lemma 2.3, the Hardy type

inequality (3.2) and the Sobolev embedding Ḣγ/2 →֒ L2N/(N−γ).

By the fractional chain rule in Lemma 2.5 and the Hölder inequality, we get

‖G(u)‖
L

p′
T Ws,q′ =

∥

∥

∥
|u|ku

∥

∥

∥

L
p′
T Ws,q′

.‖u‖k
Lm

T Ln‖u‖L
p
TWs,q

.Tθ‖u‖k
L

p
T Ln‖u‖L

p
TWs,q

.Tθ‖u‖k+1
L

p
TWs,q

.Tθρk+1. (4.3)

Hence, putting (4.2) and (4.3) into (4.1), we get

‖N (u)‖L∞
T Hs∩L

p
TWs,q ≤C(‖ϕ‖Hs+Tρ3+Tθρk+1).

Let ρ=2C‖ϕ‖Hs and choose T such as C(Tρ2+Tθρk)≤ 1
2 , then N maps Y(T,ρ) into itself.

Step 2. Now we show that N is a contraction map for sufficiently small T. Let

u,v∈Y(T,ρ), then we have

dY(N (u),N (v)).‖F(u)−F(v)‖L1
T L2+‖G(u)−G(v)‖

L
p′
T Lq′ . (4.4)
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Now we estimate the right hand of (4.4). For the first term, we have

‖F(u)−F(v)‖L1
T L2

.T
∥

∥Kγ

(

|u|2
)

u−Kγ

(

|v|2
)

v
∥

∥

L∞
T L2

.T
(

∥

∥Kγ

(

|u|2
)

(u−v)
∥

∥

L∞
T L2+

∥

∥Kγ

(

|u|2−|v|2
)

v
∥

∥

L∞
T L2

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+

∥

∥Kγ

(

|u|2−|v|2
)∥

∥

L∞
T L2N/γ ‖v‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+

∥

∥|u|2−|v|2
∥

∥

L∞
T L2N/(2N−γ)‖v‖L∞

T L2N/(N−γ)

)

.T
(

‖u‖2
L∞

T Hγ/2‖(u−v)‖L∞
T L2+‖u−v‖L∞

T L2‖u+v‖L∞
T L2N/(N−γ)‖v‖L∞

T L2N/(N−γ)

)

.Tρ2dY(u,v).

For the last term of (4.4), we have

‖G(u)−G(v)‖
L

p′
T Lq′ =

∥

∥

∥|u|k u−|v|k v
∥

∥

∥

L
p′
T Lq′

.
(

‖u‖k
Lm

T Ln+‖v‖k
Lm

T Ln

)

‖u−v‖L
p
T Lq

.Tθ
(

‖u‖k
L

p
TẆγ,q+‖v‖k

L
p
TẆγ,q

)

‖u−v‖L
p
T Lq

.TθρkdY(u,v).

Hence

dY(N (u),N (v)).C
(

Tρ2+Tθρk
)

dY(u,v).

Then we can choose T small enough such that C(Tρ2+Tθρk) ≤ 1
2 , the above estimate

implies that the mapping N is a contraction. Then N admits a fixed point in X(T,ρ),
which is the solution of (1.1). This completes the proof of Theorem 1.3.

Next, we will prove the global well-posedness for (1.1) with radial initial data in two

cases: λ=1, the defocusing case and λ=−1, the focusing case.

Proof of Theorem 1.4.

Proof. First we consider the defocusing case λ=1. Let T∗ be the maximal existence time.

We will prove that T∗ =∞ by contradiction. Suppose that T∗
< ∞, then the local well-

posedness shows that

‖u‖L
q

T∗Ws,q =∞. (4.5)

From Theorem 1.3, the conservation laws (1.4) and (1.5), for any t < T∗, the solution u

satisfies
1

2
‖u(t)‖2

Hα ≤ 1

2
‖u(t)‖2

L2 +E(u)=
1

2
‖ϕ‖2

L2 +E(ϕ).



96 L. Tao, Y. J. Zhao and Y. S. Li/ J. Partial Diff. Eq., 36 (2023), pp. 82-101

From the estimate (4.1) with s=α, we have

‖u‖L
p
TWα,q .‖ϕ‖Hα+Tθ‖u‖k+1

L
p
TWα,q+T‖u‖3

L∞
T Hα

.
(

‖ϕ‖2
L2+E(ϕ)

)

1
2 +Tθ‖u‖k+1

L
p
TWα,q+T

(

‖ϕ‖2
L2 +E(ϕ)

)

3
2 .

Thus for sufficiently small T depending only on ‖ϕ‖2
L2 +E(ϕ), we have

‖u‖Lp(Tj−1,Tj;W
α,q)≤C

(

‖ϕ‖2
L2+E(ϕ)

)

3
2 ,

where Tj−Tj−1=T. If T∗
<∞, then there exists M∈N such that (M−1)T<T∗≤MT. Let

Tj =(j−1)T, j=1,.. . ,M−1 and TM =T∗. Then we have

‖u‖p

Lp(0,T∗;Wα,q)
≤ ∑

1≤j≤M

‖u‖p

Lp(Tj−1,Tj;W
α,q)

≤
(

MC
(

‖ϕ‖2
L2 +E(ϕ)

)

3
2

)p

<∞.

This contradicts to (4.5), and thus completes the proof of the defocusing case.

Next we consider the focusing case, λ=−1. Similarly to the proof of the focusing case

in Theorem 1.2, we have also

‖u(t)‖2
Hα ≤‖u(t)‖2

L2 +E(u)=‖ϕ‖2
L2+E(ϕ).

This completes the proof of Theorem 1.4.

5 Blow-up Solutions

In this section, we are going to give the proof of Theorem 1.5.

According to Theorem 1.3, for a radial initial function ϕ∈ Hα
rad, (1.1) admits a local

solution u∈Hα
rad. If T∗

<∞, then we are done. If T∗=∞, we show (1.10).

Let ψ∈C∞
0 (RN) be radial and satisfy

ψ(r)=

{

1
2r2, for r61

0, for r>2
and ψ′′(r)61 for r= |x|>0. (5.1)

For a fixed R>0, we define the rescaled function ψR :RN →R by setting

ψR(r) :=R2ψ
( r

R

)

. (5.2)

We readily verify the inequalities

1−ψ′′
R(r)>0, 1−ψ′

R(r)

r
>0, N−∆ψR(r)>0 for all r>0. (5.3)
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Indeed, this first inequality follows from ψ′′
R(r)=ψ′′(r/R)61. We obtain the second in-

equality by integrating the first inequality on [0,r] and using that ψ′
R(0)= 0. Finally, we

see that last inequality follows from

N−∆ψR(r)=1−ψ′′
R(r)+(N−1)

{

1− 1

r
ψ′

R(r)

}

>0.

Besides (5.3), ψR admits the following properties, which can be easily checked.























∇ψR(r)=Rψ′( r
R

)

x
|x| =

{

x for r6R,

0 for r>2R,
∥

∥∇jψR

∥

∥

L∞ .R2−j for 06 j64,

supp
(

∇jψR

)

⊂
{ {|x|62R} for j=1,2,

{R6 |x|62R} for 36 j64.

We define

MψR
[u(t)] :=2Im

∫

RN
ū(t)∇ψR ·∇u(t)dx=2Im

∫

RN
ū(t)∂jψR∂ju(t)dx.

Define the self-adjoint differential operator

ΓψR
:=−i(∇·∇ψR+∇ψR ·∇),

which acts on functions according to

ΓψR
f =−i(∇·((∇ψR) f )+(∇ψR)·(∇ f )).

It’s easy to check that

MψR
[u(t)]=

〈

u(t),ΓψR
u(t)

〉

.

First, we give the following lemma.

Lemma 5.1. Let N ≥ 2, α ∈ ( 1
2 ,1), k = 4α

N , γ = 2α, and u ∈ Hα
rad is a solution of (1.1) with

λ=−1. Let ψR be as in (5.2), T∗ be the maximal existence time of solution u(t) in Hα
rad. Then

for sufficiently large R, we have

d

dt
MψR

[u(t)]≤4αE(u(t)), t∈ [0,T∗).

Proof. By taking the derivative of MψR
[u(t)] with respect to time t and using the equation

of u(t), for any t∈ [0,T), we get

d

dt
MψR

[u(t)]=
〈

u(t),
[

(−∆)α,iΓψR

]

u(t)
〉

+
〈

u(t),
[

−|u|k,iΓψR

]

u(t)
〉

+
〈

u(t),
[

−Kγ(u),iΓψR

]

u(t)
〉

=: I1+ I2+ I3, (5.4)
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where [X,Y]≡XY−YX denotes the commutator of operators X and Y.

From [6] , k= 4α
N , we get

I1=
〈

u(t),
[

(−∆)α,iΓψR

]

u(t)
〉

≤4α‖(−∆)
α
2 u‖2

L2+CR−2α,

and
I2=

〈

u,
[

−|u|k,iΓψR

]

u
〉

=−
〈

u,
[

|u|k,∇ψR ·∇+∇·∇ψR

]

u
〉

=2
∫

RN
|u|2∇ψR ·∇

(

|u|k
)

dx

=− 2k

k+2

∫

RN
(∆ψR)|u|k+2dx

=− 2kN

k+2

∫

RN
|u|k+2dx− 2k

k+2

∫

|x|>R
(∆ψR−N) |u|k+2dx

≤− 2kN

k+2

∫

RN
|u|k+2dx+CR

−k(N−1)
2 +ε1α

∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

(k/2α)+ε1

L2
,

where 0< ε1< (2α−1)k/2α.

From [25] and γ=2α, we get

I3=
〈

u(t),
[

−Kγ(u),iΓψR

]

u(t)
〉

≤−γ
∫

(

|x|−γ∗|u|2
)

|u(x)|2dx+
C

R
1
2 (N−1−ε2)( γ

N )

∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

2+
γ(1+ε2)

2αN

L2
,

where 0< ε2<2α−1<N. Therefore,

d

dt
MψR

[u(t)]≤4α‖(−∆)
α
2 u‖2

L2−
2kN

k+2

∫

RN
|u|k+2dx

−γ
∫

(

|x|−γ∗|u|2
)

|u(x)|2dx

+CR−2α+CR
−k(N−1)

2 +ε1α
∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

(k/2α)+ε1

L2

+
C

R
1
2 (N−1−ε2)( γ

N )

∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

2+
γ(1+ε2)

2αN

L2
.

From (1.4) and (1.5), we have

d

dt
MψR

[u(t)]≤8αE(u(t))+CR−2α

+CR
−k(N−1)

2 +ε1α
∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

(k/2α)+ε1

L2

+
C

R
1
2 (N−1−ε2)( γ

N )

∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

2+
γ(1+ε2)

2αN

L2
, (5.5)
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where the constant C > 0 is independent of R. When R> 1 is sufficiently large, ε1 and

ε2<1 are sufficiently small, then

d

dt
MψR

[u(t)]≤4αE(u(t))=4αE(ϕ). (5.6)

The proof of Lemma 5.1 is completed.

Now we begin to prove case (2) of Theorem 1.5. We suppose that u(t) exists for all

times t≥0, i.e. T∗=∞.

It follows from Lemma 5.1 and conservation of mass, for R≫1 large enough,

d

dt
MψR

[u(t)]≤4αE(ϕ),−A∗
<0, t≥0. (5.7)

From (5.7), we infer that

MψR
[u(t)]≤−A∗t+MψR

[ϕ], t≥0.

On the one hand, let T0=
2|MψR

[ϕ]|
A∗ >0, then for any t≥T0, we have

MψR
[u(t)]≤−1

2
A∗t<0. (5.8)

On the other hand, by Lemma 2.8 and the conservation of mass, we see that for any

t∈ [0,+∞),

∣

∣MψR
[u(t)]

∣

∣.C(ψR)

(

∥

∥

∥
|∇| 1

2 u(t)
∥

∥

∥

2

L2
+‖u(t)‖L2

∥

∥

∥
|∇| 1

2 u(t)
∥

∥

∥

L2

)

.C(ψR)

(

∥

∥

∥
|∇| 1

2 u(t)
∥

∥

∥

2

L2
+‖u(t)‖2

L2

)

.C(ψR)

(

∥

∥

∥
|∇| 1

2 u(t)
∥

∥

∥

2

L2
+1

)

.C(ψR)

(

∥

∥

∥
(−∆)

α
2 u(t)

∥

∥

∥

1
α

L2
+1

)

.

Here we have used the interpolation estimate

∥

∥

∥
|∇| 1

2 u
∥

∥

∥

L2
.
∥

∥

∥
(−∆)

α
2 u

∥

∥

∥

1
2α

L2
‖u‖1− 1

2α

L2 for α>
1

2
.

This combined with (5.8) yields that for any t≥T0,

A∗t≤−2MψR
[u(t)].C(ψR)

(

∥

∥

∥
(−∆)

α
2 u(t)

∥

∥

∥

1
α

L2
+1

)

.



100 L. Tao, Y. J. Zhao and Y. S. Li/ J. Partial Diff. Eq., 36 (2023), pp. 82-101

This shows that
∥

∥

∥
(−∆)

α
2 u(t)

∥

∥

∥

L2
≥Ctα, t≥T0.

It means that

sup
t≥0

∥

∥

∥
(−∆)

α
2 u(·,t)

∥

∥

∥

L2
=∞.

The proof of Theorem 1.5 is completed.
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