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Abstract. A fast solver for nonlinear systems arising from fourth-order compact finite

difference schemes for two-dimensional semilinear Poisson equations is constructed. Ap-

plying the extrapolation and bi-quartic interpolation to two numerical solutions from the

previous two levels of grids, we determine a suitable initial guess for the Newton iter-

ations on the next finer grid. It is fifth-order accurate, which substantially reduces the

number of Newton iterations required. Moreover, an extrapolated solution of sixth-order

accuracy can be easily constructed on the whole fine grid. Numerical results suggest that

the method is much more efficient than the existing multigrid methods for semilinear

problems.
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1. Introduction

Semilinear Poisson equations appear in various fields, including fluid mechanics and

geophysics. In this work, we consider a fast solver, which allows us to efficiently obtain nu-

merical solutions of two-dimensional (2D) Poisson equations with nonlinear forcing terms.

These equations have the form

ux x + uy y = f (u, x , y), (x , y) ∈ Ω,

u(x , y) = g(x , y), (x , y) ∈ ∂Ω,
(1.1)

where Ω is a rectangle domain with the boundary ∂Ω. The Dirichlet boundary condition is

imposed on ∂Ω. Besides, the nonlinear forcing function f (u, x , y), the boundary function
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g(x , y) and the true solution u(x , y) are supposed to be continuously differentiable and

have indispensable partial derivatives. Following [19, 33], we assume that the problem

(1.1) has a unique solution.

High-order compact finite difference (FD) schemes for Poisson equation have been

widely studied [17, 19, 30, 34, 35]. The methods are called compact because the corre-

sponding discretization formulas use a minimal number of mesh points in order to achieve

the fourth-order accuracy. However, for large-scale problems, general iteration solvers are

quite time-consuming. The multigrid method [3] is a very efficient strategy for solving large

sparse systems of linear equations arising in these discretizations. Therefore, the combina-

tions of multigrid methods and high-order compact FD schemes have been also developed

[11, 13, 30, 35]. The classical multigrid technique has been applied to other equations —

e.g. to convection-diffusion equation [12, 14, 31], the biharmonic equation [1] and the

Helmholtz equation [10,28].

The CMG technique developed by Deuflhard and Bornemann [2], represents an one-

way multigrid method without any correlation between fine and coarse grids. The method

initially used a conjugate gradient (CG) solver as the relax operator on the embedded grids,

whereas the initial values of the smoother on the current grids have been approximated

by the linear interpolation on the previous grids. For the energy norm, Bornemann and

Deuflhard [2] showed that this is an optimal iterative method. We note that the Richardson

extrapolation often used to increase the accuracy of numerical solutions, have been initially

employed the coarse grids only. In 1993, Roache and Knupp [25] generalized the strategy

and obtained extrapolated solutions at the middle of the fine grid points. This is similar to

the mid-point extrapolation formula proposed by Chen and Lin [5].

In the past decade, a CMG method has been combined with extrapolation strategies.

Thus Chen et al. [4] developed an EXCMG method for fast solution of second-order elliptic

problems. Besides, an EXCMG method employing high-order compact FD schemes for 2D

Poisson equations have been studied in [6, 15, 21]. Pan et al. [22] applied the EXCMG

method to 3D elliptic boundary value problems. In order to reduce computational time, Dai

et al. [7] developed an approximation method, where EXCMG has been used for finding

a better initial guess in the MSMG method. Recently, Pan et al. [23, 24] applied a fast

cell-centered EXCMG (CEXCMG) algorithm based on finite volume (FV) discretization to

2D/3D anisotropic diffusion equations with discontinuous coefficients.

Although for linear problems the EXCMG methods are thoroughly studied, there are

only a few works devoted to nonlinear problems. As far as the MG method is concerned, the

investigations are mainly focused on Newton-MG methods [3], adaptive MG methods [32]

and CMG methods [27,29,33]. In particular, for solving large nonlinear systems arising in

the fourth-order compact FD discretization of the 2D semilinear Poisson equation, Li and

Pan [16] proposed a Newton-MSMG method such that the corresponding extrapolation

solutions can achieve the sixth-order approximation accuracy, which is much greater than

the discretization-level.

The main purpose of this work is to construct and analyze a fast EXCMG-Newton method

for the nonlinear system arising in fourth-order compact FD schemes for the 2D semilin-

ear Poisson equation. Using the extrapolation and bi-quartic polynomial interpolation on
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previous two grids, we determine an initial guess on the fine grid, which accelerates the

convergence of the Newton solver. After that, we use the midpoint extrapolation formula

and construct cheaply a sixth-order accurate extrapolated solution from two fourth-order

FD solutions. Besides, at each Newton iteration the corresponding large-scale Jacobian sys-

tem is solved by the BiCGStab solver [20,26] combined with the symmetric successive over

relaxation preconditioner (SSOR) [26]. The preconditioning matrix of SSOR-BiCGStab can

be immediately obtained from the coefficient matrix with no extra computational cost. It

is also important for solving large computational problems. Moreover, tolerances related

to Newton and SSOR-BiCGStab iterations are applied to get numerical solutions with the

required accuracy. Numerical experiments show that in terms of the convergence order this

method is about six times more efficient than the existing Newton-MG method and about

three times more efficient than the Newton-MSMG method.

This paper is organized as follows. Section 2 presents high-order compact FD schemes

for 2D semilinear Poisson equations. A detailed description of the EXCMG-Newton method

is given in Section 3. Section 4 presents the results of numerical simulations, which shows

the accuracy and efficiency of the method. Retrospective comments are given in the final

section.

2. High-Order Compact Schemes

Consider the rectangular solution domain Ω = [Ll x , Lr x]× [Ll y , Lr y ] and the uniform

grid points (x i, y j), i = 1, . . . , Nx , j = 1, . . . , Ny , where

x i = Ll x + ihx , y j = Ll y + jhy ,

hx and hy are respective mesh sizes in x - and y-directions, and

hx =
Lr x − Ll x

Nx

, hy =
Lr y − Ll y

Ny

.

By Ui, j we denote an approximate value of the solution u at the point (x i, y j). Setting

Fi, j = f (Ui, j , x i, y j) and γ= hx/hy , we consider the following 9-point fourth-order compact

schemes for the model (1.1):

(A) (See Zhai et al. [34]).
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(B) (See Manohar & Stephenson [17], Zhang [35]).
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(C) (See Manohar & Stephenson [17]).
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(D) (See Zhai et al. [34]).
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Letting h = max{hx ,hy}, we denote by uh the approximate solutions Ui, j of the model

(1.1), which are obtained by a FD method on the grid Ωh with the mesh sizes hx and hy .

Correspondingly, uh/2 is the FD solution vector on the grid Ωh/2 with mesh sizes hx/2 and

hy/2. Adding the Dirichlet boundary conditions, we write the above difference schemes as

Nh (uh) = 0, (2.1)

where Nh(uh) is the corresponding nonlinear operator.

3. EXCMG-Newton Method

Since at each iteration step the Newton method uses the solutions of the Jacobian sys-

tems, this is a very time consuming process, especially for large systems. On the other hand,

the extrapolation cascadic multigrid (EXCMG) technique is a powerful and efficient solver.

Therefore, employing the EXCMG technique and a nonlinear solver — viz. the Newton

method, we introduce a faster and more efficient algorithm for solving problem (2.1). Let

us start with recalling the Newton method.
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3.1. Classical Newton method

There is no doubt that the Newton’s method is one of the most important techniques

in nonlinear problems [8,9]. For high-order compact schemes, the nonlinear operator N (·)

and the residual on the grid h can be respectively written as

Nh(uh) = Auh − f (uh),

and

rh(uh) = 0− Nh(uh).

In order to find the solution of the Eq. (2.1), one can use the k-th Newton iterations

uk+1
h
= uk

h
+ ek

h
, k = 0,1,2, . . .

with ek
h

obtained from the linear system

J
�

uk
n

�

ek
h
= rh

�

uk
h

�

,

where J(uk
n
) = N ′

h
(uk

n
) is the Jacobian matrix and rh(u

k
h
) = −Nh(u

k
n
). Note that the linear

Jacobian systems have to be accurately calculated at each Newton iteration. The Newton

method is presented by Algorithm 3.1.

Algorithm 3.1 Newton Method for Equation N (u) = 0.

1: Set ε, i ter and u0.

2: for k = 0,1, . . . , i ter do

3: Calculate Jacobian matrix N ′(uk).

4: Solve Jacobian system N ′(uk)s̃k = −N (uk) to obtain s̃k.

5: if ‖s̃k‖ ≥ ǫnon then

6: update uk+1⇐ uk + s̃k

7: else

8: stop

9: end if

10: end for

After completing the k-th iteration, iterative solution uk of the method satisfies the

estimate

‖uk − u∗‖ ≤ ϑ
k‖u0 − u∗‖,

where u∗ is the true solution, u0 the initial guess, and ϑ ∈ (0,1) a convergence factor. It is

well known that the Newton method converges if and only if the initial guess is near to the

problem solution. Therefore, if the initial error ‖u0−u∗‖ is small, the Newton method con-

verges very fast. We follow the idea of the EXCMG method in order to determine a suitable

initial guess for Newton iterations at every grid level.
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3.2. EXCMG-Newton method

Here we present an EXCMG-Newton method for large nonlinear systems arising in the

approximate solution of 2D semilinear Poisson equations. It mainly consists of three in-

gredients — viz. the Newton solver, the extrapolation and quadratic interpolation. These

techniques are employed to find an accurate initial guess for the Newton solver on each

grid. Besides, the Richardson extrapolation is used to construct approximate solutions

with sixth-order accuracy from two fourth-order accuracy solutions. For more detail see

Algorithm 3.2.

Algorithm 3.2 EXCMG-Newton Method: (uh, wh)⇐ EXCMG-Newton (Ah, fh, L,εl in,εnon).

1: uH ⇐ Newton(AHuH = fH);

2: uH/2 ⇐ Newton(AH/2uH/2 = fH/2);

3: h = H/2;

4: for j = 1 to L do

5: h= h/2;

6: ε
j

l in
= εl in · 10 j−L % εl in is the relative residual tolerance of SSOR-BiCGStab on the

finest grid;

7: ε
j
non = εnon ·10 j−L % εnon is the nonlinear residual tolerance of Newton iteration on

the finest grid;

8: ūh = EXP f ini te(u2h,u4h) % ūh is used as the initial guess for Newton method;

9: uh ⇐ Newton(Ah, ūh, fh,ε
j

l in
,ε

j
non) % Jacobian systems are solved by SSOR-

BiCGStab;

10: end for

11: wh = EXPt rue(uh,u2h) % wh is a higher-order extrapolated solution.

We note that since the first two coarse levels of the grid are so small that the computation

cost is negligible, the Newton’s method can be employed in order to accurately solve the

problem — cf. lines 1 and 2. The initial guess EXP f ini te(u2h,u4h) is a fifth-order accuracy ap-

proximation for the FD solution uh obtained by the extrapolation and quartic interpolation

from the numerical solutions on the adjacent grids u2h and u4h. It provides a more accu-

rate initial guess for the Newton smoother on the current grid. The term EXPt rue(uh,u2h)

represents the sixth-order extrapolated solution obtained from the fourth-order numerical

solutions uh and u2h. A detailed description of the extrapolation and quartic interpolation

on the nested quadrilateral mesh is presented in Section 3.3. The positive integer L denotes

the total level number of the grid except the first two nested grids, and H/2L+1 is the size

of the finest mesh.

The linear Jacobian systems — cf. line 4 in Algorithm 3.1 in Newton method — cf. line 9

in Algorithm 3.2, are solved by the symmetric successive overrelaxation preconditioned

BiCGStab (SSOR-BiCGStab) solver. The SSOR preconditioner can be acquired immediately

from the coefficient matrix without any extra computing time. Assuming that the linear

Jacobian system has the form of Bx = l, we can use the preconditioner M defined by

M = (D −ωE)D−1(D −ωF),
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where −E, −F , and D are respectively the strict lower part, the strict upper part, and the

diagonal of B. The preconditioned BiCGStab algorithm has the following form:

Algorithm 3.3 Preconditioned BiCGStab Method: x ⇐ BiCGSTAB(B, l, x0, i termax,ǫl in, M).

1: r0 = l − Bx0;

2: r̂0 = r0;

3: ρ0 = α=ω0 = 1;

4: v0 = p0 = 0;

5: for i = 1 to i termax do

6: ρi = (r̂0, ri−1);

7: β = (ρi/ρi−1)(α/ωi−1);

8: pi = ri−1 + β(pi−1 −ωi−1vi−1);

9: Solve M y = pi;

10: vi = B y;

11: α= ρi/(r̂0, vi);

12: s = ri−1 −αvi;

13: Solve Mz = s;

14: t = Bz;

15: ωi = (t, s)/(t, t);

16: x i = x i−1 +αy +ωiz;

17: ri = s−ωi t;

18: if ‖ri‖2<ǫl in·‖l‖2 then

19: break

20: end if

21: end for

22: x = x i.

At any j-th level of the grid, the SSOR-BiCGStab solver in Algorithm 3.2 has the relative

residual tolerance ε
j

l in
, cf. line 6 in Algorithm 3.2. It is defined by

ε
j

l in
= εl in · 10 j−L, j = 1,2, . . . , L,

where εl in = ε
L
l in

refers to the tolerance of the SSOR-BiCGStab solver on the finest grid.

Besides,

ε j
non
= εnon · 10 j−L, j = 1,2, . . . , L,

where εnon = ε
L
non is the nonlinear tolerance on the finest grid, is also used in the Newton

method at the j-th level of the grid — cf. line 7 in Algorithm 3.2. These stopping criteria

help to avoid unnecessary iterations on each level of grids, and obtain numerical solutions

of a desired accuracy.

3.3. Extrapolation and bi-quartic interpolation

It is well known that the Richardson extrapolation is an efficient algorithm for improving

the accuracy of numerical solutions. As far as FD schemes are concerned, it was systemat-

ically studied by Marchuk and Shaidurov [18].
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3.3.1. Extrapolation of FD solutions

Consider the two dimensional three-level nested grids Zi, i = 0,1,2 with mesh sizes hi =

hx = hy = h/2i. The coarse grid block [x i , x i+2]× [y j , y j+2] is uniformly divided into eight

elements in the x and y directions — cf. Fig. 1(c). It follows that one can allocate 81 points

on the finest grid. Using the FD solutions u0 and u1 on respective grids Z0 and Z1, we can

obtain approximate values at 81 points of the finest grid by the extrapolation and quartic

Lagrange interpolation. Let us first define coarse mesh blocks [x i , x i+2]× [y j , y j+2] on the

coarse grid Ωh, cf. Fig. 1(a), which can acquire the set of 25 grid points

(xm, yn), (x i+1/2, yn), (x i+3/2, yn), (xm, y j+1/2), (xm, y j+3/2),

(x i+1/2, y j+1/2), (x i+1/2, y j+3/2), (x i+3/2, y j+1/2), (x i+3/2, y j+3/2),

m = i, i + 1, i + 2, n= j, j + 1, j + 2,

on the finer grid Ωh/2, cf. Fig. 1(b).

(a) Coarsest grid Z0 (b) Finer grid Z1 (c) Finest grid Z2

Figure 1: Three-level nested rectangular grids.

Suppose that the values

uh
m,n, m = i, i + 1, i + 2, n= j, j + 1, j + 2 on Ωh,

uh/2
m,n, u

h/2

i+1/2,n
, u

h/2

i+3/2,n
, u

h/2

m, j+1/2
, u

h/2

m, j+3/2
, u

h/2

i+1/2, j+1/2
, u

h/2

i+1/2, j+3/2
, u

h/2

i+3/2, j+1/2
, u

h/2

i+3/2, j+3/2
,

m= i, i + 1, i + 2, n= j, j + 1, j + 2 on Ωh/2

have already been determined. Then the approximations of ūh/4 on the finest grid are

determined as follows:

1. At corner grid points �. Approximate values at the 9 corner grid points are calcu-

lated by applying the extrapolation formula

ūh/4
m,n =

17

16
uh/2

m,n −
1

16
uh

m,n, m= i, i + 1, i + 2, n= j, j + 1, j + 2.
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2. At midpoints of edges •. Approximate values at the 12 midpoints of the edges can

be calculated using the midpoint extrapolation formula

ū
h/4

i+1/2,n
= u

h/2
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+

1

32

�

u
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− uh
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�
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�

u
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ū
h/4

m, j+1/2
= u

h/2

m, j+1/2
+

1

32

�

u
h/2
m, j
− uh

m, j + u
h/2
m, j+1
− uh

m, j+1

�

, m = i, i + 1, i + 2,

ū
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3. At center points of faces •. Since each center point on the uniform grid can be

regarded as the intersection of two diagonals, we can find two values at the center

point by the midpoint extrapolation formula. The final extrapolation value can be

chosen as their arithmetic average. For the grid point (i + 1/2, j + 1/2), the two

different extrapolation values can be acquired by the midpoint extrapolation formula
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Thus the final extrapolation value at (i + 1/2, j + 1/2) can be chosen as follows:
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Analogously, the corresponding approximations at the other center points of faces

can be determined by the formulas
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4. At four of equal division points Î. Once the extrapolation values at the points �

• on the finest grid Ωh/4 are obtained, then the approximate values at the remaining

points (92 − 52) can be determined by bi-quartic Lagrange interpolation — e.g.

ū
h/4

i+1/4, j
=

1

128

�

35ū
h/4
i, j
+ 140ū
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+ 28ū
h/4

i+3/2, j
− 5ū

h/4
i+2, j

�

.

This process of finding the initial values ūh/4 on the grid Ωh/4 from the respective values

on the grids Ωh and Ωh/2 can be shortly written as

ūh/4 = EXP f ini te(u
h,uh/2).

3.3.2. Extrapolation for true solution

The extrapolation algorithm is a reliable tool for enhancing the accuracy of FD solutions at

each level of the grid. In this subsection, the Richardson extrapolation algorithm is used in

order to improve numerical accuracy of a compact FD scheme from fourth- to sixth-order.

The results are verified by the numerical simulations in the Section 4.

Suppose that the grid point values

uh
m,n, m = i, i + 1, i + 2, n= j, j + 1, j + 2 on Ωh,

uh/2
m,n, u

h/2

i+1/2,n
, u

h/2

i+3/2,n
, u

h/2

m, j+1/2
, u

h/2

m, j+3/2
, u

h/2

i+1/2, j+1/2
, u

h/2

i+1/2, j+3/2
, u

h/2

i+3/2, j+1/2
, u

h/2

i+3/2, j+3/2

m= i, i + 1, i + 2, n= j, j + 1, j + 2 on Ωh/2

at the two levels of the nested grids have already been obtained. Then the approximations

of wh/2 at the fine grid are determined as follows:

1. At corner grid points. High-order extrapolated solutions at the corner grid points

are obtained by the Richardson extrapolation formula

wh/2
m,n =

16

15
uh/2

m,n −
1

15
uh

m,n, m= i, i + 1, i + 2, n= j, j + 1, j + 2. (3.1)

2. At edges midpoints of the fine grid. The extrapolated solutions at the edges mid-

points of the fine grid are determined by the following midpoint extrapolation for-

mula:

w
h/2

i+1/2,n
= u

h/2

i+1/2,n
+

1

30

�

u
h/2
i,n
− uh

i,n + u
h/2
i+1,n
− uh

i+1,n

�

,

n= j, j + 1, j + 2, (3.2a)

w
h/2

i+3/2,n
= u

h/2

i+3/2,n
+

1

30

�

u
h/2
i+1,n
− uh

i+1,n + u
h/2
i+2,n
− uh

i+2,n

�

,

n= j, j + 1, j + 2, (3.2b)

w
h/2

m, j+1/2
= u

h/2

m, j+c1/2
+

1

30

�

u
h/2
m, j
− uh

m, j + u
h/2
m, j+1
− uh

m, j+1

�

,
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m = i, i + 1, i + 2, (3.2c)

w
h/2

m, j+3/2
= u

h/2

m, j+3/2
+

1

30

�

u
h/2
m, j+1
− uh

m, j+1
+ u

h/2
m, j+2
− uh

m, j+2

�

,

m = i, i + 1, i + 2. (3.2d)

3. At faces center points of the fine grid. The extrapolated solutions at the faces center

points of the fine grid are determined by the following extrapolation formula:

w
h/2
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= u

h/2
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+

1

60

�

u
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(3.3)

High-order extrapolated solution wh/2 on the grid Ωh/2 can be easily determined by the

extrapolation formulas (3.1)-(3.3). This procedure is shortly written as

wh/2 = EXPt rue(u
h,uh/2).

4. Numerical Experiments

Now we want to demonstrate the robustness and efficiency of the above EXCMG-Newton

method for the 2D nonlinear Poisson equations by comparing it with classical Newton-MG

and MSMG methods. Note that our method is quite straightforward and can be easily

implemented in programming language. Moreover, nonlinear forcing terms and Dirich-

let boundary conditions are given to fulfill corresponding analytical solutions. All codes

are run on a laptop with Intel(R) Core(TM) i7-1065G7 and 16GB RAM by using Matlab

R2021a.

Note that the maximum number of iterations in SSOR-BiCGStab is set to 40 and the

relaxation factor ω is 1.9. Besides, for the EXCMG-Newton method the convergence order

is defined by

Order = log2

‖uh − u‖

‖uh/2 − u‖
,
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where ‖ · ‖ is the L2 or L∞ norm, u denotes the exact solution and uh and uh/2 are the

numerical solutions on the mesh sizes h and h/2, respectively.

Example 4.1 (cf. Li et al. [16]). Consider the nonlinear Poisson-Boltzmann model

ux x (x , y) + uy y (x , y)−λ2 sinh
�

u(x , y)
�

= g(x , y),

(x , y) ∈ Ω= [0,1]× [0,1].
(4.1)

For the source term

g(x , y) = 2000 exp

�

−1000

�

x −
1

2

�2
�

+ (1000− 2000x)2 exp

�

−1000

�

x −
1

2

�2
�

− 2+λ2 sinh

�

−exp

�

−1000

�

x −
1

2

�2
�

+ y2

�

the exact solution of (4.1) is

u(x , y) = exp

�

−1000

�

x −
1

2

�2
�

− y2. (4.2)

We use 6 levels of nested grids with the coarsest grid 48×48 and the finest grid 1536×

1536. The numerical results obtained by the EXCMG-Newton method with εl in = 10−9 are

shown in Tables 1,3,5,7. Note that for λ= 0.01, the Newton’s method on the finest grid is

terminated when the Euclid norm of the residual gets smaller than 10−2, and for λ= 1 we

set εnon = 10−6. The number of Newton iterations is abbreviated as Iter, and we also show

the errors of the methods tested in various norms.

Tables 1,3,5,7 show that the numerical solutions uh obtained by four compact FD sche-

mes have fourth-order accuracy and the initial values ūh are of fifth-order approximations

Table 1: Example 4.1. HOC (a) based discretization. Errors and convergence orders.

λ Mesh Iter
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

0.01

192× 192 2 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 1 3.84e-07 4.01 2.31e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 1 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.80e-12 6.00

Work unit 1.34 WU a

1

192× 192 3 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 2 3.84e-07 4.01 2.30e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 2 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.79e-12 6.00

Work unit 1.67 WU a

a WU (work unit) is the computational cost of one Newton iteration on the finest grid.
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Table 2: Example 4.1. HOC (a) based discretization. Computational time.

λ Mesh
EXCMG-Newton Newton-MG [16] Newton-MSMG [16]

Time(s) ‖uh − u‖2 Order Time(s) ‖uh − u‖2 Order Time(s)

0.01

192× 192 1.77 6.17e-06 – 5.23 1.05e-06 – 4.77

384× 384 3.71 3.84e-07 4.01 20.67 1.59e-08 6.05 14.65

768× 768 15.09 2.40e-08 4.00 83.95 2.47e-10 6.01 47.79

1536× 1536 53.25 1.50e-09 4.00 329.67 3.84e-12 6.01 161.37

Total time(s) b 73.82 439.52 228.58

1

192× 192 2.61 6.17e-06 – 5.01 1.05e-06 – 4.19

384× 384 7.48 3.84e-07 4.01 20.51 1.59e-08 6.05 14.48

768× 768 30.37 2.40e-08 4.00 85.31 2.47e-10 6.01 47.87

1536× 1536 49.93 1.50e-09 4.00 337.39 3.84e-12 6.01 161.96

Total time(s) b 90.39 448.22 228.50

b Total CPU time including the solution of algebraic systems.

Table 3: Example 4.1. HOC (b) based discretization. Errors and convergence orders.

λ Mesh Iter
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

0.01

192× 192 2 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 1 3.84e-07 4.01 2.31e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 1 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.80e-12 5.99

Work unit 1.34 WU

1

192× 192 3 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 2 3.84e-07 4.01 2.30e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 2 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.83e-12 5.97

Work unit 1.67 WU

Table 4: Example 4.1. HOC (b) based discretization. Computational time.

λ Mesh
EXCMG-Newton Newton-MG [16] Newton-MSMG [16]

Time(s) ‖uh − u‖2 Order Time(s) ‖uh − u‖2 Order Time(s)

0.01

192× 192 1.83 6.17e-06 – 4.86 1.05e-06 – 3.90

384× 384 3.45 3.84e-07 4.01 19.51 1.59e-08 6.05 13.54

768× 768 14.66 2.40e-08 4.00 79.04 2.47e-10 6.01 47.40

1536× 1536 53.37 1.50e-09 4.00 328.77 3.84e-12 6.01 161.08

Total time(s) 73.31 432.18 225.92

1

192× 192 2.53 6.17e-06 – 4.93 1.05e-06 – 3.95

384× 384 7.48 3.84e-07 4.01 20.47 1.59e-08 6.05 14.08

768× 768 28.55 2.40e-08 4.00 80.82 2.47e-10 6.01 47.89

1536× 1536 51.51 1.50e-09 4.00 346.11 3.84e-12 6.01 162.81

Total time(s) 90.07 452.33 228.73
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Table 5: Example 4.1. HOC (c) based discretization. Errors and convergence orders.

λ Mesh Iter
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

0.01

192× 192 2 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 1 3.84e-07 4.01 2.31e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 1 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.80e-12 5.99

Work unit 1.34 WU

1

192× 192 3 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 2 3.84e-07 4.01 2.30e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 2 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.80e-12 5.99

Work unit 1.67 WU

Table 6: Example 4.1. HOC (c) based discretization. Computational time.

λ Mesh
EXCMG-Newton Newton-MG [16] Newton-MSMG [16]

Time(s) ‖uh − u‖2 Order Time(s) ‖uh − u‖2 Order Time(s)

0.01

192× 192 1.84 6.17e-06 – 4.83 1.05e-06 – 4.27

384× 384 3.71 3.84e-07 4.01 19.86 1.59e-08 6.05 14.04

768× 768 14.08 2.40e-08 4.00 81.29 2.47e-10 6.01 47.34

1536× 1536 54.27 1.50e-09 4.00 324.84 3.84e-12 6.01 174.81

Total time(s) 73.90 430.82 240.46

1

192× 192 2.68 6.17e-06 – 4.87 1.05e-06 – 4.03

384× 384 7.46 3.84e-07 4.01 19.36 1.59e-08 6.05 15.94

768× 768 28.70 2.40e-08 4.00 79.74 2.47e-10 6.01 56.94

1536× 1536 49.69 1.50e-09 4.00 335.39 3.84e-12 6.01 190.30

Total time(s) 88.53 439.36 267.21

Table 7: Example 4.1. HOC (d) based on discretization. Errors and convergence orders.

λ Mesh Iter
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

0.01

192× 192 2 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 1 3.84e-07 4.01 2.31e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 1 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.80e-12 5.99

Work unit 1.34 WU

1

192× 192 3 6.17e-06 4.04 3.72e-05 4.05 3.59e-04 – 4.77e-07 –

384× 384 2 3.84e-07 4.01 2.30e-06 4.01 1.12e-05 5.01 7.35e-09 6.02

768× 768 2 2.40e-08 4.00 1.44e-07 4.00 3.41e-07 5.03 1.15e-10 6.00

1536× 1536 1 1.50e-09 4.00 8.98e-09 4.00 1.07e-08 4.99 1.81e-12 5.98

Work unit 1.67 WU
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Table 8: Example 4.1. HOC (d) based discretization. Computational time.

λ Mesh
EXCMG-Newton Newton-MG [16] Newton-MSMG [16]

Time(s) ‖uh − u‖2 Order Time(s) ‖uh − u‖2 Order Time(s)

0.01

192× 192 1.81 6.17e-06 – 5.77 1.05e-06 – 3.97

384× 384 3.63 3.84e-07 4.01 22.32 1.59e-08 6.05 14.28

768× 768 14.68 2.40e-08 4.00 83.92 2.47e-10 6.01 48.98

1536× 1536 56.25 1.50e-09 4.00 340.19 3.84e-12 6.01 167.54

Total time(s) 76.37 452.20 234.77

1

192× 192 2.67 6.17e-06 – 5.07 1.05e-06 – 4.05

384× 384 7.43 3.84e-07 4.01 20.48 1.59e-08 6.05 14.36

768× 768 28.97 2.40e-08 4.00 85.08 2.47e-10 6.01 49.90

1536× 1536 51.43 1.50e-09 4.00 343.80 3.84e-12 6.01 167.32

Total time(s) 90.50 454.43 235.63

for the numerical solutions uh, consistent with the theoretical results of Section 3.3. The

extrapolated solution wh almost achieves sixth-order approximation on all grids. This is due

to the extrapolated solution wh is derived from two fourth-order FD solutions uh and u2h on

the first two levels of grids. They must be extremely accurate in order to get extrapolated

solution wh of sixth-order accuracy. As the grid becomes finer, the number of nonlinear

iterations needed remains the same — viz. 1. This is essential for efficient solving of large

nonlinear systems. Fig. 2 displays the difference between the true solution u1/1536 and the

iterative solutions uk
1/1536

, k = 0,1 in the case of HOC (a) discretization with λ = 0.01.

Note that the high frequency error can be markedly smoothed out only after one Newton

iteration, with the error reduced by two orders in magnitude.

(a) u0
1/1536

− u1/1536 (b) u1
1/1536

− u1/1536

Figure 2: Example 4.1. Difference between uk
1/1536

, k = 0, 1 and u1/1536 when HOC (a) discretization is
used, λ = 0.01.
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Figure 3: Example 4.1. MG algorithms based on HOC (a) discretization, λ= 0.01. Computational time
versus L2-error.

The results presented in Tables 2,4,6,8 show the efficiency of the proposed method. We

note that the Newton-MG method needs about 450 seconds to reach fourth-order accuracy

on the finest grid, the Newton-MSMG almost 230 seconds to reach the sixth-order accu-

racy, but the extrapolated solution wh achieves the sixth-order accuracy, and the numerical

solution uh needs only about 80 seconds to achieves the fourth-order accuracy — i.e. the

calculation efficiency of our method is about 5-6 times that of Newton-MG method, and

about 2-3 times that of Newton-MSMG method. We also note that L2-errors of the extrap-

olated solutions are about one-half of the ones obtained by the Newton-MSMG method, so

that this method is much more efficient than the Newton-MG and Newton-MSMG methods.

Besides, Fig. 3 shows the L2-errors of three methods combined with HOC (a) discretiza-

tion on the each grid versus their corresponding computational times. Comparing the rates

of the L2-errors, we observe that the errors of our method rapidly decline in magnitude just

after a few Newton iterations, and the achieved relative residual errors are smaller than the

given tolerance.

Example 4.2 (cf. Li et al. [16]). Consider another nonlinear Poisson-Boltzmann model

ux x(x , y) + uy y (x , y) + 1002 exp
�

− u(x , y)
�

= g(x , y),

(x , y) ∈ Ω= [0,1]× [0,1]
(4.3)

with the source term

g(x , y) = 2 exp(y − x) +
1012(1+ y)101

2100(1+ y)2
−

101(1+ y)101

2100(1+ y)2

+ 1002 exp

�

−exp(y − x)−
(1+ y)101

2100

�

.

The solution of this problem is

u(x , y) = exp(y − x) +
(1+ y)100

2100
. (4.4)
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Once again, we apply 6 levels of embedded grids with the 1536×1536 finest grid. Nu-

merical results obtained by the EXCMG-Newton method with εl in = 10−10 are shown in

Table 9. Note that on the finest grid, the Newton method is terminated when the Euclid

norm of the residual is smaller than 10−2. The numerical solution uh in two compact FD

discretizations reaches fourth-order accuracy, the initial value ūh is of the fifth-order ap-

proximation for numerical solution uh, and on all grids the extrapolated solution wh almost

achieves sixth-order approximation. When grids get finer, the number of Newton iterations

needed is stable at 1. It is critical to reducing computational cost.

Table 10 shows computational time for our and two other methods on each grid and the

total CPU time. Note that the Newton-MG method requires about 470 seconds to reach the

fourth-order accuracy on the finest grid, the Newton-MSMG method needs about 230 sec-

onds to achieve the sixth-order accuracy, whereas the extrapolated solution wh and numer-

Table 9: Example 4.2. Two HOC based discretizations. Errors and convergence orders.

HOC Mesh Iter
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

HOC (a)

192× 192 2 1.86e-06 3.98 1.19e-05 3.96 8.44e-05 – 8.06e-08 –

384× 384 1 1.17e-07 3.99 7.43e-07 4.00 3.20e-06 4.72 1.29e-09 5.97

768× 768 1 7.31e-09 4.00 4.65e-08 4.00 1.06e-07 4.92 2.01e-11 6.00

1536× 1536 1 4.57e-10 4.00 2.90e-09 4.00 3.35e-09 4.98 3.17e-13 5.99

Work unit 1.34 WU

HOC (d)

192× 192 2 1.86e-06 3.98 1.19e-05 3.96 8.44e-05 – 8.06e-08 –

384× 384 1 1.17e-07 4.00 7.43e-07 4.00 3.20e-06 4.72 1.29e-09 5.97

768× 768 1 7.31e-09 4.00 4.65e-08 4.00 1.06e-07 4.92 2.01e-11 6.00

1536× 1536 1 4.57e-10 4.00 2.90e-09 4.00 3.35e-09 4.98 3.18e-13 5.98

Work unit 1.34 WU

Table 10: Example 4.2. Two HOC based discretizations. Computational time.

HOC Mesh
EXCMG-Newton Newton-MG [16] Newton-MSMG [16]

Time(s) ‖uh − u‖2 Order Time(s) ‖uh − u‖2 Order Time(s)

HOC (a)

192× 192 1.60 1.86e-06 – 5.19 1.86e-07 – 3.11

384× 384 3.15 1.17e-07 4.00 21.06 3.04e-09 5.94 12.61

768× 768 13.48 7.31e-09 4.00 85.71 4.80e-11 5.98 51.08

1536× 1536 60.45 4.57e-10 4.00 360.93 7.51e-13 6.00 163.87

Total time(s) 78.68 472.89 230.67

HOC (d)

192× 192 1.56 1.86e-06 – 5.32 1.86e-07 – 3.05

384× 384 3.21 1.17e-07 4.00 21.41 3.04e-09 5.94 13.42

768× 768 13.52 7.31e-09 4.00 87.06 4.80e-11 5.98 50.82

1536× 1536 61.29 4.57e-10 4.00 360.14 7.51e-13 6.00 160.60

Total time(s) 79.58 473.93 227.89
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Figure 4: Example 4.2. MG algorithms based on HOC (a) discretization. Computational time versus
L2-error.

ical solution uh in our method reach the corresponding accuracy only in about 80 seconds.

In addition, the L2-errors of the extrapolated solutions are about half of the Newton-MSMG

method. Hence, the EXCMG-Newton method is more cost-effective than Newton-MG and

Newton-MSMG methods. Computational times versus L2-errors is presented in Fig. 4. We

observe that errors of the proposed method rapidly diminish just after one Newton iteration.

Example 4.3. Consider the low regularity problem

ux x (x , y) + uy y (x , y)− u(x , y)3 = g(x , y),

(x , y) ∈ Ω= [0,1]× [0,1],

whose solution

u(x , y) = −
(x2 + y2)5/3

0.012
(4.5)

has a singularity at the origin. The source term and boundary conditions are determined

from the analytical solution (4.5).

We use 6 nested grids with the 1536× 1536 finest grid. The corresponding numerical

results for the EXCMG-Newton method with εnon = 10−2 and εl in = 10−10 are shown in

Table 11.

Table 11: Example 4.3. Errors and convergence orders of the method based on HOC (b) discretization.

Mesh Iter Time(s)
‖uh − u‖2 ‖uh − u‖∞ ‖ūh − uh‖2 ‖wh − u‖2

Error Order Error Order Error Order Error Order

192× 192 1 0.84 1.42e-07 3.93 8.60e-06 3.33 3.80e-06 – 4.08e-08 –

384× 384 1 3.81 9.13e-09 3.96 8.54e-07 3.33 1.89e-07 4.33 2.03e-09 4.33

768× 768 1 15.42 5.80e-10 3.98 8.47e-08 3.33 9.41e-09 4.33 1.01e-10 4.33

1536× 1536 1 69.13 3.66e-11 3.99 8.40e-09 3.33 4.67e-10 4.33 5.07e-12 4.31

Work unit 1.33 WU
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Since the exact solution is not smooth, the numerical solution uh still reaches the fourth-

order accuracy in L2-norm, but only 3.33-order in L∞-norm. The initial guess ūh is of

4.33-order approximation to the numerical solution uh, and the extrapolated solution wh

is also of 4.33-order accuracy. Note that the EXCMG-Newton method achieves the desired

accuracy with only one Newton iteration on each grid. Thus it is still efficient for low

regularity problems.

5. Conclusions

Using the framework of EXCMG methods, we construct a fast solver — viz. an EXCMG-

Newton method combined with fourth-order compact FD schemes for 2D Poisson equations

with nonlinear forcing term. Combining extrapolation and bi-quartic interpolation for two

numerical solutions from the previous two levels of grids, we derive a suitable initial guess

for Newton iterations on the next finer grid. It is of fifth-order accuracy, which substantially

reduces the number of Newton iterations required. Moreover, an extrapolated solution of

sixth-order accuracy can be easily constructed on the whole fine grid. Numerical results

suggest that the proposed EXCMG-Newton method is much more efficient than Newton-

MG and Newton-MSMG methods.

Note that the method can be extended to other nonlinear partial differential equations.

Besides, fourth-order compact FD schemes can be replaced by other discretization methods,

such as finite element and finite volume methods.
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