
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.SO-2021-0042

Vol. 4, No. 1, pp. 13-40
March 2023

Solving Time-Dependent Parametric PDEs by

Multiclass Classification-Based Reduced Order

Model

Chen Cui, Kai Jiang∗ and Shi Shu*

School of Mathematics and Computational Science, Xiangtan University,
Hunan Key Laboratory for Computation and Simulation in Science
and Engineering, Key Laboratory of Intelligent Computing and
Information Processing of Ministry of Education, Xiangtan, Hunan,
China, 411105.

Received 5 October 2021; Accepted 5 March 2022

Abstract. In this paper, we propose a network model, the multiclass classification-
based reduced order model (MC-ROM), for solving time-dependent parametric par-
tial differential equations (PPDEs). This work is inspired by the observation of apply-
ing the deep learning-based reduced order model (DL-ROM) [14] to solve diffusion-
dominant PPDEs. We find that the DL-ROM has a good approximation for some spe-
cial model parameters, but it cannot approximate the drastic changes of the solution
as time evolves. Based on this fact, we classify the dataset according to the magnitude
of the solutions and construct corresponding subnets dependent on different types
of data. Then we train a classifier to integrate different subnets together to obtain the
MC-ROM. When subsets have the same architecture, we can use transfer learning tech-
niques to accelerate offline training. Numerical experiments show that the MC-ROM
improves the generalization ability of the DL-ROM both for diffusion- and convection-
dominant problems, and maintains the DL-ROM’s advantage of good approximation
ability. We also compare the approximation accuracy and computational efficiency
of the proper orthogonal decomposition (POD) which is not suitable for convection-
dominant problems. For diffusion-dominant problems, the MC-ROM has better ap-
proximation accuracy than the POD in a small dimensionality reduction space, and its
computational performance is more efficient than the POD’s.

AMS subject classifications: 68T07, 35M13, 93A30

Key words: Parametric partial differential equation, reduced order model, deep learning, ge-
neralization ability, classification, computational complexity.

∗Corresponding author. Email addresses: kaijiang@xtu.edu.cn (K. Jiang), shushi@xtu.edu.cn (S. Shu)

http://www.global-sci.org/csiam-am 13 ©2023 Global-Science Press



14 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

1 Introduction

Partial differential equation (PDE) is a fundamental mathematical model in scientific and
engineering computation. It is urgent to develop a numerical approach for solving PDEs.
The approach requires the following properties: high fidelity, generalization ability (be-
ing available to different PDE, different initial-boundary condition, model parameters,
and so on), computational efficiency (being expected to achieve the optimal O(N) com-
putational complexity). The approach is in terms of computational PDE model. Para-
metric PDEs (PPDEs) are one of the most important PDEs. Many scientific and engi-
neering problems, such as control, optimization, inverse design, uncertainty quantifica-
tion, Bayesian inference can be described by PPDEs with computational domains, initial-
boundary conditions, source terms, and physical properties as parameters. However, nu-
merically solving PPDEs usually requires expensive computational costs mainly due to
multi-query and real-time computing. Therefore, designing a computational PDE model
that meets the above characteristics for the PPDEs has important applications. However,
it is also a challenge in scientific and engineering computation.

The projection-based linear reduced order model (ROM) [15, 23] is an effective way
to improve the computational efficiency of numerically solving PPDEs. ROM can be
divided into offline and online stages. The offline stage constructs a low-dimensional
subspace to approximate the solution manifold using obtained high fidelity numerical
solutions. The computational tasks on the offline stage are usually expensive. The on-
line stage obtains an approximated solution for a new given model parameter based on
the low-dimensional subspace. The proper orthogonal decomposition (POD) method is
a popular algorithm for constructing linear ROM and is effective for many questions,
such as computational fluid dynamics and structural analysis [5, 31]. However, the POD
method still has some weaknesses, such as (i) it requires to construct a relatively high-
dimensional subspace to obtain an acceptable numerical solution; (ii) it needs relatively
expensive reduction strategies; and (iii) it has the intrinsic difficulty to handle physical
complexity, etc. To overcome these difficulties, a non-intrusive and data-driven nonlin-
ear reduced-order model based on deep learning (or neural network) has been devel-
oped [24, 26].

Using the neural network as an ansatz to solve PDE can be traced back to the late
1990s [27]. In recent years, with the evolution of the computational power, the explosive
development of deep learning has again attracted much attention of the community of
scientific computing. Due to the great expressivity of neural network [13], the neural-
network PDE solver achieves some breakthroughs in solving a single PDE, especially
high-dimensional PDE [18, 41, 46]. Using neural networks to solve PPDEs has also been
attracted much attention. The idea is to apply neural networks to learn the parameter to
solution mapping. The main works can be divided into two parts based on the steady-
state and time-dependent PPDEs. Firstly, the works on steady-state PPDEs can be di-
vided into supervised learning [39,43] and unsupervised learning [10,50]. Secondly, since
time-dependent PPDEs also involve time variables, the requirements for its generaliza-



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 15

tion ability are also stronger. Solving time-dependent PPDEs using deep learning can be
mainly divided into two perspectives: continuous and discretization. Under continuous
perspective, the input and output spaces are both infinite-dimensional, then the corre-
sponding mapping is an operator between infinite-dimensional spaces. Refs. [4,30,32,44]
give the corresponding algorithms. Refs. [7,34] introduce dimension reduction technolo-
gies to transform it into a certain finite-dimensional problem. From a discretization per-
spective, the authors extract the characteristic parameters of the PDE model, which can
be denoted as µ = [µ1,. . .,µnµ ]∈P , P is compact in R

nµ , then design the corresponding
network architecture according to the characteristics of different problems. Refs. [1,9,16]
firstly reduce the dimension of the solution manifold, and then use LSTM or NeuralODE
to evolve low-dimensional system to obtain the solutions at each time layer, respectively.
Ref. [6] develops a network model with spatiotemporal variables as input parameters,
which overcomes the curse of dimension. Fresca et al. [14] designed a nonlinear ROM
based on convolutional autoencoder, which is called deep learning-based reduced order
model (DL-ROM), and use it to solve some nonlinear time-dependent PDEs. DL-ROM
can predict the numerical solution of the corresponding PPDEs on spatial discretization
points for any given (µ,t). However, the generalization ability of DL-ROM when dealing
with diffusion-dominant problems becomes weak. Designing an effective network that
satisfies the properties of the computational PDE model for solving PPDEs is the concern
of this article.

In this work, we firstly repeat numerical experiments of one-dimensional (1D) viscous
Burgers equation in [14] by the DL-ROM. We find that when the order of magnitude of the
solution changes drastically as time evolves, DL-ROM cannot capture the drastic changes
of the solution. Based on this observation, we propose a multiclass classification-based
reduced order model (MC-ROM) for solving time-dependent PPDEs. MC-ROM classi-
fies the training data according to the magnitude of the numerical solution and build
different subnets for each type of data. When subsets have the same architecture, we can
use transfer learning techniques to accelerate offline training. Finally, in order to bring
a new parameter into the corresponding subnet in the testing stage, we assign labels to
the training data and train a classifier based on these data by support vector machine
(SVM). MC-ROM is composed of the classifier and these subnets. We also point out that
the choice of subnet depends on the problem. This paper chooses DL-ROM as the subnet
because of its good approximation ability for convection problems and efficient online
calculation. Numerical experiments show that MC-ROM has sufficient generalization
ability for both diffusion- and convection-dominant problems and has the following ad-
vantages: (i) MC-ROM can approximate the equation includes some terms that can lead
to rapid variation in the solution with acceptable accuracy, while DL-ROM cannot. (ii)
MC-ROM is very efficient compared with POD in online computation. We analyze the
online computational complexity of MC-ROM and POD, and both are O(N) for param-
eter separable problems. However, the latter is much more expensive for other types
of equations. Our numerical results demonstrate that the MC-ROM is much faster than
the POD when solving a two-dimensional (2D) parabolic equation with discontinuous



16 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

coefficients. Moreover, POD is not suitable for convection-dominant problems. (iii) MC-
ROM can be easily extended and improved. Once a new model that approximates the
solution mapping is proposed, we can use it as a subnet to improve the approximation
of MC-ROM.

The rest of this paper is organized as follows. Section 2 formulates the problem and
gives the corresponding numerical methods. Section 3 introduces the ROM, including
POD and DL-ROM. Section 4 finds that when the equation is diffusion-dominated, DL-
ROM’s generalization ability has troubles, and we give an explanation. Based on this
observation, in Section 5 we propose the MC-ROM and analyze its online calculation
complexity. In Section 6, we apply the MC-ROM to solve the 1D viscous Burgers equa-
tion and the 2D parabolic equation. The approximation accuracy and calculation time
of solving these equations are compared with DL-ROM and with POD. Finally, Section 7
summarizes and discusses.

2 Problem definition

Consider the following time-dependent PPDE:

u̇(x,t,µ)+N [u(x,t,µ)]+L[u(x,t,µ);µ]=0, (x,t,µ)∈Ω×T ×P , (2.1)

where u̇ is the derivative of u with respect to t, Ω ⊂ R
d is a bounded open set, T =

[0,T], parameter space P ⊂R
nµ is compact, and N ,L are nonlinear and linear operator

respectively. Eq. (2.1) is well-defined with appropriate initial and boundary conditions.
Use spatial discretization methods such as finite element method (FEM) and finite

difference method (FDM) to discretize Eqs. (2.1), we obtain the following ODE system:

u̇h(t,µ)= f (uh,t;µ), (t,µ)∈T ×P , (2.2)

where uh :T ×P→R
Nh , Nh is the spatial degrees of freedom.

Next, for time discretization, T is uniformly divided into Nt segments, {tk}Nt

k=1 are

time layers to be solved, where tk = k∆t, ∆t=T/Nt . We apply linear multi-step method
to solve (2.2), which becomes a fully discretized system

rk
(
uk

h;µ
)
=0, k=1,.. . ,Nt, (2.3)

the discrete residual of the k-th time layer rk :RNh×P→R
Nh is defined as

rk : (ξ;µ) 7→ α0ξ−∆tβ0 f
(
ξ,tk;µ

)
+

K

∑
j=1

αju
k−j
h −∆t

K

∑
j=1

β j f
(
u

k−j
h ,tk−j;µ

)
. (2.4)

A concrete linear multi-step method is determined by the choose of coefficients αj,β j,

j=0,.. .,K with ∑
K
j=0αj=0. Expressions (2.2)-(2.4) are full order model (FOM) of PDE (2.1).



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 17

Given a parameter µ ∈P , its corresponding PDE (2.1) is solved by FOM. When the
spatial discrete degree of freedom Nh is large, the obtained algebraic system is large-
scale. Solving such a large system is expensive. Moreover, when µ changes, the FOM
is required to repeat the above expressions (2.2)-(2.4), which increases the computational
cost again. How to solve these problems is the focal point of this paper.

3 Reduced order model

From the previous section we saw when Nh is large, the Eq. (2.3) is large-scale. However,
the inherent dimension of solution manifold

Sh =
{

uh(t;µ) | t∈ [0,T] and µ∈P ⊂R
nµ
}

usually not exceed the dimension of parameter space [22,40]. Hence, we can use the solu-
tion on the low-dimensional manifold to accurately represent the FOM solution uh(t;µ).
Based on this hypothesis, ROM was proposed. In this section we introduce a commonly
used linear ROM and a nonlinear ROM.

3.1 Projection based ROM

Let n≪ Nh, un(t;µ)∈R
n be the dimension and numerical solution of low-dimensional

space, respectively. V ∈ R
Nh×n is a linear lifting operator, Col(V) represents the linear

space spanned by the column vector of V. Linear ROM pursuits an approximation on
a n-dimensional trial manifold Sn =Col(V), the approximation of FOM solution uh can
be obtained by a decoder V, denoted as hdec

uh(t;µ)≈ ũh(t;µ)=Vun(t;µ). (3.1)

POD is one of the most widely used method to generate such a linear trial manifold.
It corresponds to the principal component analysis (PCA) in data science. The difference
between POD and PCA is that the former retains the reduced system and the latter does
not. In the following, we will briefly introduce POD. More details can refer to [22,31,40].

Step 1: Data collection. Sample Ntrain parameters in the parameter space in a certain
distribution, numerically solving the corresponding PDE (2.3), and assemble them into
a snapshot matrix S∈R

Nh×Ns

S=
[
uh

(
t1;µi

)
. . .uh

(
tNt ;µi

)
, i=1,.. . ,Ntrain

]
, (3.2)

here Ns =NtrainNt.

Step 2: Computing singular value decomposition (SVD) of S

S=UΣZT, (3.3)



18 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

where
U=[ζ1,. . .,ζNh

]∈R
Nh×Nh , Z=[ψ1,. . .,ψNs ]∈R

Ns×Ns

are both orthogonal, Σ = diag(σ1,. . .,σr)∈R
Nh×Ns , singular values σ1 ≥ σ2 ≥ ··· ≥ σr > 0,

r≤min(Nh,Ns). Take the first n left singular vectors of U as V=[ζ1,. . .,ζn].

Step 3: Generate reduced system. Substituting Vun(t;µ) into the ODE system (2.2)
we get

Vu̇n(t;µ)= f
(
Vun(t;µ),t;µ

)
, (t,µ)∈T ×P . (3.4)

Let the residuals be orthogonal to Col(V), we obtain the reduced system

VTVu̇n(t;µ)=VTf
(
Vun(t;µ),t;µ

)
, (t,µ)∈T ×P . (3.5)

The POD method introduced above is a Galerkin method. More generally, let W ∈
R

Nh×n, W 6=V and

WTVu̇n(t;µ)=WTf
(
Vun(t;µ),t;µ

)
, (t,µ)∈T ×P , (3.6)

we obtain another reduced system, which is a Petrov-Galerkin method.
Suppose Uh is a Hilbert space spanned by all Nh-dimensional vectors with respect to

the appropriate inner product. Sh ⊂ Uh is low-dimensional solution manifold. We try
to find a n-dimensional subspace Sn to approximate Sh, the degree of approximation is
characterized by the Kolmogorov n-width

dn(Sh;Uh) := inf
Sn⊂Uh

dim(Sn)=n

d(Sh;Sn)= inf
Sn⊂Uh

dim(Sn)=n

sup
µ∈P

inf
un∈Sn

‖uh(µ)−un‖Uh
,

where d(Sh;Sn) is the maximum distance between Sn and Sh. Theories show that Kol-
mogorov n-width decreases with the increase of n, but the decay rate depends on the
problem [33]. For the linear trial subspace Sn generated by POD, the Kolmogorov n-
width defined above decays quickly for diffusion-dominant problems. However, Kol-
mogorov n-width decays slowly for convection-dominant problems. We must increase
the order of ROM largely to obtain the required accuracy [33]. Next, we introduce a con-
volutional autoencoder based nonlinear ROM.

3.2 Convolutional autoencoder based nonlinear ROM

Autoencoder is a kind of feedforward neural network that tries to learn the identical
mapping, which consists of two parts: encoder henc and decoder hdec. Encoder maps uh

to a low-dimensional vector un

henc :RNh →R
n

uh 7→un,
(3.7)

where n≪Nh. Decoder maps un to an approximation of FOM solution uh

hdec :Rn →R
Nh

un 7→ ũh.
(3.8)



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 19

Therefore, autoencoder can be written in the following form:

h : uh 7→hdec◦henc(uh). (3.9)

The encoder contains L layers network





u
(0)
n =uh∈R

Nh ,

u
(l)
n = ϕ

(
hl

enc(u
(l−1)
n )

)
, l=1,.. . ,L−1,

un=un
(L)=hL

enc(u
(L−1)
n )∈R

n,

(3.10)

where u
(l)
n represents the l-layer output, hl

enc represents the l-layer network operator,
such as convolution or fully connection, ϕ is a nonlinear activation function. The decoder
contains L layers network





ũ
(0)
h =un ∈R

n,

ũ
(l)
h = ϕ

(
hl

dec(ũ
(l−1)
h )

)
, l=1,.. . ,L−1,

ũh= ũ
(L)
h =hL

dec(ũ
(L−1)
h )∈R

Nh .

(3.11)

Different architecture in the autoencoder leads to different method. Fully connected
layers have good expressivity. Refs. [19,35,45] choose all layers as fully connected layers
then get multilayer perceptron autoencoder (MLPAE), which is effective for small-scale
systems. However, for large-scale systems, the required training parameters in MLPAE
will increase dramatically, which results in a curse of dimension. For example, when Nh

is about 106, even if only one fully connected layer is used to reduce the high fidelity
vector to 100-dimension, the network parameters will exceed 108. Therefore, it requires
to reduce parameters in MLPAE. An alternative is the convolutional autoencoder (CAE).
Convolutional networks not only have the characteristics, such as the connectivity, the
translation invariance and so on [17, 28], but also has well approximation properties [3,
20, 38, 48]. Refs. [49, 50] use a pure convolutional network to construct the ROM which
brings the benefit of reducing the data required for network training. There are also some
works to use both convolutional layers and fully connected layers to construct a ROM
[14, 16, 29] which have fewer parameters than MLPAE and are easier to train than pure
convolutional network. In the further work, we will incorporate these ROM into our
MC-ROM models according to considered problems.

Fig. 1 shows a ROM based on CAE, called DL-ROM. henc represents the encoder. It
is a 6-layers network, where the first four layers are convolutional layers, and the last
two layers are fully connected layers. θE represents the network parameters of henc, then
formula (3.10) can be written as

un =henc(uh;θE). (3.12)



20 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Figure 1: DL-ROM: The network architecture proposed in [14]. Upper right: henc converts original data uh
into a latent representation un; Lower right: hdec recovers data from low-dimensional solution ũn; Left: Ψ is
to fit the low-dimensional solution map.

Ψ is the low-dimensional solution map

ũn =Ψ(t,µ;θF), (3.13)

where θF represents the network parameters of Ψ. We expect its output ũn be as close to
the encoder output un as possible. DL-ROM uses Φ:=hdec◦Ψ to approximate the solution
map

ũh =hdec(ũn;θD), (3.14)

where θD represents the network parameters of hdec. It is also a 6-layers network, where
the first two layers are fully connected, the last four layers are deconvolutional layers.

The training of DL-ROM is carried out on its three subnets henc, hdec, Ψ simultane-
ously, hence the loss function includes both the autoencoder error and the low-dimensi-
onal fitting error

min
θ

J (θ)=min
θ

1

Ns

Ntrain

∑
i=1

Nt

∑
k=1

L(tk,µi;θ
)
, (3.15)

where

L(tk,µi;θ
)
=α
∥∥uh

(
tk;µi

)−ũh

(
tk;µi,θF,θD

)∥∥2

ℓ2

+β
∥∥ũn

(
tk;µi,θF

)−un

(
tk;µi,θE

)∥∥2

ℓ2 . (3.16)

θ = (θE,θD,θF), α, β ∈ (0,1) are hyperparameters. Algorithms 1 and 2 summarize the
training and testing process of DL-ROM, respectively.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 21

Algorithm 1: DL-ROM offline training.

Data: Parameter matrix P∈R
(nµ+1)×Ns, snapshot matrix S∈R

Nh×Ns.
Input: The number of training epochs Nepochs, batch size Nb, learning rate η,

learning rate adjustment strategy, early stopping patiences,
hyperparameter α,β.

Output: Trained model henc,hdec,Ψ.
1 Data preprocess on S and scale it to [0,1].
2 Randomly shuffle P,S, and split them into training set (Ptrain ,Strain ) and

validation set (Pval,Sval) according to the ratio of 8:2.
3 Divide data into mini-batches (Pbatch ,Sbatch ) and get data loader.
4 Define model henc,hdec,Ψ and initialize the model parameters through the

Kaiming uniform initialization [21].
5 while nepochs ≤Nepochs do

6 for
(

Pbatch ,Sbatch
)

in train-loader do

7 Encode Sbatch according to Eq. (3.12) to get the corresponding

low-dimensional representation Sbatch
n .

8 Compute Eq. (3.13) for all t,µ in Pbatch to get an approximation S̃batch
n to

Sbatch
n .

9 Decode S̃batch
n according to Eq. (3.14) to get S̃batch .

10 Computing loss function (3.15).
11 Backpropagate.
12 Apply Adam algorithm to update model parameters.

13 end

14 for (Pbatch ,Sbatch ) in val-loader do

15 Do 7-10 similar to what was done on training set.
16 if early-stopping then

17 return trained model henc,hdec,Ψ.
18 end

19 end

20 Adjust the learning rate.
21 nepochs=nepochs+1.

22 end

23 return trained model henc,hdec,Ψ.

4 Observation

In this section, we firstly repeat numerical experiments of the 1D viscous Burgers equa-
tion in [14]. Then we change the parameter range and use DL-ROM to solve the Burgers
equation again. Numerical results show that DL-ROM cannot capture the drastic change



22 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Algorithm 2: DL-ROM online testing.

Data: Testing parameter matrix P∈R
(nµ+1)×Ns.

Input: Trained model Ψ,hdec by Algorithm 1.
Output: Predicted solution matrix S̃ corresponding to the parameter matrix P.

1 Compute Eq. (3.13) for all t,µ in P to get S̃n.

2 Decode S̃n according to Eq. (3.14) to get S̃.

of solution when the equation becomes diffusion-dominant. We give an explanation for
this phenomenon.

Consider the following 1D viscous Burgers equation:





∂u

∂t
+u

∂u

∂x
− 1

µ

∂2u

∂x2
=0, (x,t)∈ (0,L)×(0,T),

u(0,t)=0, t∈ (0,T),

u(L,t)=0, t∈ (0,T),

u(x,0)=u0(x), x∈ (0,L),

(4.1)

where initial value

u0(x)=
x

1+
√

1/A0exp(µx2/4)
, (4.2)

and A0=exp(µ/8), L=1, T=2, µ∈P⊂R
nµ is the single parameter (nµ=1). The numerical

methods used here are linear FEM with Nh = 256 grid points, and backward Euler with
Nt = 100 time layers. As Ref [14] does, the parameter range is P = [100,1000], and the
corresponding viscosity coefficient 1/µ belongs to [10−3,10−2]. This means that Eq. (4.1)
is a convection-dominated equation. We randomly sample Ntrain = 20 parameters in the
parameter range according to the uniform distribution. The midpoint of every two train-
ing parameters is used as test parameter, i.e., Ntest = 19. After sampling, we solve the
corresponding equation (4.1) by the above numerical methods, and assemble the param-
eters and corresponding high-fidelity solutions into a parameter matrix P∈R

(nµ+1)×Ns,
and a snapshot matrix S∈R

Nh×Ns .

We use Pytorch [36] as a implementation platform for training the network and pre-
dicting results. The concrete network architecture is as follows. Ψ contains 10 hidden
layers, and each layer contains 50 neurons. The nonlinear activation function used here
is ELU [11]. Table 1 shows the parameters of henc,hdec.

We use Adam algorithm [25] to train the network, the initial learning rate is set to
η = 10−4, the batch size is Nb = 20. We set early stopping patiences to 500. In other
words, we stop training if error on the validation set does not decrease for 500 consecutive
epochs. All these settings are the same as DL-ROM in [14]. Under these settings, we apply
Algorithm 1 for training. In the case of a fixed time-parameter instance, define its relative



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 23

Table 1: Network architecture used in 1D viscous Burgers equation experiment. Nb represents batch size.
Notations in Conv2d and ConvTranspose2d are: i: in channels; o: out channels; k: kernel size; s: stride; p:
padding.

henc (input shape:(Nb, 256)) hdec (input shape:(Nb, n))

Layer type Output shape Layer type Output shape

Reshape (Nb,1,16,16) Fully connected (Nb,256)

Conv2d(i=1,o=8,k=5,s=1,p=2) (Nb,8,16,16) Fully connected (Nb,256)

Conv2d(i=8,o=16,k=5,s=2,p=2) (Nb,16,8,8) Reshape (Nb,64,2,2)

Conv2d(i=16,o=32,k=5,s=2,p=2) (Nb,32,4,4) ConvTranspose2d(i=64,o=64,k=5,s=3,p=2) (Nb,64,4,4)

Conv2d(i=32,o=64,k=5,s=2,p=2) (Nb,64,2,2) ConvTranspose2d(i=64,o=32,k=5,s=3,p=1) (Nb,32,12,12)

Reshape (Nb,256) ConvTranspose2d(i=32,o=16,k=5,s=1,p=1) (Nb,16,14,14)

Fully connected (Nb,256) ConvTranspose2d(i=16,o=1,k=5,s=1,p=1) (Nb,1,16,16)

Fully connected (Nb,n) Reshape (Nb,256)

error as

Esingle =
‖uh(µ,t)−ũh(µ,t)‖ℓ2

‖uh(µ,t)‖ℓ2

. (4.3)

The average relative error in the entire test set is defined as

Etotal =
1

Ntest

Ntest

∑
i=1

(
∑

Nt

k=1

∥∥uk
h(µtest,i)−ũk

h(µtest,i)
∥∥
ℓ2

∑
Nt

k=1

∥∥uk
h(µtest,i)

∥∥
ℓ2

)
. (4.4)

Fig. 2 compares the results of using POD and DL-ROM to solve the Eq. (4.1) corre-
sponding to parameter µtest = 893.53 at t= 0.02, using the FOM solution as a reference.
We can observe that when solving this parameter with the same reduced dimension, DL-
ROM has higher accuracy. Fig. 3 displays the change of the average relative error of the
test set (4.4). We can find that when n is smaller, the approximation of DL-ROM is better
than POD. These results are consistent with [14].

Figure 2: FOM, POD and DL-ROM solutions of parameter µtest= 893.53 at t= 0.02. The dimension of the
reduced space: left n=5, right n=10.



24 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Figure 3: The average relative error of POD and DL-
ROM on the test set, where Etotal is defined in (4.4).

Figure 4: The relative error of DL-ROM solving vis-
cous Burgers equation on the test set.

It is worth pointing out that in the above experiments, we reshape the 1D data in
R

256 to a 2D data in R
16×16 to apply 2D convolutional neural networks as DL-ROM does.

However, it may be more suitable to directly apply 1D convolution to 1D data. We have
made a comparison of 1D and 2D convolutional network lays. Table 2 shows the corre-
sponding network structure parameters. Fig. 5 gives corresponding results. The left and
right plots of Fig. 5 show the training error of DL-ROM using 1D convolution and 2D con-
volution layers. It can be found that they have similar training error: 0.007444 (Conv1D)
and 0.007086 (Conv2D). Further analysis demonstrates that the 1D convolutional neural
networks can save nearly half network parameters than the 2D networks. However, for
a fair comparison, we still use the 2D network layers as Refs. [14,29] did in the following
experiments.

Next we change the parameter range to P = [0.5,2], and its corresponding viscosity
coefficient 1/µ belongs to [0.5,2]. We also sample Ntrain = 20 parameters in P according
to the uniform distribution to generate the training set (Nh=256, Nt =100). The test set is
obtained by sampling Ntest =100 parameters equidistantly in the parameter range.

Figure 5: Training error of DL-ROM with 1D (Left) and 2D (Right) convolution layers. “train error h” and
“train error n” refer to the first part of the error and the second part of the error in (3.16), respectively.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 25

Table 2: Network architecture of DL-ROM with 1D convolutional and 1D deconvolutional layers. Nb represents
batch size. Notations in Conv1d and ConvTranspose1d are: i: in channels; o: out channels; k: kernel size; s:
stride; p: padding; op: output padding.

henc (input shape:(Nb, 256)) hdec (input shape:(Nb, n))

Layer type Output shape Layer type Output shape

Conv1d(i=1,o=4,k=5,s=2,p=2) (Nb,4, 128) Fully connected (Nb,256)

Conv1d(i=4,o=8,k=5,s=2,p=2) (Nb,8, 64) Fully connected (Nb,256)

Conv1d(i=8,o=16,k=5,s=2,p=2) (Nb,16, 32) Reshape (Nb,16, 16)

Conv1d(i=16,o=16,k=5,s=2,p=2) (Nb,16, 16) ConvTranspose1d(i=16,o=16,k=5,s=2,p=1) (Nb,16,33)

Reshape (Nb,256) ConvTranspose1d(i=16,o=8,k=5,s=2,p=2) (Nb,8,65)

Fully connected (Nb,256) ConvTranspose1d(i=8,o=4,k=5,s=2,p=2) (Nb,4,129)

Fully connected (Nb,n) ConvTranspose1d(i=4,o=1,k=5,s=2,p=3,op=1) (Nb,1,256)

Fig. 4 shows the relative error of the DL-ROM’s prediction results for each parameter
in the test set. The relative error above the black line is greater than 10−2, and below is
less than 10−2. Fig. 6 shows DL-ROM’s inference results of the parameters corresponding
to the four marked points in Fig. 4. This implies that DL-ROM’s generalization ability
becomes weakened. The reason is attributed to the fact that when the parameter range
is set to P = [0.5,2], the diffusion term in the Eq. (4.1) plays a role, causing its solution
to change drastically along the time direction. We define the following γ to quantify the

Figure 6: The results of viscous Burgers equation corresponding to the marked parameters in Fig. 4.



26 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

severity of the solution change:

γ=
max µ∈P

t∈[0,T]
‖uh(x,t,µ)‖ℓ∞

min µ∈P
t∈[0,T]

‖uh(x,t,µ)‖ℓ∞

. (4.5)

The larger the γ, the more drastic the solution changes, and vice versa. For viscous Burg-
ers equation (4.1), when P=[100,1000], log10 γ<2, the solution does not change much and
DL-ROM has good generalization ability. On the contrary, when P = [0.5,2], log10γ> 2,
the solution changes drastically, DL-ROM is inclined to fit the solution whose norm is
relatively large but ignore solutions with relatively small norms. This observation in-
spires us to classify the original dataset and establish a classification network based on
the classified data.

5 Multiclass classification-based ROM

Inspired by the observation above, in this section, we design the MC-ROM and analyze
its computational complexity of online computation.

5.1 Network architecture

Fig. 7 gives the network architecture of MC-ROM. The blue block on the left plot is the
classifier, and its purpose is to classify the parameters according to the order of magni-
tude of the numerical solution. Its input is (t,µ), and the output is the label to classify
the data. In practice, we use the order of magnitude of ℓ∞ norm of numerical solution as
classification criteria to assign each parameter a label. We then use parameter-label pairs
as the training dataset for the classifier.

Figure 7: MC-ROM network architecture.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 27

There are many classification algorithms, such as neural networks, decision trees, k-
nearest neighbors, naive Bayes, etc. The choice of classification algorithm depends on
the problem. Here, we choose SVM to train the classifier due to the small training data.
For our numerical results, SVM has better performance than fully connected neural net-
works. As shown in Fig. 8, SVM separates different types of data by constructing a hy-
perplane or a group of hyperplanes in a high-dimensional or infinite-dimensional space.
The distance between different classes is called margin. Generally, the larger the mar-
gin, the smaller the generalization error of the classifier, so the hyperplane should be
constructed so that the distance from the nearest training data point of any class is large
enough. SVM applies the kernel trick to make the data set linearly separable and uses
Higen loss to achieve these hyperplanes to meet the above properties. See Refs. [12, 47]
for a detailed description. We implement SVM through sklearn [37].

The green blocks on the right plot are different subnets. Each subnet is used to fit
the parameter to solution mapping in a certain class. The subnet architectures can be the
same or different, depending on the problem. Here, all of our subnet models are DL-
ROM due to its high efficiency of online computing and its applicability to convection
problems. The offline training process of different subnets are similar learning tasks, and
we can apply transfer learning [8] to speed up training. In transfer learning, when the
training of a subnet is completed, its parameters can assign to the next subnet as the
initial parameters for training. The numerical experiment in Section 6.1 will show the
advantages of transfer learning. The offline training and online testing of MC-ROM are
summarized in Algorithms 3 and 4.

Figure 8: SVM is to maximum the margin.



28 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Algorithm 3: MC-ROM offline training.

Data: Parameter matrix P∈R
(nµ+1)×Ns, snapshot matrix S∈R

Nh×Ns .
Input: The number of training epochs Nepochs, batch size Nb, learning rate η,

hyperparameter α,β.
Output: A classifier C and trained models hi

enc,hi
dec,Ψi, i=1,.. . ,nc.

1 Classify P and S into [P1,. . .,Pnc] and [S1,. . .,Snc ] and get label matrix L∈R
nc×Ns .

2 Use SVM to train a classifier C with P and L.
3 for i=1 : nc do

4 Substitute the data Pi,Si into Algorithm 1 and use DL-ROM input parameters

to train to get hi
enc,hi

dec,Ψi.
5 end

6 return C and hi
enc,hi

dec,Ψi, i=1,.. . ,nc.

Algorithm 4: MC-ROM online testing.

Data: Parameter matrix P∈R
(nµ+1)×Ns.

Input: Algorithm 3 trained model C and Ψi,hi
dec, i=1,.. . ,nc.

Output: The predicted solution matrix S̃ corresponding to the parameter
matrix P

1 Substitute the parameters into the classifier C to determine which class it
belongs to.

2 Substitute the parameters into the corresponding trained model hi
dec◦Ψi to get S̃.

5.2 Computational complexity

This subsection analyzes the online computational complexity of MC-ROM and POD. We
make a convention that

Ah(µ)uh(µ)= fh(µ), (5.1)

represents the FOM system, where Ah(µ)∈R
Nh×Nh , and

An(µ)un(µ)= fn(µ), (5.2)

represents the reduced system, An(µ)∈R
n×n, n may be much smaller than Nh.

The online calculation of MC-ROM has two steps except classification:

1. Solve un. Use a fully connected network to approximate un(µ), the computional
amount of each layer is N2

neu. If there are l hidden layers, the computional amount
is l×N2

neu except the input and output layers.

2. Lift un to high-dimensional manifold through the decoder. The computional amo-
unt of a deconvolution layer is O(Nh ·k2·Cin ·Cout ), where k2 is the size of the convo-



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 29

lution kernel. Cin and Cout represent the number of channels of the previous layer
and the current layer.

In actual calculations, Nneu, l,k,Cin,Cout are much smaller than Nh, then the online
computational complexity of MC-ROM is O(Nh).

The online stage of POD can has the following four steps:

1. Given a µ, discrete its corresponding PDE to get (5.1).

2. Project the linear system (5.1) to a low-dimensional manifold and get (5.2), where

An=VT
AhV, fn =VTfh, (5.3)

and V∈R
Nh×n is obtained in POD offline stage.

3. Solve (5.2).

4. Lift the low-dimensional solution un(µ) to high-dimensional manifold Vun(µ).

The computational complexity corresponding to each step above is as follows:

1. Use spatial discretization methods such as FEM, FDM to obtain (5.1), computational
complexity depends on the discretization methods used.

2. Projecte it to a low-dimensional manifold requires matrix multiplication, hence the
computational complexity is O(Nh

2).

3. Eq. (5.2) is dense, the computational complexity of directly solving it is O(n3).

4. Lift operation is Vun(µ), the operations required is Nh×n.

Evidently, the online computational complexity of the POD is much large than the MC-
ROM.

Sometimes, the first two parts can be put offline if Ah(µ) and fh(µ) in (5.1) are para-
meter-separable,

Ah(µ)=
Qa

∑
q=1

θ
q
a(µ)A

q
h, fh(µ)=

Q f

∑
q=1

θ
q
f (µ)f

q
h, (5.4)

where θ
q
a :P→R,q=1,.. . ,Qa and θ

q
f :P→R,q=1,.. . ,Q f . Then we can apply the Galerkin

method (3.5) to (5.4) and obtain

An(µ)=
Qa

∑
q=1

θ
q
a(µ)A

q
n, fn(µ)=

Q f

∑
q=1

θ
q
f (µ)f

q
n, (5.5)

where A
q
n = VT

A
q
hV, f

q
n = VTf

q
h can be pre-calculated. In this case, the first two steps

of POD online calculation are replaced by directly assembling Eq. (5.5). The operations



30 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

required to generate (5.5) is O(Qan2+Q f n). If n and Qa, Q f are small enough, then the
online computational complexity of POD is O(Nh).

However, even for the parameter-separable problems, MC-ROM still has the follow-
ing advantages over POD. Firstly, we noticed that the computational complexity of the
third step of POD is O(n3). Therefore, when the problem to be solved requires a high-
dimensional reduced space, the online calculation of POD will become expensive. Sec-
ondly, using neural networks as the surrogate model to establish the mapping between
parameters and solutions has fundamentally changed the calculation process of many
scenarios in scientific computing. Compared with POD, MC-ROM is a non-intrusive
ROM. The calculation based on the neural network makes it easier to use computing
resources such as GPU, making its online calculation much faster than POD. Section 6
shows the related numerical experiments.

6 Numerical experiments

This section applies MC-ROM to solve the 1D viscous Burgers equation and 2D parabolic
equation with discontinuous diffusion coefficients. We also compare the approximation
accuracy and computational time of solving these equations with DL-ROM and with
POD. All the experiments in this section are done on a workstation equipped with two
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz, 128GB RAM, and Nvidia Tesla V100-PCIe-
32GB GPU.

6.1 1D viscous Burgers equation

In Section 4, we have used DL-ROM to solve the viscous Burgers equation (4.1) with
parameter interval P = [0.5,2], but its generalization ability is very poor. Here, we use
MC-ROM to solve it. Firstly, we classify the original training dataset according to the
FOM solution vectors. Concretely, we use two consecutive orders of magnitude of ℓ∞

norm to label the parameters. We divide the original dataset into nc classes, and the labels
corresponding to all parameters are assembled into a label matrix L ∈ R

nc×Ns. Table 3
shows the classification results of the training set.

Next we apply the dataset {pi,li}Ns
i=1 to train the SVM classifier, where pi ,li are the i-th

column of parameter matrix P∈R
(nµ+1)×Ns and label matrix L∈R

nc×Ns , respectively.
We apply the radial basis function kernel in the SVM

K(x,x′)=exp
(
−γ‖x−x′‖2

)
, (6.1)

Table 3: Classification results of the training set whose data are FOM solutions of 1D viscous Burgers equation.

Range of ‖uh‖ℓ∞ ‖uh‖ℓ∞ ≥10−2 [10−4,10−2) [10−6,10−4) [10−8,10−6) [10−10,10−8) ‖uh‖ℓ∞ ≤10−10

Label 1 2 3 4 5 6

Size 435 573 477 224 244 67



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 31

Figure 9: The classification result of the SVM classifier.

where γ=1/(nµ+1)Var(P), and Var(P) refers to the variance of parameters. After train-
ing, we verify the performance of the classifier on the test set, and the result is that it
has an accuracy of 97.17%, as shown in Fig. 9. And we can see that the black line in the
Fig. 4 is very similar to the line between the first and second class in the Fig. 9. These
results demonstrate DL-ROM only approximates well for the first data class. In order to
improve DL-ROM so that it has generalization ability for the entire parameter space, it
is necessary to train with different subnets according to the classification result shown
in Fig. 9.

Finally, we use the DL-ROMs as subnets in the MC-ROM which also have the same
subnet architecture as DL-ROM in Ref. [14] except for different learning rates which is
adjusted during training. We apply Algorithm 1 to train each subnet. As mentioned in
Section 5, we use transfer learning techniques to accelerate the offline training process.
Fig. 10 compares the impact of using transfer learning and randomly initialized network
parameters during offline training. It can be seen that the former is more efficient.

Figure 10: Comparison of the training process with and without transfer learning.



32 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Figure 11: Results of solving Eq. (4.1) corresponding to the red marked parameters in Fig. 4 by using POD,
DL-ROM, and MC-ROM. n represents the dimension of the reduced space.

Fig. 11 compares the test results of MC-ROM, DL-ROM, and POD. The numerical re-
sults of DL-ROM in the last two plots are not shown since its relative error is too large.
Compared to DL-ROM and POD, MC-ROM has good generalization ability for the pa-
rameters corresponding to solutions with different orders of magnitude.

Fig. 12(a) shows the average relative error (4.4) of MC-ROM and POD on the test set as
a function of the dimension n of the reduced space for solving 1D viscous Burgers equa-
tions. The POD method has better precision than the MC-ROM when n≥4. However, the
MC-ROM is still superior to the POD from two perspectives. One is that the online com-
putational performance of the MC-ROM is more efficient than that of the POD. Fig. 12(b)
gives the online inference time of the MC-ROM and the POD as a function of n. It can be
seen that the inference time of the MC-ROM is much lower than the POD and does not
increase as the dimension reduction space increases. However the inference time of the
POD significantly increases with a increase of n, and it will soon exceed FOM when n>6.
Another advantage is that the MC-ROM has a well generalization ability as the DL-ROM
does for the convection-dominated problems. As Fig. 3 shows, when the coefficient of
the viscous term decreases and the convection term becomes dominant, the POD method
needs a more large n(≥15) to obtain the same precision as the MC-ROM.

(a) test error (b) inference time

Figure 12: Solving 1D viscous Burgers equations by the POD and the MC-ROM with viscosity term coefficient
in [0.5,2]. (a): Average relative error; (b): Average CPU time of online computation.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 33

6.2 2D parabolic equation

Consider the following parabolic equation with discontinuous diffusion coefficient:





∂tu(t;µ)−div
(
κ(µ0)∇u(t;µ)

)
=0 in Ω×[0,T],

u(t=0;µ)=µ1(x−1)(x+1)(y−1)(y+1) in Ω,

u=0 on ∂Ω,

(6.2)

where T=3, Ω=(−1,1)2 is divided into Ω1 and Ω2

• Ω1 is a disk centered at the origin of radius r0 =0.5, and

• Ω2=Ω/ Ω1.

This equation contains two parameters µ0 and µ1. µ0 is related to the coefficient in Ω1,
and µ1 appears in the initial value. As shown in Fig. 13, the coefficient κ is constant on
Ω1 and Ω2, i.e.

κ|Ω1
=µ0, κ|Ω2

=1. (6.3)

We consider parameter µ = (µ0,µ1)∈P = [1,10]×[0.1,10]. As Fig. 14 shows, we use
Latin Hypercube Sampling [42] with a uniform distribution to generate a total of 300
parameters.

According to the experience of the training process of the viscous Burgers equation,
the MC-ROM is not overfitting. Therefore, we divide the dataset into a training set and
test set with the ratio of 8:2, i.e., 240 for training and 60 for testing, no longer leave for the
validation set. Then we solve the corresponding high-fidelity solution for training and
testing. For a given parameter, we use FEM and backward Euler methods to discretize
space and time variable, respectively. And we use the software FEniCS [2] to implement

Figure 13: Distribution of coefficient κ.



34 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

Figure 14: Left: Latin Hypercube Sampling with uniform distribution; Right: split left samples into training
(red) and testing (green) samples.

the above numerical methods and obtain the dataset. Fig. 15(a) shows a schematic mesh
of spatial discretization. In practice, the mesh we use contains 5716 nodes and 11171 cells
and ∆t=0.05. Figs. 15(b) and 15(c) show the FOM solution of parameter (1.6472,6.4912)
at the initial and end moments. We can see that the order of magnitude of the solution is
decreasing over time. Similar to the viscous Burgers equation, we classify training data
using SVM. Table 4 presents the classification results.

Table 4: Classification results of the training set whose data are FOM solutions of the 2D parabolic equation.

Range of ‖uh‖ℓ∞ ‖uh‖ℓ∞ ≥10−1 [10−2,10−1) [10−3,10−2) [10−4,10−3) [10−5,10−4) ‖uh‖ℓ∞ ≤10−5

Label 1 2 3 4 5 6

Size 3751 2346 2368 2360 2360 1455

The MC-ROM’s subnets are all DL-ROM as shown in Fig. 1, its concrete structure is as
follows. Ψ contains 10 hidden layers, each layer contains 50 neurons. Table 5 shows the
parameters of henc,hdec. We use the Adam algorithm, and the initial learning rate is set to
η = 0.001. A multi-step decay learning rate adjustment strategy is used, i.e., the current

(a) finite element mesh (b) µ=(1.6472,6.4912), t=0.0 (c) µ=(1.6472,6.4912), t=3.0

Figure 15: (a): Schematic diagram of mesh; (b,c): Numerical solution of Eq. (6.2) corresponding to µ =
(1.6472,6.4912) at initial and final time.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 35

Table 5: Network parameters of 2D Parabolic equation experiment. The meaning of parameters in Conv2d and
ConvTranspose2d are: in channels(i), out channels(o), kernel size(k), stride(s), padding(p).

henc (input shape:(Nb, 5176)) hdec (input shape:(Nb, n))

Layer type Output shape Layer type Output shape

Fully connected (Nb, 4096) Fully connected (Nb,256)

Reshape (Nb,1,64,64) Fully connected (Nb,4096)

Conv2d(i=1,o=8,k=5,s=1,p=2) (Nb,8,64,64) Reshape (Nb,64,8,8)

Conv2d(i=8,o=16,k=5,s=2,p=2) (Nb,16,32,32) ConvTranspose2d(i=64,o=64,k=5,s=3,p=2) (Nb,64,22,22)

Conv2d(i=16,o=32,k=5,s=2,p=2) (Nb,32,16,16) ConvTranspose2d(i=64,o=32,k=5,s=3,p=2) (Nb,32,64,64)

Conv2d(i=32,o=64,k=5,s=2,p=2) (Nb,64,8,8) ConvTranspose2d(i=32,o=16,k=5,s=1,p=2) (Nb,16,64,64)

Reshape (Nb,4096) ConvTranspose2d(i=16,o=1,k=5,s=1,p=2) (Nb,1,64,64)

Fully connected (Nb,256) Reshape (Nb,4096)

Fully connected (Nb,n) Fully connected (Nb, 5176)

learning rate is reduced by 0.1 when epochs become 5000 and 10000. The maximum
training epoch is Nepochs=40000, and the batch size is Nb=5000. We take n=5 and apply
Algorithm 3 to train MC-ROM.

Table 6 shows the solutions of the problem (6.2) at time t = 0.2,1.25,2.20,2.70 when
µ=(9.9560,6.8453), obtained by FOM, MC-ROM, and DL-ROM, respectively. It also gives
the relative error of MC-ROM and DL-ROM according to Eq. (4.3). We find that MC-ROM
maintains a good approximation at different times. At the same time, DL-ROM becomes
worse over time, which means that MC-ROM has a better generalization ability than
DL-ROM. Similar results can be found for other parameters µ in the test set.

We also compared the POD and the MC-ROM for solving 2D parabolic equations,
as shown in Fig. 16. Fig. 16(a) shows the average relative error of the MC-ROM and the
POD on the test set as a function of the dimension n of the reduced space. We can find the
similar phenomena as the above 1D viscous Burgers equations. The MC-ROM has better
approximation than the POD when n≤5, and the less online inference time for any n.

(a) test error (b) inference time

Figure 16: Solving 2D parabolic equations by the POD and the MC-ROM (a): Average relative error; (b):
Average CPU time of online computation.



36 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

FOM MC-ROM DL-ROM

t=0.2

Esingle=0.003609 Esingle =0.007461

t=1.25

Esingle=0.006973 Esingle =1.534366

t=2.20

Esingle=0.003970 Esingle =63.122426

t=2.70

Esingle=0.008112 Esingle =1672.197287

Table 6: Numerical results of solving PDE (6.2) when µ=(9.9560,6.8453) by the FOM, the MC-ROM, and the
DL-ROM at different times. The relative error Esingle is defined in (4.3).

7 Conclusion and discussions

This paper proposes the MC-ROM for solving time-dependent PPDEs. MC-ROM clas-
sifies the data according to the magnitude of the FOM solutions, constructs correspond-



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 37

ing subnets for different data classes, and builds a classifier to integrate all subnets. In
the offline stage, MC-ROM can use transfer learning techniques to accelerate the train-
ing of subnets with the same architecture. Numerical experiments show that MC-ROM
has good generalization ability for both diffusion-dominant and convection-dominant
problems. Compared with DL-ROM, MC-ROM maintains its advantages, including its
good approximation and generalization ability for convection-dominant problems, effi-
cient online calculation. More importantly, MC-ROM improves the generalization abil-
ity of DL-ROM for diffusion-dominant problems. And MC-ROM is much more efficient
than POD when doing online computing. Even more, POD is not suitable for convection-
dominant problems due to its poor approximation, while MC-ROM can maintain suffi-
cient accuracy. In this work, we use the DL-ROM as subset due to its good approximation
ability and efficient online calculation. In fact, the MC-ROM is a flexibly extended model.
Any appropriate network that approximates the parameter-to-solution mapping can be
used as a subnet in the MC-ROM.

There are still many works to be explored. For instance, the characteristic of PPDEs
that this paper focuses on is that the magnitude of their solutions changes drastically
along the time direction. Therefore, we regard time variable as a parameter that can solve
this kind of PPDEs. However, there are many PPDEs whose solutions change drastically
in space or in time-space, such as interface problems and multi-scale problems. In that
case, we need to regard spatial variables as parameters. To train the network to achieve
satisfactory approximation accuracy, the amount of required data increases exponentially
as the dimension of parameter space increases which leads to the course of dimension.
Developing an efficient sampling approach to high-dimensional parameter space needs
to be solved in our further work. Furthermore, we will apply MC-ROM to more scientific
and engineering problems.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant
Nos. 12171412, 11971414). KJ is partially supported by the Natural Science Foundation
for Distinguished Young Scholars of Hunan Province (Grant No. 2021JJ10037), the Key
Project of the Education Department of Hunan Province of China (Grant No. 19A500).
CC is supported by Hunan Provincial Innovation Foundation for Postgraduate.

References

[1] S.E. Ahmed, O. San, A. Rasheed, and T. Iliescu, A long short-term memory embedding for hybrid
uplifted reduced order models, Physica D, p. 132471, 2020.

[2] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M.E. Rognes, and G.N. Wells, The fenics project version 1.5, Archive of Numerical Software, 3,
2015.



38 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

[3] C. Bao, Q. Li, Z. Shen, C. Tai, L. Wu, and X. Xiang, Approximation analysis of convolutional
neural networks, 65, 2014.

[4] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods for
parametric dynamical systems, SIAM Rev., 57:483–531, 2015.

[5] G. Berkooz, P. Holmes, and J.L. Lumley, The proper orthogonal decomposition in the analysis of
turbulent flows, Annu. Rev. Fluid Mech., 25:539–575, 1993.

[6] J. Berner, M. Dablander, and P. Grohs, Numerically solving parametric families of high-dimensi-
onal Kolmogorov partial differential equations via deep learning, Adv. Neural Inf. Process. Syst.,
33, 2020.

[7] K. Bhattacharya, B. Hosseini, N.B. Kovachki, and A.M. Stuart, Model reduction and neural
networks for parametric PDEs, arXiv:2005.03180, 2020.

[8] R. Caruana, Multitask learning, Mach. Learn., 28:41–75, 1997.
[9] R.T. Chen, Y. Rubanova, J. Bettencourt, and D.K. Duvenaud, Neural ordinary differential equa-

tions, Adv. Neural Inf. Process. Syst., 6571–6583, 2018.
[10] W. Chen, Q. Wang, J. Hesthaven, and C. Zhang, Physics-informed machine learning for reduced-

order modeling of nonlinear problems, Preprint, 2020.
[11] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by

exponential linear units (ELUs), arXiv:1511.07289, 2015.
[12] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20:273–297, 1995.
[13] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals

Systems, 2:303–314, 1989.
[14] S. Fresca, L. Dede, and A. Manzoni, A comprehensive deep learning-based approach to reduced

order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput., 87:1–36, 2021.
[15] K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction via tangential interpolation,

in: MTNS 2002 (15th Symposium on the Mathematical Theory of Networks and Systems),
p. 6, 2002.

[16] F.J. Gonzalez and M. Balajewicz, Deep convolutional recurrent autoencoders for learning low-
dimensional feature dynamics of fluid systems, arXiv:1808.01346, 2018.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, Vol. 1, MIT Press Cam-
bridge, 2016.

[18] J. Han, A. Jentzen, and E. Weinan, Solving high-dimensional partial differential equations using
deep learning, Proc. Natl. Acad. Sci., 115:8505–8510, 2018.

[19] D. Hartman and L.K. Mestha, A deep learning framework for model reduction of dynamical sys-
tems, in: 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE,
1917–1922, 2017.

[20] J. He, L. Li, and J. Xu, Approximation properties of deep relu cnns, arXiv:2109.00190, 2021.
[21] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification, in: Proceedings of the IEEE international conference on
computer vision, 1026–1034, 2015.

[22] J.S. Hesthaven et al., Certified Reduced Basis Methods for Parametrized Partial Differential Equa-
tions, Vol. 590, Springer, 2016.

[23] J.S. Hesthaven, B. Stamm, and S. Zhang, Efficient greedy algorithms for high-dimensional param-
eter spaces with applications to empirical interpolation and reduced basis methods, ESAIM: Math.
Model. Numer. Anal., 48:259–283, 2014.

[24] J.S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using
neural networks, J. Comput. Phys., 363:55–78, 2018.

[25] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980, 2014.



C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40 39

[26] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider, A theoretical analysis of deep neural
networks and parametric PDEs, arXiv:1904.00377, 2019.

[27] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and partial
differential equations, IEEE trans. neural netw., 9:987–1000, 1998.

[28] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521:436–444, 2015.
[29] K. Lee and K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using

deep convolutional autoencoders, J. Comput. Phys., 404:108973, 2020.
[30] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-

mar, Fourier neural operator for parametric partial differential equations, arXiv:2010.08895, 2020.
[31] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, and C. Wu, Proper orthogonal decomposition and its

applications—Part i: Theory, J. Sound Vib., 252:527–544, 2002.
[32] L. Lu, P. Jin, and G.E. Karniadakis, Deeponet: Learning nonlinear operators for identifying dif-

ferential equations based on the universal approximation theorem of operators, arXiv:1910.03193,
2019.

[33] M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future challenges,
arXiv:1511.02021, 2015.

[34] T. O’Leary-Roseberry, U. Villa, P. Chen, and O. Ghattas, Derivative-informed projected neural
networks for high-dimensional parametric maps governed by PDEs, arXiv:2011.15110, 2020.

[35] S.E. Otto and C.W. Rowley, Linearly recurrent autoencoder networks for learning dynamics, SIAM
J. Appl. Dyn. Syst., 18:558–593, 2019.

[36] A. Paszke et al., Pytorch: An imperative style, high-performance deep learning library, Adv. Neu-
ral Inf. Process. Syst., 8026–8037, 2019.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay, Scikit-learn: Mach. Learn. in Python, J. Mach. Learn. Res., 12:2825–2830,
2011.

[38] P. Petersen and F. Voigtlaender, Equivalence of approximation by convolutional neural networks
and fully-connected networks, Proc. Amer. Math. Soc., 148:1567–1581, 2020.

[39] T. Phillips, C.E. Heaney, P.N. Smith, and C.C. Pain, An autoencoder-based reduced-order model
for eigenvalue problems with application to neutron diffusion, arXiv:2008.10532, 2020.

[40] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equa-
tions: An Introduction, Vol. 92, 2015.

[41] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions, J. Comput. Phys., 378:686–707, 2019.

[42] M. Stein, Large sample properties of simulations using latin hypercube sampling, Technometrics,
29:143–151, 1987.

[43] Q. Wang, J.S. Hesthaven, and D. Ray, Non-intrusive reduced order modeling of unsteady flows us-
ing artificial neural networks with application to a combustion problem, J. Comput. Phys., 384:289–
307, 2019.

[44] S. Wang, H. Wang, and P. Perdikaris, Learning the solution operator of parametric partial differ-
ential equations with physics-informed deeponets, arXiv:2103.10974, 2021.

[45] Y. Wang, H. Yao, and S. Zhao, Auto-encoder based dimensionality reduction, Neurocomputing,
184:232–242, 2016.

[46] E. Weinan and B. Yu, The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems, Commun. Math. Stat., 6:1–12, 2018.

[47] J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition,



40 C. Cui, K. Jiang and S. Shu / CSIAM Trans. Appl. Math., 4 (2023), pp. 13-40

ESANN’1999 proceedings - European Symposium on Artificial Neural Networks, 219–224,
1999.

[48] D.-X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal.,
48:787–794, 2020.

[49] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate mod-
eling and uncertainty quantification, J. Comput. Phys., 366:415–447, 2018.

[50] Y. Zhu, N. Zabaras, P.S. Koutsourelakis, and P. Perdikaris, Physics-constrained deep learning for
high-dimensional surrogate modeling and uncertainty quantification without labeled data, J. Com-
put. Phys., 394:56–81, 2019.


