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Abstract. More competent learning models are demanded for data processing due

to increasingly greater amounts of data available in applications. Data that we en-
counter often have certain embedded sparsity structures. That is, if they are rep-

resented in an appropriate basis, their energies can concentrate on a small number

of basis functions. This paper is devoted to a numerical study of adaptive approxi-
mation of solutions of nonlinear partial differential equations whose solutions may

have singularities, by deep neural networks (DNNs) with a sparse regularization
with multiple parameters. Noting that DNNs have an intrinsic multi-scale structure

which is favorable for adaptive representation of functions, by employing a penalty

with multiple parameters, we develop DNNs with a multi-scale sparse regularization
(SDNN) for effectively representing functions having certain singularities. We then

apply the proposed SDNN to numerical solutions of the Burgers equation and the

Schrödinger equation. Numerical examples confirm that solutions generated by the
proposed SDNN are sparse and accurate.
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1. Introduction

The goal of this paper is to develop a sparse regularization deep neural network

model for numerical solutions of nonlinear partial differential equations whose solu-

tions may have singularities. We will mainly focus on designing a sparse regularization

model by employing multiple parameters to balance sparsity of different layers and the
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overall accuracy. The proposed ideas are tested in this paper numerically to confirm

our intuition and more in-depth theoretical studies will be followed in a future paper.

Artificial intelligence especially deep neural networks (DNN) has received great at-

tention in many research fields. From the approximation theory point of view, a neural

network is built by functional composition to approximate a continuous function with

arbitrary accuracy. Deep neural networks are proven to have better approximation by

practice and theory due to their relatively large number of hidden layers. Deep neu-

ral network has achieved state-of-the-art performance in a wide range of applications,

including speech recognition [11], computer vision [28], natural language process-

ing [14], and finance [8]. For an overview of deep learning the readers are referred to

monograph [20]. Recently, there was great interest in applying deep neural networks

to the field of scientific computing, such as discovering the differential equations from

observed data [34], solving the partial differential equation (PDE) [21,29,30,35], and

problem aroused in physics [16]. Mathematical understanding of deep neural networks

received much attention in the applied mathematics community. A universal approxi-

mation theory of neural network for Borel measurable function on compact domain is

established in [9]. Some recent research studies the expressivity of deep neural net-

works for different function spaces [15], for example, Sobolev spaces, Barron functions,

and Hölder spaces. There are close connections between deep neural network and tra-

ditional approximation methods, such as splines [13,37], compressed sensing [1], and

finite elements [22,26]. Convergence of deep neural networks and deep convolutional

neural networks are studied in [40] and [41] respectively. Some work aims at under-

standing the training process of DNN. For instance, in paper [10], the training process

of DNN is interpreted as learning adaptive basis from data.

Traditionally, deep neural networks are dense and over-parameterized. A dense net-

work model requires more memory and other computational resources during training

and inference of the model. Increasingly greater amounts of data and related model

sizes demand the availability of more competent learning models. Compared to dense

models, sparse deep neural networks require less memory, less computing time and

have better interpretability. Hence, sparse deep neural network models are desirable.

On the other hand, animal brains are found to have hierarchical and sparse struc-

tures [19]. The connectivity of an animal brain becomes sparser as the size of the

brain grows larger. Therefore, it is not only necessary but also natural to design sparse

networks. In fact, it was pointed out in [25] that the future of deep learning relies on

sparsity. Furthermore, over-parameterized and dense models tend to lead to overfit-

ting and weakening the ability to generalize over unseen examples. Sparse models can

improve accuracy of approximation. Sparse regularization is a popular way to learn

the sparse solutions [5,38,39,42]. The readers are referred to [24] for an overview of

sparse deep learning.

Although much progress has been made in theoretical research of deep learning, it

remains a challenging issue to construct an effective neural network approximation for

general function spaces using as few neuron connections or neurons as possible. Most

of existing network structures are specific for a particular class of functions. In this
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paper, we aim to propose a multi-scale sparse regularized neural network to approx-

imate the function effectively. A neural network with multiple hidden layers can be

viewed as a multi-scale transformation from simple features to complex features. The

layer-by-layer composite of functions can be seen as a generalization of wavelet trans-

forms [7,12,33]. For neurons in different layers, corresponding to different transforma-

tion scales, the corresponding features have different levels of importance. Imposing

different regularization parameters for different scales was proved to be an effective

way to deal with multi-scale regularization problems [3, 6, 32]. Inspired by multi-

scale analysis, we propose a sparse regularization network model by applying different

sparse regularization penalties to the neuron connections in different layers. During

the training process, the neural network adaptively learns matrix weights from given

data. By sparse optimization, many weight connections are automatically zero. The

remaining neural networks composed of non-zero weights form the sparse deep neural

network that we desire.

This paper is organized in five sections. In Section 2, we describe a multi-parameter

regularization model for solving partial differential equations by using deep neural net-

works. We study in Section 3 the capacity of the proposed multi-parameter regulariza-

tion in adaptive representing functions having certain singularities. In Section 4, we

investigate numerical solutions of nonlinear partial differential equations by using the

proposed SDNN model. Specifically, we consider two equations: the Burgers equation

and the Schrödinger equation since solutions of these two equations exhibit certain

types of singularities. Finally, a conclusion is drawn in Section 5.

2. A sparse DNN model for solving partial differential equations

In this section, we propose a sparse DNN model for solving nonlinear partial dif-

ferential equations (PDEs).

We begin with describing the PDE and its boundary, initial conditions to be con-

sidered in this paper. Suppose that Ω is an open domain in R
d. By Γ we denote the

boundary of the domain Ω. Let F denote a nonlinear differential operator, I the initial

condition operator, and B the boundary operator. We consider the following bound-

ary/initial value problem of the nonlinear partial differential equation:

F
(

u(t, x)
)

= 0, x ∈ Ω, t ∈ [0, T ], (2.1)

I
(

u(0, x)
)

= 0, x ∈ Ω, t = 0, (2.2)

B
(

u(t, x)
)

= 0, x ∈ Γ, t ∈ [0, T ], (2.3)

where T > 0, the data u on Γ and t = 0 are given and u in Ω is the solution to

be learned. The formulation (2.1)-(2.3) covers a broad range of problems including

conservation laws, reaction–diffusion equations, and Navier–Stokes equations. For ex-

ample, the one-dimensional Burgers equation can be recognized as

F(u) :=
∂u

∂t
+ u

∂u

∂x
−
∂2u

∂x2
.
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The goal of this paper is to develop a sparse DNN model for solving problem (2.1).

We will conduct numerical study of the proposed model by applying it to two equations,

the Burgers equation and the Schrödinger equation, of practical importance.

Now, we present the sparse DNN model with multi-parameter regularization. We

first recall the feed forward neural network (FNN). A neural network can be viewed as

a composition of functions. A FNN of depth D is defined to be a neural network with

an input layer, D − 1 hidden layers, and an output layer. A neural network with more

than two hidden layers is usually called a deep neural network (DNN). Suppose that

there are di neurons in the i-th hidden layer. Let Wi ∈ R
di×di−1 and bi ∈ R

di denote,

respectively, the weight matrix and bias vector of the i-th layer. By x0 := x ∈ R
d0

we denote the input vector and by xi−1 ∈ R
di−1 we denote the output vector of the

(i− 1)-th layer. For the i-th hidden layer, we define the affine transform Li : R
di−1 →

R
di by

Li(xi−1) :=Wixi−1 + bi, i = 1, 2, . . . ,D.

For an activation function σi, the output vector of the i-th hidden layer is defined as

xi := σi
(

Li(xi−1)
)

.

Given nonlinear activation functions σi, i = 1, 2, . . . ,D − 1, the feed forward neural

network NΘ(x) of depth D is defined as

NΘ(x) := LD ◦ σD−1 ◦ LD−1 ◦ · · · ◦ σ1 ◦ L1(x), (2.4)

where ◦ denotes the composition operator and Θ := {Wi, bi}
D
i=1 is the set of trainable

parameters in the network.

We first describe the physics-informed neural network (PINN) model introduced

in [35] for solving the partial differential equation (2.1). We denote by LossPDE the

loss of training data on the partial differential equation (2.1). We chooseNf collocation

points (tif , x
i
f ) by randomly sampling in domain Ω using a sampling method such as

Latin hypercube sampling [23]. We then evaluate F(NΘ(t
i
f , x

i
f )) for i = 1, 2, . . . , Nf

and define

LossPDE :=
1

Nf

Nf
∑

i=1

∣

∣F
(

NΘ(t
i
f , x

i
f )
)∣

∣

2
,

where F is the operator for the partial differential equation (2.1).

We next describe the loss function for the boundary/initial condition. We randomly

sample N0 points xi0 for the initial condition (2.2), Nb points {tib, x
i
b} for the boundary

condition (2.3). The loss function Loss0 related to the initial value condition is given by

Loss0 :=
1

N0

N0
∑

i=1

∣

∣I
(

NΘ(0, x
i
0)
)
∣

∣.

The loss function Lossb pertaining to the boundary value is given as

Lossb :=
1

Nb

Nb
∑

i=1

∣

∣B
(

NΘ(t
i
b, x

i
b)
)
∣

∣, xib ∈ Γ.
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Adding the three loss functions LossPDE, Loss0, and Lossb together gives rise to the

PINN model

min
Θ

{

1

Nf

Nf
∑

i=1

|F(NΘ(t
i
f , x

i
f ))|

2+
1

N0

N0
∑

i=1

|I(NΘ(0, x
i
0))|+

1

Nb

Nb
∑

i=1

|B(NΘ(t
i
b, x

i
b))|

}

, (2.5)

where Θ := {Wi, bi}
D
i=1.

The neural network learned from (2.5) is often dense and may be over-parame-

terized. Moreover, training data are often contaminated with noise. When noise

presents, over-parameterized models may overfit training data samples and result in

bad generalization to the unseen samples. The problem of over-fitting is often over-

come by adding a regularization term

Loss := LossPDE + β(Loss0 + Lossb) + Regularization.

The ℓ1- and ℓ2-norms are popular choices for regularization. Design of the regulari-

zation often makes use of prior information of the solution to be learned. It is known

[4, 17, 42] that the ℓ1-norm can promote sparsity. Hence, the ℓ1-norm regularization

not only has many advantages over the ℓ2-norm regularization, but also leads to sparse

models which can be more easily interpreted. Therefore, we choose to use the ℓ1-norm

as the regularizer in this study. Furthermore, we observe that DNNs have an intrinsic

multiscale structure whose different layers represent different scales of information,

which will be validated later by numerical studies. In fact, we will demonstrate in the

next section that a smooth function or smooth parts of a function can be represented

by a DNN with sparse weight matrices. This is because a smooth part of a function

contains redundant information, which can be described very well by a few parameters,

and only non-smooth parts of a function require more parameters to describe them. In

other words, by properly choosing regularization, DNNs can lead to adaptive sparse

representations of functions having certain singularities. With this understanding, we

construct an adaptive representation of a function, especially for a function having

certain singularity by adopting a sparse regularization model. Our idea for the adaptive

representation is to impose different sparsity penalties for different layers. Specifically,

we propose a multiscale-like sparse regularization using the ℓ1-norm of the weight

matrix for each layer with a different parameter for a different layer. The regularization

with multiple parameters allows us to represent a function in a multiscale-like neural

network which is determined by sparse weight matrices having different sparsity at

different layers. Such a regularization added to the loss function will enable us to

robustly extract critical information of the solution of the PDE.

We now describe the proposed regularization. For layer i, we denote by W k,j
i the

(k, j)-th entry of matrix Wi, the entry in the k-th row and the j-th column. For this

reason, we adopt the ℓ1-norm of matrix Wi defined by

‖Wi‖1 :=
di
∑

k=1

di−1
∑

j=1

∣

∣W k,j
i

∣

∣
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as our sparse regularization. Considering that different layers of the neural network

play different roles in approximation of a function, we introduce here a multi-parameter

regularization model

Regularization :=
D
∑

i=1

αi‖Wi‖1, (2.6)

where αi are nonnegative regularization parameters. The use of different parameters

for weight matrices of different layers in the regularization term (2.6) allows us to

penalize the weight matrices at different layers of the neural network differently in

order to extract the multiscale representation of the solution to be learned. That is,

for a fixed i, parameter αi determines the sparsity of weight matrix Wi. The larger the

parameter αi, the more sparse the weight matrix Wi is. The regularized loss function

takes the form

Loss := LossPDE + β(Loss0 + Lossb) +
D
∑

i=1

αi‖Wi‖1. (2.7)

The parameters Θ := {Wi, bi}
D
i=1 of the neural network NΘ(t, x) are learned by

minimizing the loss function

min
Θ







1

Nf

Nf
∑

i=1

∣

∣F
(

NΘ(t
i
f , x

i
f )
)
∣

∣

2
+ β(Loss0 + Lossb) +

D
∑

i=1

αi‖Wi‖1







. (2.8)

Truncating the weights of the layers close to the input layer has an impact on all sub-

sequent layers. In practice, we usually set smaller regularization parameters in layers

close to the input and larger regularization parameters in layers close to the output.

The resulting neural network will exhibit denser weight matrices near the input layer

and sparser weight matrices near the output layer. This network structure reflects the

multi-scale nature of neural networks and is automatically learned by sparse regular-

ization.

Appropriate choices of the regularization parameters are key to achieve good pre-

diction results. We need to balance sparsity and prediction accuracy. Since there are

multiple regularization parameters, the regularization parameters are chosen by grid

search layer by layer in this paper. In practice, we first choose the regularization param-

eters close to the output layer, and then gradually choose the regularization coefficients

close to the input layer.

We refer Eq. (2.8) as to the sparse DNN (SDNN) model for the partial differential

equation. Upon solving the minimization problem (2.8), we obtain an approximate so-

lution u(t, x) := NΘ(t, x) with sparse weight matrices. When the regularization param-

eters αi are all set to 0, the SDNN model (2.8) reduces to the PINN model introduced

in [35]. We will compare numerical performance of the proposed SDNN model with

that of PINN model, for both the Burgers equation and the Schrödinger equation.
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3. Function adaptive approximation by the SDNN model

We explore in this section the capacity of the proposed multi-parameter regula-

rization in adaptive representing functions that have certain singularities. We will first

reveal that a DNN indeed has an intrinsic multiscale-like structure which is desirable for

representing non-smooth functions. We demonstrate in our numerical studies that the

proposed SDNN model can reconstruct neural networks which approximate functions

in the same accuracy order with nearly the same order of network complexity, regard-

less the smoothness of the functions. We include in this section a numerical study of

reconstruction of black holes by the proposed SDNN model. In this section, we use the

rectified linear unit (ReLU) function

ReLU(x) := max{0, x}, x ∈ R

as an activation function.

We start with data fitting problem. Given training points (xi, yi), i = 1, 2, . . . , N ,

a non-regularized neural network is determined by minimizing the regression error,

that is,

min
Θ

1

N

N
∑

i=1

|NΘ(xi)− yi|
2. (3.1)

The multi-parameter sparse regularization DNN model for the data fitting problem

reads

min
Θ

{

1

N

N
∑

i=1

|NΘ(xi)− yi|
2 +

D
∑

i=1

αi‖Wi‖1

}

, (3.2)

where αi are nonnegative regularization parameters and Wi are weight matrices.

In examples to be presented in this section and the section that follows, the network

structure is described by the number of neurons in each layer. Specifically, we use the

notation [d0, d1, . . . , dD] to describe networks that have one input layer, D − 1 hidden

layers and one output layer, with d0, d1, . . . , dD number of neurons, respectively. The

regularization parameters, which will be presented as a vector α := [α1, α2, . . . , αD],
are chosen so that best results are obtained. We will use the relative L2 error to mea-

sure approximation accuracy. Suppose that yi is the exact value of function f to be

approximated at xi, that is, yi = f(xi), and suppose that ŷi := NΘ(xi) is the output of

the neural network approximation of f . We let

y := [y1, y2, . . . , yN ], ŷ := [ŷ1, ŷ2, . . . , ŷN ],

and define the error by ‖y − ŷ‖2/‖y‖2. Sparsity of the weight matrices is measured by

the percentage of zero entries in the weight matrices Wi. In our computation, we set

a weight matrix entry W k,j
i = 0, if |W k,j

i | < ǫ, where ǫ is small positive number. In

our numerical examples, we set ǫ := 0.001 by default. For all numerical examples, the

non-smooth, non-convex optimization problem (3.2) is solved by the Adam algorithm,

which is an improved version of the stochastic gradient descent algorithm proposed

in [27] for training deep learning models.
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3.1. Intrinsic adaptivity of the SDNN model

We first investigate whether the SDNN model (3.2) can generate a network that

has an intrinsic adaptive representation of a function. That is, a function generated by

the model has a multiscale-like structure so that the reconstructed neural networks ap-

proximate functions in the same accuracy order with nearly the same order of network

complexity, regardless the smoothness of the functions. In particular, when a function is

singular a sparse network with higher layers is generated to capture the higher resolu-

tion information of the function. The complexity of the network is nearly proportional

to the reciprocal of the approximation error regardless whether the function is smooth

or not. In this experiment, we consider two examples: (1) one-dimensional functions

and (2) two-dimensional functions.

In our first example, we consider approximation of the quadratic function

f(x) := x2, (3.3)

and the piecewise quadratic function

fd(x) =

{

x2 + 1, x ≥ 0,

x2, x < 0
(3.4)

by SDNN. Note that the function defined by (3.3) is smooth and the function by (3.4)

has a jump discontinuity at the point 0. We applied the sparse regularized network ha-

ving the architecture [1, 10, 10, 10, 10, 1] to learn these functions. We divide the interval

[−2, 2] by the nodes xj := −2 + jh, for j := 0, 1, . . . , 200, with h := 1/50, and sample

the functions f at xj . The test set is {(xk, f(xk))}, where xk := −2 + kh, h := 1/30,

k = 0, 1, . . . , 120. The network is trained by the Adam algorithm with epochs 20, 000
and initial learning rate 0.001.

For function (3.3), regularization parameters are set to be [0, 1e-4, 1e-4, 1e-3, 1e-3].
We obtain the prediction error 5.94e-3 for the test set. Sparsity of the resulting weight

matrices is [0.0%, 87.0%, 95.0%, 98.0%, 90.0%] and the number of nonzero weight ma-

trix entries is 31. Fig. 1 (left) shows the reconstructed SDNN for the function defined

by (3.3).

Figure 1: Numerical results of SDNN: for function (3.3) (left); for function (3.4) (right).
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Table 1: Numerical result for quadratic function (3.3) and piecewise quadratic function (3.4) with network
structure [1, 10, 10, 10, 10, 1].

Results for

function (3.3)

Regularization parameters [0, 1e-4, 1e-4, 1e-3, 1e-3]

Relative L2 error 5.94e-3

Sparsity of weight matrices [0.0%, 87.0%, 95.0%, 98.0%, 90.0%]

No. of nonzero entries 31

Results for

function (3.4)

Regularization parameters [1e-5, 1e-4, 1e-4, 1e-4, 1e-3]

Relative L2 error 5.42e-3

Sparsity of weight matrices [50%, 93.0%, 88.0%, 93.0%, 90.0%]

No. of nonzero entries 32

For function (3.4) the regularization parameters are chosen as [1e-5, 1e-4, 1e-4,

1e-4, 1e-3]. We obtain the prediction error 5.42e-3 for the test set. Sparsity of the result-

ing weight matrices is [50%, 93.0%, 88.0%, 93.0%, 90.0%] and the number of nonzero

weight matrix entries is 32. The reconstructed function is shown in Fig. 1 (right).

Numerical results for both functions (3.3) and (3.4) are summarized in Table 1.

These results demonstrate that even though the function (3.4) has a jump discontinuity

at the point 0, the proposed SDNN model can generate a network with nearly the same

number of nonzero weight matrix entries and with the same accuracy as those for the

smooth function (3.3). This shows that the proposed SDNN model has a good adaptive

approximation property.

In our second example, we consider approximation of two-dimensional functions,

once again one smooth function and one discontinuous function. We study smooth

function

g(x, y) := e2x+y2 , (3.5)

whose image is illustrated in Fig. 2 (left), and piecewise function

gd(x, y) =

{

e2x+y2 + 1, x ≥ 0,

e2x+y2 , x < 0,
(3.6)

Figure 2: Left: Image of function e2x+y2

. Right: Predicted by sparse regularized neural network.
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Figure 3: Left: Image of piecewise discontinuous function (3.6). Right: Predicted by sparse regularized
neural network.

whose image is illustrated in Fig. 3 (left). Note that function (3.5) is smooth and

function (3.6) has a jump discontinuity along x = 0.

For these two functions, the training data set is composed of grid points [−1, 1] ×
[−1, 1] uniformly discretized with step size 1/200 on x- and y-direction, and the test set

is composed of grid points [−1, 1] × [−1, 1] uniformly discretized with step size 1/300
on the x- and y-directions. The network has 2 inputs, 4 hidden layers, and 1 output,

with the architecture [2, 20, 20, 20, 20, 1]. For each hidden layer, there are 20 neurons.

The initial learning rate for Adam is set to 0.001. The batch size is equal to 1024.

For function (3.5) we set the sparse regularization parameters as [0, 1e-6, 1e-4,
1e-4, 1e-4]. After 10, 000 epochs training, the sparsity of weight matrices is [0.0%, 68.5%,
95.75%, 97.75%, 80.0%] and the number of nonzero weight matrix entries is 178. The

prediction error for the test set is 4.38e-3. For function (3.6), the regularization pa-

rameters are set to be [1e-4, 1e-5, 1e-5, 1e-4, 1e-4]. The sparsity of weight matrices after

regularization are [60.0%, 71.75%, 81.75%, 97.5%, 90.0%] and the number of nonzero

weight matrix entries is 206. The prediction error for sparse regularized deep neu-

ral network is 4.27e-3, which is even slightly better than that for function (3.5). The

images of the reconstructed functions are shown respectively in Figs. 2 and 3 (right).

Numerical results for this example are reported in Table 2.

Table 2: Numerical result for two-dimensional function (3.5) and (3.6) with network structure [2, 20, 20,
20, 20, 1].

Results for

function (3.5)

Regularization parameters [0, 1e-6, 1e-4, 1e-4, 1e-4]

Relative L2 error 4.38e-3

Sparsity of weight matrices [0.0%, 68.5%, 95.75%, 97.75%, 80.0%]

No. of nonzero connections 178

Results for

function (3.6)

Regularization parameters [1e-4, 1e-5, 1e-5, 1e-4, 1e-4]

Relative L2 error 4.27e-3

Sparsity of weight matrices [60.0%, 71.75%, 81.75%, 97.5%, 90.0%]

No. of nonzero connections 206



68 Y. Xu and T. Zeng

The numerical results presented in this subsection indicate that indeed the pro-

posed SDNN model has an excellent adaptivity property in the sense that it generates

networks with nearly the same number of nonzero weight matrix entries and the same

order of approximation accuracy for functions regardless their smoothness.

3.2. An example of adaptive function approximation by the SDNN model

The second experiment is designed to test the sparsity of the network learned from

the SDNN model (3.2) and the model’s generalization ability. Specifically, in this ex-

ample, we demonstrate that the sparse model (3.2) leads to a sparse DNN with higher

accuracy in comparison to the standard DNN model (3.1). We consider the absolute

value function

y = f(x) := |x| for x ∈ R.

Note that function f is not differentiable at x = 0.

We adopt the same network architecture, that is, 1 input layer, 2 hidden layers, 1
output layer and each hidden layer containing 5 neurons, for both the standard DNN

model (3.1) and the SDNN model (3.2). The training set is composed of equal-distance

grid points laying in [−2, 2] with step size 0.01. The test set is composed of equal-

distance grid points in [−5, 5] with step size 0.1. For the sparse regularized network,

the regularization parameters are set as [1e-4, 1e-3, 1e-3]. For both the standard DNN

model and the SDNN model, the number of epoch equals 10, 000. The initial learning

rate is set to 0.001.

We present numerical results of this experiment in Table 3, where we compare

errors and sparsity of the functions learned from the two models. Clearly, the network

learned from the standard DNN model is non-sparse: all entries of its weight matrices

are nonzero. While the network learned from the SDNN model has a good sparsity

property: There are only 1 non-zero entries in W3 and 2 non-zero entries in W2 in

the network learned from the SDNN model. Note that the absolution value function is

the linear composition of two ReLU functions, that is |x| = ReLU(x) + ReLU(−x). The

SDNN model is able to find a linear combination of the two functions to represent the

function f(x) := |x| but the standard DNN model fails to do so.

We plot the graphs of the reconstructed functions by the standard DNN model (3.1)

and the SDNN model (3.2) in Figs. 4 and 5, respectively. It can be seen from Fig. 4 that

the function reconstructed by the standard DNN model (3.1) has large errors in the

Table 3: Approximation of the absolute value function by a SDNN with regularization parameters [1e-4, 1e-3,
1e-3].

Relative L2 error
Sparsity of weight matrices

[W1, W2, W3]

Standard DNN model 5.58e-2 [0%, 0%, 0%]

SDNN model 1.87e-3 [20%, 92%, 80%]
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Figure 4: Reconstruction of function f(x) := |x| by
the standard DNN model (3.1).

Figure 5: Reconstruction of function f(x) := |x| by
the SDNN model (3.2).

interval [3, 5]. Fig. 5 shows that the function reconstructed by the SDNN model (3.2)

almost coincides with the original function. This example indicates that the SDNN

model (3.2) has better generalization ability than the standard DNN model (3.1).

3.3. Reconstruction of a black hole

In this example, we consider reconstruction of the image of a black hole by the

SDNN model. Specifically, we compare numerical results and reconstructed image

quality of the SDNN model with those of the standard DNN model. We choose a color

image of the black hole shown in Fig. 6 (left), which is turned into a gray image shown

in Fig. 6 (right). The image has the size 128 × 128 and can be represented as a two-

dimensional discrete function. The value of the gray image at the point (x1, x2) is

defined as a fimage(x1, x2), x1, x2 = 1, 2, . . . , 128. The function clearly has singularities.

The network architecture that we used for the construction is

[2, 100, 100, 100, 100, 100, 100, 1].

We randomly choose 5, 000 points (xi1, x
i
2, fimage(x

i
1, x

i
2)) by uniform sampling, i =

1, 2, . . . , 5, 000, from the image of the black hole to train both the standard neural

network and the sparse regularized network. The optimizer is chosen as the Adam

algorithm with batch size 1, 024. The number of epoch is 40, 000. The patience param-

eter of early stopping is 200. Prediction results by the standard DNN model and by the

SDNN model are shown respectively on Fig. 7 (left) and (right).

Error images of the two models are presented in Fig. 8, from which it can be seen

that the sparse network has a smaller reconstruction error. The prediction error of the

fully connected network is 9.66e-3. For the sparse regularized neural network, the reg-

ularized parameters are set to be [1e-9, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]. The prediction

error of the sparse regularized network is 9.28e-3. The sparsity of the weight matrices

are [44.0%, 78.3%, 78.4%, 80.3%, 96.5%, 98.2%, 84.0%]. It shows that the sparse regular-

ized network uses fewer neurons and has smaller prediction error. This indicates that

by using the proposed multi-parameter sparse regularization, the deep neural network

has the ability of multi-scale and adaptive learning.



70 Y. Xu and T. Zeng

Figure 6: Left: Color image of the black hole. Right: Gray image of the black hole.

Figure 7: Images of the black hole reconstructed. By the standard DNN model (left) and by the SDNN
model (right).

Figure 8: Reconstruction errors of the black hole. By the standard DNN model (left) and by the SDNN
model (right).
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Table 4: Numerical results of the black hole reconstructed by the standard DNN model vs. the SDNN
model.

Standard DNN model

Relative L2 error Sparsity of weight matrices

9.66e-3 [0%, 0%, 0%, 0%, 0%, 0%, 0%]

SDNN model

Relative L2 error Sparsity of weight matrices

9.28e-3 [44.0%, 78.3%, 78.4%, 80.3%, 96.5%, 98.2%, 84.0%]

4. Numerical solutions of partial differential equations

We study in this section numerical performance of the proposed SDNN model for

solving partial differential equations. We consider two equations: the Burgers equa-

tion and the Schrödinger equation. For both of these two equations, we choose the

hyperbolic tangent (tanh) function defined by

tanh(x) :=
ex–e−x

ex + e−x
, x ∈ R

as the activation function to build networks for our approximate solutions due to its

differentiability which is required by the differential equations.

4.1. The Burgers equation

The Burgers equation has attracted much attention since it is often used as simpli-

fied model for turbulence and shock waves [31]. It is well-known that the solution

of this equation presents a jump discontinuity (a shock wave), even though the initial

function is smooth.

In this example, we consider the following one-dimensional Burgers equation:

ut(t, x) + u(t, x)ux(t, x)−
0.01

π
uxx(t, x) = 0, t ∈ (0, 1], x ∈ (−1, 1), (4.1)

u(0, x) = − sin(πx), (4.2)

u(t,−1) = u(t, 1) = 0. (4.3)

The analytic solution of this equation, known in [2], will be used as our exact solution

for comparison. Indeed, the analytic solution has the form

u(t, x) := −

∫ +∞

−∞
sinπ(x− η)h(x − η) exp

(

−η2/4νt
)

dη
∫ +∞

−∞
h(x− η) exp (−η2/4νt) dη

, t ∈ [0, 1], x ∈ [−1, 1],

where ν := 0.01/π and h(y) := exp(− cos πy/2πν). A neural network solution of

Eqs. (4.1)-(4.3) was obtained recently from the standard DNN model in [35].
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We apply the setting (2.1)-(2.3) with

F
(

u(t, x)
)

:= ut(t, x) + u(t, x)ux(t, x)−
0.01

π
uxx(t, x), t ∈ (0, 1], x ∈ (−1, 1).

Let {xi0, u
i
0}

N0

i=1
denote the training data of u satisfying initial condition (4.2), that is,

ui0 = − sin(πxi0). Let {tib1}
Nb1

i=1
and {tib2}

Nb2

i=1
be the collocation points related to boundary

condition (4.3) for x = −1 and x = 1 respectively. We denote by {tif , x
i
f}

Nf

i=1
the

collocation points for F(u(t, x)) in [0, 1] × (−1, 1). The sparse deep neural network

NΘ(t, x) are learned by model (2.8) with

Loss0 =
1

N0

N0
∑

i=1

∣

∣NΘ(0, x
i
0)− ui0

∣

∣

2
,

Lossb =
1

Nb1

Nb1
∑

i=1

∣

∣NΘ(t
i
b1
,−1)

∣

∣ +
1

Nb2

Nb2
∑

i=1

∣

∣NΘ(t
i
b2
, 1)
∣

∣ .

In this experiment, 100 data points are randomly selected from boundary and initial

data points, among which Nb1 = 25 points are located on the boundary x = −1,

Nb2 = 23 points on the boundary x = 1, andN0 = 52 points on the initial line t = 0. The

distribution of random collocation points is shown in the top of Fig. 9. The number of

Figure 9: Burgers equation. Top: The training data and predicted solution u(t, x) for sparse deep neural
network with [2, 50, 50, 50, 1], regularization parameter α = [1e-6, 1e-6, 1e-6, 1e-4], β = 20. Bottom:
Predicted solution u(t, x) at time t = 0.3, t = 0.6, and t = 0.8.
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Table 5: The Burgers equation. A neural network of 4 layers, with network architecture [2, 50, 50, 50, 1].

Algorithms
Parameters α Relative

sparsity of weight matrices L2 error

PINN
No regularization

2.45e-2
[0.0%, 0.2%, 0.5%, 0.0%]

SDNN [1e-6, 1e-6, 1e-6, 1e-4]
1.68e-3

(β = 20) [13.0%, 61.9%, 71.2%, 62.0%]

Table 6: The Burgers equation. Neural networks of 8 layers with network architecture [2, 50, 50, 50, 50,
50, 50, 50, 1].

Algorithms
Parameters α Relative

& sparsity of weight matrices L2 error

PINN
No regularization

3.39e-3
[0.0%, 0.8%, 0.6%, 0.6%, 0.8%, 0.6%, 0.4%, 0.0]

SDNN [0, 0, 0, 0, 1e-7, 1e-10, 1e-6, 1e-5]
1.45e-4

(β = 10) [0.0%, 0.7%, 0.8%, 0.7%, 15.6%, 0.5%, 93.8%, 94.0%]

SDNN [1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-5, 1e-5]
4.83e-4

(β = 10) [25.0%, 78.6%, 85.3%, 82.8%, 79.5%, 84.0%, 98.6%, 94.0%]

collocation points of the partial differential equation is Nf = 10, 000 by employing the

Latin hypercube sampling method. The test set is composed of grid points [0, 1]×[−1, 1]
uniformly discretized with step size 1/100 on the t-direction and step size 2/255 on the

x-direction.

We use two different network architectures [2, 50, 50, 50, 1] and [2, 50, 50, 50, 50, 50,
50, 50, 1] for DNNs. We choose Adam as the optimizer for both neural networks. The

number of epoch is 30, 000. The initial learning rate is set to 0.001. Numerical results

of these two networks presented respectively in Tables 5 and 6 show that the proposed

SDNN model outperforms the PINN model in both weight matrix sparsity and approxi-

mation accuracy.

4.2. The Schrödinger equation

The Schrödinger equation is the most essential equation of non-relativistic quan-

tum mechanics. It plays an important role in studying nonlinear optics, Bose-Einstein

condensates, protein folding and bending. It is also a model equation for studying

waves propagation and soliton [36]. In this subsection, we consider a one-dimensional

Schrödinger equation with periodic boundary conditions

iut(t, x) + 0.5uxx(t, x) + |u(t, x)|2u(t, x) = 0, t ∈ (0, π/2], x ∈ (−5, 5),

u(0, x) = 2 sech(x),

u(t,−5) = u(t, 5),

ux(t,−5) = ux(t, 5).

(4.4)
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Note that the solution u of problem (4.4) is a complex-valued function. The goal of this

study is to test the effectiveness of the proposed SDNN model in solving complex-valued

nonlinear differential equations with periodic boundary conditions, with a comparison

to the standard DNN model recently developed in [35].

Problem (4.4) falls into the setting (2.1)-(2.3) with

F
(

u(t, x)
)

:= iut(t, x) + 0.5uxx(t, x) + |u(t, x)|2u(t, x), t ∈ (0, π/2], x ∈ (−5, 5).

Let ψ and φ be respectively the real part and imaginary part of the solution u of problem

(4.4). We intend to approximate the solution u(t, x) by a neural network NΘ(t, x) with

two inputs (t, x) and two outputs which approximate ψ(t, x) and φ(t, x)), respectively.

Let {xi0, u
i
0}

N0

i=1
denote the training data to enforce the initial condition at time t = 0,

that is, ui0 = sech(xi0), {t
i
b}

Nb

i=1
the collocation points on the boundary x = −5 and x = 5

to enforce the periodic boundary conditions, and {tif , x
i
f}

Nf

i=1
the collocation points in

(0, π/2] × (−5, 5). These collocation points were generated by the Latin hypercube

sampling method. We then learn the neural network NΘ(t, x) by model (2.8) with

Loss0 :=
1

N0

N0
∑

i=1

∣

∣NΘ

(

0, xi0
)

− ui0
∣

∣

2
,

Lossb :=
1

Nb

Nb
∑

i=1

(

∣

∣NΘ

(

tib,−5
)

−NΘ

(

tib, 5
)∣

∣

2
+

∣

∣

∣

∣

∂NΘ

∂x

(

tib,−5
)

−
∂NΘ

∂x

(

tib, 5
)

∣

∣

∣

∣

2
)

.

A reference solution of problem (4.4) is solved by a Fourier spectral method using

the Chebfun package [18]. Specifically, we obtain the reference solution by using 256
Fourier modes for space discretization and an explicit fourth-order Runge-Kutta method

(RK4) with time-step ∆t := (π/2) × 10−6 for time discretization. For more details of

the discretization of Schrödinger equation (4.4), the readers are referred to [35].

For both the standard network and the sparse network, we used the network ar-

chitecture [2, 50, 50, 50, 50, 50, 50, 2]. Both the networks were trained by the Adam al-

gorithm with 30, 000 epochs. The initial learning rate is set to 0.001. The training set

is composed of N0 := 50 data points on u(0, x), Nb := 50 sample points for enforcing

the periodic boundaries, and Nf := 20, 000 sample points inside the solution domain of

Eq. (4.4). The test set is composed of grid points (0, π/2]× [−5, 5] uniformly discretized

with step size π/400 on the t-direction and step size 10/256 on the x-direction.

Numerical results for this example are listed in Table 7. As we can see, the sparse

network has a smaller prediction error than the standard network. When regularization

parameters α = [0, 0, 0, 0, 5e-7, 1e-6, 1e-5], the relative L2 error is smaller than the PINN

method. When regularization parameters α are taken as [9e-7, 5e-7, 6e-7, 7e-7, 8e-7,
1e-6, 1e-5], the sparsity of weight matrices are [22.0%, 50.5%, 51.9%, 50.6%, 50.0%,
64.5%, 66.0%]. In other words, after removing more than half of the neural network

connections, the sparse neural network still has a slightly higher prediction accuracy.

The predicted solution of the SDNN is illustrated in Fig. 10. These numerical results

clearly confirm that the proposed SDNN model outperforms the standard DNN model.
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Table 7: The Schrödinger equation. The neural network of 7 layers with network architecture [2, 50, 50,
50, 50, 50, 50, 2].

Algorithms
Parameters α Relative

& sparsity of weight matrices L2 error

PINN
No regularization

1.41e-3
[0.0%, 0.3%, 0.4%, 0.6%, 0.4%, 0.68%, 0.0%]

SDNN α = [0, 0, 0, 0, 5e-7, 1e-6, 1e-5]
8.15e-4

(β = 10) [0.7%, 0.3%, 0.4%, 50.6%, 38.0%, 74.7%, 77.0%]

SDNN α = [9e-7, 5e-7, 6e-7, 7e-7, 8e-7, 1e-6, 1e-5]
1.38e-3

(β = 10) [22.0%, 50.5%, 51.9%, 50.6%, 50.0%, 64.5%, 66.0%]

Figure 10: The Schrödinger equation. Top: The training data and predicted solution |u(t, x)| by SDNN
with network architecture [2, 50, 50, 50, 50, 50, 50, 2], regularization parameters α := [9e-7, 5e-7,
6e-7, 7e-7, 8e-7, 1e-6, 1e-5], and β := 10. Bottom: Predicted solutions at time t := 0.55, t := 0.79,
and t := 1.02.

5. Conclusion

A sparse network requires less memory and computing time to operate it and thus

it is desirable. We have developed a sparse deep neural network model by employing

a sparse regularization with multiple parameters for solving nonlinear partial differen-

tial equations. Noticing that neural networks are layer-by-layer composite structures

with an intrinsic multi-scale structure, we observe that the network weights of differ-

ent layers have different weights of importance. Aiming at generating a sparse network

structure while maintaining approximation accuracy, we proposed to impose different
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regularization parameters on different layers of the neural network. We first tested

the proposed sparse regularization model in approximation of singular functions, and

discovered that the proposed model can not only generate an adaptive approximation

of functions having singularities but also have better generalization than the standard

network. We then developed a sparse deep neural network model for solving nonlinear

partial differential equations whose solutions may have certain singularities. Numerical

examples show that the proposed model can remove redundant network connections

leading to sparse networks and has better generalization ability. Theoretical investiga-

tion will be performed in a follow-up paper.
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