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Abstract. Multicomponent models based on the Lattice Boltzmann Method (LBM)
have clear advantages with respect to other approaches, such as good parallel per-
formances and scalability and the automatic resolution of breakup and coalescence
events. Multicomponent flow simulations are useful for a wide range of applications,
yet many multicomponent models for LBM are limited in their numerical stability and
therefore do not allow exploration of physically relevant low viscosity regimes. Here
we perform a quantitative study and validations, varying parameters such as viscosity,
droplet radius, domain size and acceleration for stationary and translating droplet sim-
ulations for the color-gradient method with central moments (CG-CM) formulation, as
this method promises increased numerical stability with respect to the non-CM formu-
lation. We focus on numerical stability and on the effect of decreasing grid-spacing,
i.e. increasing resolution, in the extremely low viscosity regime for stationary droplet
simulations. The effects of small- and large-scale anisotropy, due to grid-spacing and
domain-size, respectively, are investigated for a stationary droplet. The effects on nu-
merical stability of applying a uniform acceleration in one direction on the domain,
i.e. on both the droplet and the ambient, is explored into the low viscosity regime, to
probe the numerical stability of the method under dynamical conditions.
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1 Introduction

The numerical modeling of multiphase/multicomponent fluids is still a challenge and
the Lattice Boltzmann Method (LBM) has shown great potential in this field [1]. Sev-
eral models for simulating multiphase/multicomponent flows using the LBM have been
proposed over the last three decades, including the color gradient (CG) model [2], the
pseudopotential model [3], the free-energy model [4] and the mean-field model [5]. In
the current work we focus on exploring the capabilities of a recent formulation of the
CG model, i.e. the central moments formulation as proposed by [6], which promises in-
creased numerical stability while retaining physical accuracy of the standard CG model
formulation [7]. To explore the limits of this formulation in terms of accessible parameter
range and the strength of the spurious currents produced around a droplet-ambient in-
terface, we simulate firstly a quiescent droplet in a cubic domain with periodic boundary
conditions. Although the system is stationary, spurious currents will arise due to dis-
cretization errors, concentrated mainly near to the droplet-ambient interface [8,9]. There-
fore the simulated system is not perfectly static, as it should, despite the droplet being
stationary. The kinetic energy, Ekin, is non-zero due to the presence of spurious currents,
which we measure for a variety of parameters, such as material properties, droplet radius
and simulation domain size.

Firstly, the viscosities of the droplet and surrounding ambient are pushed down to
the point where physical accuracy is severely compromised, in order to find the limits to
which the viscosity parameters can be pushed. We also consider the effect of small-scale
anisotropy on the total kinetic energy Ekin, caused by the finite sized spacing between
grid-points, ∆x, adopted for simulations in LBM. By running several simulations with
increasing droplet radius, R = 8, 12, 16, we can quantify the effect of this small-scale
anisotropy, which is essentially a resolution effect. Furthermore we investigate the effect
of large-scale anisotropy, caused by using periodic boundary conditions. In this setup the
droplet is influenced by itself, but not equally in every direction, e.g. across the diagonal
of the simulation domain, the distance of the droplet to itself is greater than across the
horizontal. To quantify this effect we increase domain sidelength L, while keeping R
constant, thereby increasing the distance from the droplet to the surrounding boundaries
to investigate the influence of L on Ekin.

Finally we consider the case of a translating droplet put in motion by accelerating the
entire domain, i.e. droplet and ambient, in one direction. This is done for varying densi-
ties, viscosities and acceleration values. Through this procedure we quantify a stable and
unstable regime for a droplet in a moving frame of reference, thereby testing Galilean
invariance of the system.

2 Numerical method: Color-gradient with central moments

formulation
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The color-gradient (CG) lattice Boltzmann method (LBM) multicomponent model
with enhanced equilibria and a central moments (CM) formulation, as in [6], is used
for all simulations. The CM formulation offers additional stability and a wider accessible
parameter range [6, 7] when compared to non-CM implementations. We use a D3Q27
stencil for all simulations, for further increased stability and accuracy. Within the CG
framework, to simulate multiphase or immiscible multicomponent flows, a particle dis-
tribution function is evolved according to the lattice Boltzmann equation for each of the
components:

fi(~x+~c∆t,t+∆t)= fi(~x,t)+Ωi( fi(~x,t))∆t (2.1)

with fi(~x,t) being the discrete particle distribution functions at lattice site ~x at time t.
From now on we will use the standard convention that ∆t= 1. As usual, the density of
the fluid is recovered by summing the particle distributions as

ρ=∑
i

fi. (2.2)

The velocity ~u = (ux,uy,uz) is evaluated as the first order moment of the distribution
according to the relation

ρ~u=∑
i

fi~ci. (2.3)

The following discrete velocities~ci =(|cix〉,|ciy〉,|ciz〉) are used:

|cix〉=[0,1,−1,0,0,0,0,1,1,−1,−1,1,−1,1,−1,0,0,0,0,1,1,1,−1,1,−1,−1,−1]⊺ ,

|ciy〉=[0,0,0,1,−1,0,0,1,−1,1,−1,0,0,0,0,1,1,−1,−1,1,1,−1,1,−1,−1,1,−1]⊺ , (2.4)

|ciz〉=[0,0,0,0,0,1,−1,0,0,0,0,1,1,−1,−1,1,−1,1,−1,1,−1,1,1,−1,1,−1,−1]⊺ ,

with the notation |•〉 indicating a column vector. The superscript ⊺ denotes the transpose
operator. The Bhatnagar-Gross-Krook (BGK) collision operator implements relaxation
towards the equilibrium and has the form

Ωi( fi(~x,t))=−ω[ fi(~x,t)− f
eq
i (ρ(~x,t),~u(~x,t))] (2.5)

with ω being the rate of relaxation towards the discrete local equilibrium, f
eq
i , and defined

as ω=(ν/c2
s +1/2)−1, with kinematic viscosity ν and lattice speed of sound cs. The local

equilibrium f
eq
i is calculated as:

f
eq
i (ρ(~x,t),~u(~x,t))=ρwi

(

1+
3

c2
~ci ·~u+

9

2c4
(~ci ·~u)2− 3

2c2
(~u)2

)

. (2.6)

The weights wi used in our implementation are w0 =8/27, w1,···,6=2/27, w7,···,18=1/54,
w19,···,26 = 1/216. In addition to the collision step, the algorithm includes the streaming
step:

fi(~x+~c∆t,t+∆t)= f ∗i (~x,t). (2.7)
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Note that the above equations are used for single-phase simulations, but for the multi-
phase/multicomponent simulations presented in this work we add the CG model. The
central moments formulation requires a more complex calculation for the equilibrium
population f

eq
i for each discrete velocity i [7]. Details on these calculations, derivations

and a more in-depth treatment of the implementation can be found in [6] where the au-
thors provide a Matlab script to assist in calculating all required terms for implementing
the model. The core concept of the CM formulation is to shift lattice directions by the
local fluid velocity, whereby we can define ci =[|cix〉,|ciy〉,|ciz〉] as

|cix〉= |cix−ux〉, |ciy〉= |ciy−uy〉, |ciz〉= |ciz−uz〉. (2.8)

For completeness we list here the steps required in the implementation of the single-
phase CM formulation.

1. Computation of macroscopic variables by Eq. (2.3).

2. Evaluation of postcollision central moments k∗i as given by Eq. (A.1).

3. Computation of postcollision raw moments, |r∗i 〉=[r∗0 ,··· ,r∗i ,··· ,r∗26]
⊺, from the post-

collision central moments according to, |r∗i 〉=N−1|k∗i 〉, where N=TM−1, with the
transformation matrix T of the form given by Eq. (A.3) and M given by Eq. (A.4).

4. Reconstruction of postcollision populations as | f ∗i 〉=M−1|r∗i 〉, resulting in Eq. (A.5).

5. Perform the streaming step according to Eq. (2.1).

Additional variables should be calculated when implementing the multi-component
color-gradient model, such as the color-field ρN , speed of sound in the red (more dense)
and blue (less dense) fluids, αR and αB and coefficients Ar and Ab used for the calcula-
tion of surface tension. In effect, the CG model can be included in the standard way and
for more specifics on this, the reader is referred to Appendix D in [7] which outlines the
required steps explicitly. For the inclusion of enhanced equilibrium terms the reader is
further referred to [10] and [11]. The Matlab script provided in the supplementary ma-
terial of [6] can then be modified to include those enhanced equilibrium terms, resulting
in altered versions of the post collision central moments, k∗i , and post collision raw mo-
ments, r∗i , from those shown above. The altered versions are omitted here due to their
cumbersome and highly complex form. Note that the discrete velocities used in this work
differ from the ones reported in [6] and [7] resulting in a different set of equations for the
postcollision populations in this work, i.e. Eq. (A.5), compared to those reported in [6].

In the color-gradient nomenclature the denser fluid is referred to as the red fluid and
the less dense fluid as the blue fluid. The densities are therefore denoted as ρR and ρB,
respectively. These densities may fluctuate depending on pressure and to that end we
further define the constant initial densities (used at the start of a simulation) as ρ0

R and ρ0
B.
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To locate the interface in multicomponent simulations we first define the order parameter,
or color-field, as

ρ
N =

(

ρR

ρ0
R

− ρB

ρ0
B

)/(

ρR

ρ0
R

+
ρB

ρ0
B

)

. (2.9)

When, e.g. placing a droplet of density ρR in an ambient fluid of density ρB, we consider
its interface position to be at ρN =0. As an indication of computational performance we
performed a side-by-side static droplet simulation using the standard CG implementa-
tion (without central moments formulation) and the CG-CM implementation. The total
runtime is 114.29 s for CG and 125.71 s for CG-CM. The CG-CM model is therefore 10%
slower. It should be noted that optimizations to the implementation of CG-CM are pos-
sible (code-wise), which would close the performance gap.

3 Simulations

In the following two sections, we present the static droplet simulations mentioned in
the introduction for: (1) a unity density ratio ρR/ρB = 1 and for (2) a large density ratio
ρR/ρB = 1000. These are followed by two sections on the translating droplet simulation
cases, again for a unity density ratio ρR/ρB = 1 and a large density ratio ρR/ρB = 1000.
One of the intended applications, explored in future work, is to use the CG-CM model
for inkjetting simulations, using approximately the same parameters as given in Table 1,
Set 5. To this end the viscosity ratio is kept constant at νR/νB =1/2, which is realistic for
the viscosity of ink, νR, and air, νB.

3.1 Static droplet

A stationary droplet with radius R=8, 12, 16 is initialized in the center of a cubic domain
with sides of length L=64, 96, 128. Periodic boundary conditions are applied on the do-
main surfaces. The droplet has a density of ρR=1, 1000 (two cases are considered) and the
surrounding ambient fluid has density ρB =1. Kinematic viscosities νR and νB of respec-
tively the droplet and ambient, are determined by their respective relaxation times which
we set to the values τR =0.51, 0.501, 0.5001, 0.50001 and τB =0.52, 0.502, 0.5002, 0.50002.
The associated viscosity is calculated as ν = c2

s (τ−0.5), with the lattice speed of sound
cs = 1/

√
3. For the parameter scans we perform a total of 72 runs for the static droplet

simulations, using the parameter sets shown in Table 1 for each combination of R and L.

3.1.1 Unity density ratio ρR/ρB =1

We measure the total kinetic energy of the system, Ekin, which in this stationary system is
due to the presence of spurious currents. These currents mostly concentrate around the
droplet-ambient interface, but are expected to reduce in severity with lower curvature,
i.e. larger drop radius R. To be able to compare results we therefore normalize Ekin by
the droplet surface area A=4πR2. Starting with a unity density ratio, ρR/ρB =1, we find
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Table 1: Input parameters for the static droplet simulations parameter scans: red and blue fluid density ρR and
ρB, relaxation times τR and τB, kinematic viscosities νR and νB, surface tension σ, radius R and cubic domain
side-length L in lattice units.

Set ρR ρB τR τB νR νB σ R L

1 1.0 1.0 0.51 0.52 1/3·10−3 2/3·10−3 1·10−4 8, 12, 16 64, 96, 128

2 1.0 1.0 0.501 0.502 1/3·10−4 2/3·10−4 1·10−4 8, 12, 16 64, 96, 128

3 1.0 1.0 0.5001 0.5002 1/3·10−5 2/3·10−5 1·10−4 8, 12, 16 64, 96, 128

4 1.0 1.0 0.50001 0.50002 1/3·10−6 2/3·10−6 1·10−4 8, 12, 16 64, 96, 128

5 1000 1.0 0.51 0.52 1/3·10−3 2/3·10−3 1·10−4 8, 12, 16 64, 96, 128

6 1000 1.0 0.501 0.502 1/3·10−4 2/3·10−4 1·10−4 8, 12, 16 64, 96, 128

7 1000 1.0 0.5001 0.5002 1/3·10−5 2/3·10−5 1·10−4 8, 12, 16 64, 96, 128

8 1000 1.0 0.50001 0.50002 1/3·10−6 2/3·10−6 1·10−4 8, 12, 16 64, 96, 128

that in every case considered the normalized kinetic energy inside the domain, Ekin/A, is
monotonically increasing, see Fig. 1. It is clear from these results that increasing viscosity
results in significantly reduced spurious currents. There is also a slight dependence of
Ekin/A on R, where the smallest drop radius R = 8 results in the lowest total kinetic
energy and R = 16 the highest, with the exception of the lowest viscosity case, where
R=12 results in the most kinetic energy content.

A difference in equilibration time is also noticeable, as the higher viscosity simula-
tions attain a steady state sooner than the lower viscosity simulations. To further inves-
tigate this and quantify the dependence of equilibration time on viscosity, we fit the data
presented in Fig. 1 according to the function f (t)= a·(1−exp(−t/τs)). The result of sev-
eral fits are shown in Fig. 2. We consider τs to be the characteristic equilibration timescale
for this system. From the results shown in Fig. 3 we find that the characteristic kinetic
energy equilibration timescale τs is strongly affected by viscosity values, marginally af-
fected by R and the domain size effect is negligible. For the highest viscosity case, τs is
two orders of magnitude larger than for the lowest viscosity case.

We understand that the buildup process of the spurious currents is associated with a
timescale analogous to the one present in dissipative phenomena, where the timescale is
proportional to length2/viscosity. This corresponds for our setup to τs ∝ R2/νR and such
dependency is shown in the inset of Fig. 3 by plotting τs as a function of R for the highest
viscosity value considered, νR =1/3·10−3.

3.1.2 Large density ratio ρR/ρB =1000

We now consider a similar, but more challenging setup with density ratio ρR/ρB =1000,
which is relevant for e.g. simulating water and air or other liquid and gas systems. Once
again we measure Ekin/A for the different sets of simulations and the results are reported
in Fig. 4. Two different regimes are clearly visible. For the two sets of simulations with
lower viscosities, Ekin/A is increasing with time. The opposite is the case for the two sets
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Figure 1: The kinetic energy integrated over the domain and normalized by the droplet surface area Ekin/A
is measured as a function of time t. Here droplet density ρR = 1 and domain side-length L= 64. Simulation
parameters corresponding to Set 1 through Set 4 are reported in Table 1. A clear trend is visible as lowering
the viscosities leads to higher Ekin, which is a measure of spurious currents. Furthermore, the equilibration time
before a steady state is attained is increased as viscosities are lowered.
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Figure 2: Fit function f (t)=a·(1−exp(−t/τs)) applied to data from simulations with R=16. The fit function
is used to obtain a characteristic equilibration timescale, τs, of Ekin/A. The inset shows exp(−t/τs) as a
function of time t, where the crossing with the grey line indicates the value of τs at which the kinetic energy
has decreased by a factor 1/e. Values of τs for all simulations are reported in Fig. 3.
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Figure 3: Characteristic kinetic energy equilibration timescale τs as a function of kinematic viscosity νR =
c2

s (τR−0.5) obtained using the fit function f (t) = a·(1−exp(−t/τs)) applied on the data shown in Fig. 1.
A clear influence of νR on τs is shown, where a higher νR leads to significantly faster equilibration times, as
the equilibration timescale decreases as approximately τs ∝ ν

−1
R , indicated by the red dashed line, for the lower

viscosity values in particular. A smaller droplet radius R leads to slightly faster equilibration times as indicated
by the decreased τs value. The inset shows τs as a function of R for the cases with parameter Set 4 (and
L=128), i.e. with viscosity νR =1/3·10−3, its slope indicating τs ∝ R2/νR.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  20000  40000  60000  80000  100000

E
ki

n 
/ A

t

R = 8, Set 5
R = 8, Set 6
R = 8, Set 7
R = 8, Set 8

R = 12, Set 5
R = 12, Set 6
R = 12, Set 7
R = 12, Set 8
R = 16, Set 5
R = 16, Set 6
R = 16, Set 7
R = 16, Set 8

Figure 4: The kinetic energy integrated over the domain and normalized by the droplet surface area Ekin/A is
measured as a function of time t. Here droplet density ρR = 1000 and domain side-length L= 64. Simulation
parameters corresponding to Set 4 through Set 8 are reported in Table 1. A clear trend is visible where lowering
the viscosities leads to higher Ekin, which is a measure of spurious currents. Furthermore, for the lower viscosity
cases we see an increase in Ekin after initialization (these correspond to the unstable droplets pictured in Fig. 5),
whereas we see a decrease in the higher viscosity (stable) cases.
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Figure 5: Visualizations showing the isosurface of the droplet-ambient interface and a cross-sectional (colored)
area of the velocity field. Shown here are simulations with domain side-length L=64, droplet radius R=12 and
droplet density ρR = 1000 at times t= 2000, 10000, 20000, 60000, 100000. Viscosity values differ per column
and can be found in Table 1, where the leftmost column has the highest viscosity values and is most stable,
and the rightmost column has the lowest viscosity values and is least stable.

with higher viscosities, which show decreasing Ekin/A over time. Once again the lower
the viscosity, the lower Ekin/A values we find. Visualizations of these simulations show
that in the cases of increasing kinetic energy the droplets are in fact unstable, see Fig. 5.
Note however that none of the simulations were numerically unstable.
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Figure 6: Characteristic kinetic energy equilibration timescale τs as a function of kinematic viscosity νR =
c2

s (τR−0.5) obtained using fit functions f (t) = a·(1−exp(−t/τs)) for parameter Set 7 and 8, and g(t) =
a·(1−exp(−t/τs))+c for Set 5 and 6, on the data shown in Fig. 4. A clear influence of νR on τs is seen for
the highest two viscosity values (Set 5 and 6, filled symbols), where a higher νR leads to significantly faster
equilibration times, as the equilibration timescale decreases according to τs ∝ ν

−1
R . A smaller droplet radius R

leads to slightly faster equilibration times as indicated by the decreased τs value. For the lower two viscosity
simulations (Set 7 and 8, hollow symbols) there is no clear trend or difference between the two. This can be
explained by the chaotic nature of these systems, as illustrated in Fig. 5.

Also for this case with density ratio ρR/ρB = 1000 we investigate the equilibration
time, in a similar manner as before using the fit function f (t) = a·(1−exp(−t/τs)) for
parameter Set 7 and 8. For parameter Set 5 and 6 we use a slightly modified fit function,
since Ekin/A decreases over time for these parameters, as opposed to increasing. The
modified function g(t) = a·(1−exp(−t/τs))+c gives a closer fit for the data sets corre-
sponding to parameter Set 5 and 6.

The characteristic kinetic energy equilibration timescale values are obtained through
the fitting procedure and are reported in Fig. 6. We find that equilibration time is strongly
affected by viscosity values and by R. The effect of domain size is more pronounced for
the two lowest viscosity cases, when compared to the unity density simulations. A higher
νR leads to significantly faster equilibration times, as the equilibration timescale decreases
according to τs ∝ ν

−1
R . For Set 7 and 8, i.e. the two lowest viscosity simulations, there is

no clear trend or difference between the two in terms of τs. This can be explained by the
unstable chaotic nature of these systems, as illustrated in Fig. 5.

3.2 Translating droplet

When investigating physical phenomena it is rare that droplets stay at rest completely.
Therefore we now consider the stability of the numerical scheme for a droplet moving
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along with the ambient, being accelerated at the same rate. We once again look at the
cases where ρR/ρB = 1, 1000 and vary the acceleration a= 10−5, 10−6, 10−7, 10−8, 10−9

and viscosity values νR=1/3·10−3, 1/3·10−4 and νB =2/3·10−3, 2/3·10−4 to get a better
understanding of the limits to the numerical stability of this scheme when the droplet
along with the ambient is accelerated. For the following simulations L and R are kept
constant at L=64 and R=12.

3.2.1 Unity density ratio ρR/ρB =1

We first consider the unity density ratio, ρR/ρB =1, case. As was done for the stationary
cases, we integrate Ekin over the entire domain. We then subtract the kinetic energy due to
the applied acceleration integrated over the whole domain Ekin,a=

∫

D 1/2mv2. We hereby
acquire the kinetic energy only due to spurious currents, Ekin−Ekin,a. The results shown
in Fig. 7 for the case with νR = 1/3·10−3 show that the lower the acceleration, the less
spurious currents one can expect. We also find that the limit of numerical stability is
reached early for the case where a= 10−5, which becomes numerically unstable around
time t=40000, at which point the velocity v=at≈0.4. All other simulations are stable up to
the final simulation time of t=100000. We see that kinetic energy related to the spurious
currents increases monotonically with a t2 dependency for all cases since Ekin−Ekin,a ∝

a2t2, as illustrated by the trendline plotted in Fig. 7 and Fig. 8.
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Figure 7: Total excess kinetic energy Ekin−Ekin,a, i.e. the total kinetic energy Ekin minus the kinetic energy
due to domain acceleration Ekin,a, as a function of time t. Parameters used are L=64, R=12, νR =1/3·10−3

and νB = 2/3·10−3. Numerical instability occurs for acceleration value a= 10−5 around time t= 40000. In all
cases Ekin−Ekin,a ∝ t2, apart from an initial slower increase for the lower acceleration cases. Lower acceleration
leads to significantly lower spurious currents as measured by the reduction in Ekin−Ekin,a.
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Figure 8: Total excess kinetic energy Ekin−Ekin,a, i.e. the total kinetic energy Ekin minus the kinetic energy
due to domain acceleration Ekin,a, as a function of time t. Parameters used are L=64, R=12, ρR =1, ρB =1,
νR = 1/3·10−4 and νB = 2/3·10−4. Numerical instability occurs for acceleration value a= 10−5 around time
t=20000. For most cases Ekin−Ekin,a∝t2, apart from an slower increase for the lower acceleration cases. Lower
acceleration leads to significantly lower spurious currents as measured by the reduction in Ekin−Ekin,a.

Keeping everything equal, but reducing the viscosity by setting νR = 1/3·10−4 we
retrieve the results shown in Fig. 8. We note that nearly identical Ekin−Ekin,a is reached at
the end of the simulation for nearly all cases. Differences are that the case with a=10−5

shows numerical instability earlier at time t=20000 and the case with a=10−9 has a faster
initial rise in Ekin.

3.2.2 Large density ratio ρR/ρB =1000

We now consider the high density ratio case, with ρR/ρB = 1000. Results are shown in
Fig. 9 and Fig. 10 for νR=1/3·10−3 and νR=1/3·10−4 respectively. In general, we see sig-
nificantly reduced numerical stability compared to the unity density case, as all simula-
tions with a≤10−7 show numerical instability before t=100000 for the high viscosity case,
see Fig. 9. Specifically, at νR=1/3·10−3 with a=10−5, 10−6, 10−7 numerical instability oc-
curs at times t=3300, 16000, 74900, which correspond to velocities v≈0.033, 0.016, 0.007
respectively. Similar behavior is seen for the lower viscosity case, Fig. 10, however, nu-
merical instability does occur faster for the lower viscosity case, i.e. the simulations crash
earlier. Specifically, at νR = 1/3·10−4 with a= 10−5, 10−6, 10−7 numerical instability oc-
curs at times t=1800, 11300, 30000, which correspond to velocities v≈0.018, 0.011, 0.003
respectively. Furthermore the kinetic energy does not increase monotonically as was the
case for a unity density ratio. We see an initial decrease, followed by a gradual increase
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Figure 9: Total excess kinetic energy Ekin−Ekin,a, i.e. the total kinetic energy Ekin minus the kinetic energy
due to domain acceleration Ekin,a, as a function of time t. Parameters used are L = 64, R = 12, ρR = 1000,
ρB =1, νR =1/3·10−3 and νB =2/3·10−3. Numerical instability occurs for acceleration value a≤10−7. In all
cases Ekin−Ekin,a∝t2, after an initial decrease of approximately Ekin−Ekin,a∝t−1.5. The decrease in Ekin−Ekin,a
continues for a longer period of time as a is decreased. Lower acceleration leads to significantly lower spurious
currents as measured by the reduction in Ekin−Ekin,a.
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Figure 10: Total excess kinetic energy Ekin−Ekin,a, i.e. the total kinetic energy Ekin minus the kinetic energy
due to domain acceleration Ekin,a, as a function of time t. Parameters used are L = 64, R = 12, ρR = 1000,
ρB=1, νR=1/3·10−4 and νB=2/3·10−4. Numerical instability occurs for acceleration value a≤10−7 and occurs
earlier than for the higher viscosity case. In all cases Ekin−Ekin,a ∝ t2, after an initial decrease of approximately
Ekin−Ekin,a ∝ t−1. The decrease in Ekin−Ekin,a continues for a longer period of time as a is decreased. Lower
acceleration leads to significantly lower spurious currents as measured by the reduction in Ekin−Ekin,a.
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of Ekin−Ekin,a. Finally we note that Ekin−Ekin,a is higher for all numerically stable simu-
lations compared to the equivalent ρR/ρB =1 cases.

Comparing the two viscosity value cases, νR =1/3·10−3 and νR =1/3·10−4, we note
that nearly identical Ekin−Ekin,a is reached at the end of the simulation for each case with
the same value of a. Differences are that the cases with a≤10−7 show numerical instability
slightly earlier for the lower viscosity cases.

4 Conclusions

Numerically stable multicomponent simulations at extremely low viscosity values are
possible using the color-gradient method central moments (CG-CM) model, as shown
by the cases presented in this work. All stationary droplet simulations presented were
numerically stable, but in the extreme cases of high density ratio, ρR/ρB=1000 combined
with low viscosities, νR =1/3·10−5, 1/3·10−6, the droplet interface becomes completely
deformed due to the presence of strong spurious currents leading to unphysical results.
In general higher viscosity values lead to faster equilibration times and lower kinetic
energy Ekin due to spurious currents. Increased droplet radius R increases total Ekin due
to increased surface area around which spurious currents occur. Normalizing Ekin by
the surface area of the droplet A shows that even after normalization the lowest Ekin/A
occurs with the smallest R, all other parameters kept equal. Increasing domain size length
L has a negligible effect on equilibration time.

Adding movement to the ambient and droplet by applying an acceleration to the en-
tire domain did show cases of numerical instability, which was not seen for the stationary
droplet simulations. For the case with ρR/ρB = 1, νR = 1/3·10−3, 1/3·10−4 and a= 10−5

the simulation was unstable. Increasing the density ratio to ρR/ρB =1000 made the sys-
tem more sensitive to numerical instability, evidenced by the fact that several simulations
using a≤10−7 were unstable. We can conclude that dynamic systems are more suscepti-
ble to numerical instability than stationary systems and higher density ratios and lower
viscosities negatively impact stability. The work presented gives a clear indication of the
numerical stability limits using CG-CM in the low viscosity regime. This is especially rel-
evant for simulating e.g. water-air type systems, which require low kinematic viscosity
parameters and high density ratio ρR/ρB ≈1000.

In future work we will show that the CG-CM model is suitable for inkjetting simula-
tions on a micrometer scale, which is an example of an industrial application involving a
high density ratio ρR/ρB =1000. It is possible to perform accurate inkjetting simulations
using the model with parameters approximating those of Set 5 from Table 1. Specifi-
cally, for the jetting simulations we use the following parameters in SI units: density of
ink ρR =1080kg/m3, density of air ρB =1.08kg/m3, viscosity of ink νR =0.83·10−5m2/s,
viscosity of air νB = 1.67·10−5m2/s, surface tension σ= 2.8·10−2 N/m and approximate
generated droplet radius R=15µm. As predicted by the current work, the simulation is
numerically stable and accurate for these parameters.
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A Appendix

Here we provide additional equations used for the implementation of the CM formula-
tion as described in section 2, where the five implementation steps are listed, which we
repeat here for convenience:

1. Computation of macroscopic variables by Eq. (2.3).

2. Evaluation of postcollision central moments k∗i as given by Eq. (A.1).

3. Computation of postcollision raw moments, |r∗i 〉=[r∗0 ,··· ,r∗i ,··· ,r∗26]
⊺, from the post-

collision central moments according to, |r∗i 〉=N−1|k∗i 〉, where N=TM−1, with the
transformation matrix T of the form given by Eq. (A.3) and M given by Eq. (A.4).

4. Reconstruction of postcollision populations as | f ∗i 〉=M−1|r∗i 〉, resulting in Eq. (A.5).

5. Perform the streaming step according to Eq. (2.1).

For the second implementation step the following postcollision central moments k∗i
are used:

k∗0 =ρ,

k∗4 =(1−ω)k4,

k∗5 =(1−ω)k5,

k∗6 =(1−ω)k6,

k∗7 =(1−ω)k7,

k∗8 =(1−ω)k8, (A.1)

k∗9 =3ρc2
s ,

k∗17 =ρc2
s ,

k∗18 =ρc4
s ,

k∗26 =ρc6
s ,
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where k∗1,···,3 = k∗10,···,16 = k∗19,···,25=0. The five precollision central moments are calculated
as

k4=∑
i

ficixciy, k5 =∑
i

ficixciz, k6 =∑
i

ficiyciz,

k7=∑
i

fi(c
2
ix−c2

iy), k8 =∑
i

fi(c
2
ix−c2

iz). (A.2)

For the third implementation step the postcollision central moments are calculated as to
|r∗i 〉=N−1|k∗i 〉, where N=TM−1, with the matrices T and M being

T=NM=
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M=



















































































































〈|ci|0|
〈cix|
〈ciy|
〈ciz|

〈cixciy|
〈cixciz|
〈ciyciz|
〈c2

ix−c2
iy|

〈c2
ix−c2

iz|
〈c2

ix+c2
iy+c2

iz|
〈cixc2

iy+cixc2
iz|

〈c2
ixciy+ciyc2

iz|
〈c2

ixciz+c2
iyciz|

〈cixc2
iy−cixc2

iz|
〈c2

ixciy−ciyc2
iz|

〈c2
ixciz−c2

iyciz|
〈cixciyciz|

〈c2
ixc2

iy+c2
ixc2

iz+c2
iyc2

iz|
〈c2

ixc2
iy+c2

ixc2
iz−c2

iyc2
iz|

〈c2
ixc2

iy−c2
ixc2

iz|
〈c2

ixciyciz|
〈cixc2

iyciz|
〈cixciyc2

iz|
〈cixc2

iyc2
iz|

〈c2
ixciyc2

iz|
〈c2

ixc2
iyciz|

〈c2
ixc2

iyc2
iz|



















































































































. (A.4)

For the fourth implementation step the postcollision populations are calculated as | f ∗i 〉=
M−1|r∗i 〉, resulting in:

f ∗0 = r∗0−r∗9+r∗17−r∗26,

f ∗1 =(r∗7+r∗8+r∗9)/6−(r∗17+r∗18)/4+(r∗1+r∗23+r∗26−r∗10)/2,

f ∗2 =(r∗7+r∗8+r∗9)/6−(r∗17+r∗18)/4+(−r∗1−r∗23+r∗26+r∗10)/2,

f ∗3 =(r∗18−3r∗17)/8−r∗7 /3−r∗19/4+(r∗8+r∗9)/6+(r∗2+r∗24+r∗26−r∗11)/2,

f ∗4 =(r∗18−3r∗17)/8−r∗7 /3−r∗19/4+(r∗8+r∗9)/6+(r∗11+r∗26−r∗2−r∗24)/2,

f ∗5 =(r∗18−3r∗17)/8−r∗8 /3+r∗19/4+(r∗7+r∗9)/6+(r∗3+r∗25+r∗26−r∗12)/2,
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f ∗6 =(r∗18−3r∗17)/8−r∗8/3+r∗19/4+(r∗7+r∗9)/6−(r∗3+r∗25−r∗12−r∗26)/2,

f ∗7 =(r∗17+r∗18)/16−(r∗22+r∗23+r∗24+r∗26−r∗4)/4+(r∗10+r∗11+r∗13+r∗14+r∗19)/8,

f ∗8 =(r∗17+r∗18)/16+(r∗10+r∗13+r∗19−r∗11−r∗14)/8−(r∗4+r∗23+r∗26−r∗22−r∗24)/4,

f ∗9 =(r∗17+r∗18)/16+(r∗11+r∗14+r∗19−r∗10−r∗13)/8−(r∗4+r∗24+r∗26−r∗22−r∗23)/4,

f ∗10 =(r∗17+r∗18)/16+(r∗4 +r∗23+r∗24−r∗22−r∗26)/4−(r∗10+r∗11+r∗13+r∗14−r∗19)/8,

f ∗11 =(r∗17+r∗18)/16+(r∗10+r∗12+r∗15−r∗13−r∗19)/8−(r∗21+r∗23+r∗25+r∗26−r∗5)/4,

f ∗12 =(r∗17+r∗18)/16+(r∗12+r∗13+r∗15−r∗10−r∗19)/8−(r∗5+r∗25+r∗26−r∗21−r∗23)/4,

f ∗13 =(r∗17+r∗18)/16−(r∗5 +r∗23+r∗26−r∗21−r∗25)/4−(r∗12+r∗13+r∗15+r∗19−r∗10)/8, (A.5)

f ∗14 =(r∗17+r∗18)/16+(r∗5 +r∗23+r∗25−r∗21−r∗26)/4−(r∗10+r∗12+r∗15+r∗19−r∗13)/8,

f ∗15 =(r∗11+r∗12+r∗17−r∗14−r∗15−r∗18)/8−(r∗20+r∗24+r∗25+r∗26−r∗6)/4,

f ∗16 =(r∗11+r∗15+r∗17−r∗12−r∗14−r∗18)/8−(r∗6+r∗24+r∗26−r∗20−r∗25)/4,

f ∗17 =(r∗12+r∗14−r∗17−r∗11−r∗15−r∗18)/8−(r∗6+r∗25+r∗26−r∗20−r∗24)/4,

f ∗18 =(r∗14+r∗15+r∗17−r∗11−r∗12−r∗18)/8+(r∗6+r∗24+r∗25−r∗20−r∗26)/4,

f ∗19 =(r∗16+r∗20+r∗21+r∗22+r∗23+r∗24+r∗25+r∗26)/8,

f ∗20 =(r∗22+r∗23+r∗24+r∗26−r∗16−r∗20−r∗21−r∗25)/8,

f ∗21 =(r∗21+r∗23+r∗25+r∗26−r∗16−r∗20−r∗22−r∗24)/8,

f ∗22 =(r∗20+r∗24+r∗25+r∗26−r∗16−r∗21−r∗22−r∗23)/8,

f ∗23 =(r∗16+r∗20+r∗23+r∗26−r∗21−r∗22−r∗24−r∗25)/8,

f ∗24 =(r∗16+r∗22+r∗25+r∗26−r∗20−r∗21−r∗23−r∗24)/8,

f ∗25 =(r∗16+r∗21+r∗24+r∗26−r∗20−r∗22−r∗23−r∗25)/8,

f ∗26 =(r∗20+r∗21+r∗22+r∗26−r∗16−r∗23−r∗24−r∗25)/8.
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