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Abstract. In this paper, we establish the strong and weak boundedness of the multi-
linear maximal operator in the setting of the Choquet integral with respect to the α-
dimensional Hausdorff content. Our results cover Orobitg and Verdera’s results in [8].
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1 Introduction

The purpose of this paper is to establish the strong and weak boundedness of the multi-
linear maximal operator on the Choquet space. For m-couple locally integrable functions
( f1, · · · , fm) on Rn × · · · ×Rn, the multi(sub)linear maximal operator M is defined by

M( f1, · · · , fm)(x) := sup
Q3x

m

∏
i=1

1
|Q|

∫
Q
| fi(y)|dy, (1.1)

where the supremum is taken over all cubes Q containing x with sides parallel to the
coordinate axes. Very often it is much more convenient to work with dyadic multilinear
maximal function Md( f1, · · · , fm), which is defined by the right-hand side of (1.1), but
the supremum is taken only on the family of dyadic cubes containing x. Clearly, when
m = 1, M is the classical Hardy-Littlewood maximal operator. These maximal operators
are fundamental tools to study harmonic analysis, potential theory, and the theory of
partial differential equations (see, e.g., [3, 5]).
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For E ⊂ Rn and 0 < α ≤ n, the α-dimensional Hausdorff content of E is defined by

Hα(E) := inf
∞

∑
j=1

`(Qj)
α, (1.2)

where the infimum is taken over all coverings of E by countable families of cubes Qj
with sides parallel to the coordinate axes and `(Q) denotes the side length of the cube
Q. If we take the infimum in (1.2) only on coverings of E by dyadic squares, we can
obtain an equivalent quantity Hα

d (E) called the dyadic α-dimensional Hausdorff content.
In [8], Orobitg and Verdera used the Choquet integral with respect to the α-dimensional
Hausdorff content to extend some well-known estimates for Hardy-Littlewood maximal
opertaor. They proved the strong type inequality∫

(M f )p dHα ≤ C
∫
| f |p dHα (1.3)

for α/n < p, and the weak type inequality

Hα{x : M f (x) > t} ≤ Ct−
α
n

∫
| f | αn dHα (1.4)

for any t > 0 and p = α/n. Here, the integrals are taken in the Choquet sense, that is, the
Choquet integral of ϕ ≥ 0 with respect to a set function Λ is defined by∫

ϕ dΛ :=
∫ ∞

0
Λ{x ∈ Rn : ϕ(x) > t}dt.

When α = n, both (1.3) and (1.4) become the classical strong type inequality and weak
type inequality, respectively. It is worth mentioning that the Orobitg-Verdera result came
from their efforts to comprehend the special case p = 1 that is first proved by Adams
in [1]–a result of the H1-BMO duality theory applied to the characterization of the Riesz
capacities. In fact, the Orobitg-Verdera’s proof is a modification of arguments due to
Carleson [4] and Hormander [6]. Moreover, Tang [10] generalized the preceding results
and established the boundedness of maximal operators on the weighted Choquet space
and the Choquet-Morrey space.

Motivated by these works, we investigate the strong and weak boundedness of the
multilinear maximal operators in the frame of Choquet integrals with respect to the α-
dimensional Hausdorff content.

Now, we formulate our main results as follows.

Theorem 1.1. Let 0 < α < n, 0 < p ≤ pi < ∞ with 1 ≤ i ≤ m such that 1
p = 1

p1
+ · · ·+ 1

pm

and α
n < min{p1, · · · , pm}. Then, the following inequality(∫ (

M( f1, · · · , fm)
)p dHα

) 1
p

≤ C
m

∏
i=1

(∫
| fi|pi dHα

) 1
pi

holds for some constant C depending on α, m, n and pi.
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Theorem 1.2. Let 0 < α < min{n, np} and α = α1 + · · ·+ αm with αi > 0 for 1 ≤ i ≤ m.
Then, the following inequality∫ (

M( f1, · · · , fm)
)p dHα ≤ C

m

∏
i=1

∫
| fi|p dHαi

holds for some constant C depending only on α, m, n and p.

Theorem 1.3. Let 0 < α < n. Then, for some constant C depending on α, m and n, we have that(
Hα{x : Md( f1, · · · , fm)(x) > t}

)m ≤ Ct−
α
n

m

∏
i=1

∫
| fi|

α
n dHα, (1.5a)

Hα{x : Md( f1, · · · , fm)(x) > t} ≤ C
m

∑
i=1

t−βi
α
n

∫
| fi|

α
n dHα, (1.5b)

where β1 + · · ·+ βm = 1 and β1, · · · , βm ≥ 0.

The rest of the present paper is organized as follows: In Section 2, we will give some
facts and lemmas. Theorems 1.1–1.3 are proved in Section 3. A tacit understanding in the
present paper is that all cubes in Rn are cubes with sides parallel to the coordinate axes.
We denote by |E| the Lebesgue measure of the set E ⊂ Rn. The positive constant C varies
from one occurrence to another.

Remark 1.1. In this paper, we merely give the proof with the case m = 2 for the sake of
clarity in writing, and the same is true for m > 2.

2 Some facts and lemmas

We first give some properties of the Choquet integral with respect to the α-dimensional
Hausdorff content.

Proposition 2.1. Suppose that f and g are locally integrable nonnegative functions on Rn and
C is a constant. Then we have∫

C f dHα = C
∫

f dHα,∫
f dHα = 0 =⇒ f = 0, Hα-a.e. on Rn,∫
( f + g)dHα ≤ 2

(∫
f dHα +

∫
g dHα

)
.

In fact, a fundamental method in dealing with Choquet integrals with respect to
Hausdorff content is that, for non-negative functions fi, we have that∫ ∞

∑
i=1

fi dHα ≤ C
∞

∑
i=1

∫
fi dHα
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for some constant C depending on α and n. This follows from the non-trivial fact that the
Choquet integral with respect to dyadic Hausdorff content is sublinear [1].

The following lemma shows that an inequality, similar to the Hölder inequality, holds
for Choquet integrals with the Hausdorff content. In addition, this lemma will play an
important role in the proofs of Theorems 1.1 and 1.2.

Lemma 2.1. Let 0 < p, p1, p2 < ∞ such that 1
p = 1

p1
+ 1

p2
. Assume that f and g are two

measurable functions on Rn. Then we have that(∫
| f g|p dHα

) 1
p

≤ 2
(∫
| f |p1 dHα

) 1
p1
(∫
|g|p2 dHα

) 1
p2

. (2.1)

Proof. Indeed, it suffices to prove the case of p = 1 by observing that 1 = p
p1
+ p

p2
.

Let A and B be the two factors on the right side of (2.1). If A = 0, then f = 0, Hα-a.e.
on Rn; hence f g = 0, Hα-a.e. on Rn, so (2.1) holds. If A > 0 and B = ∞, (2.1) is again
trivial. So we need consider only the case 0 < A < ∞ and 0 < B < ∞. Put

F =
f
A

, G =
g
B

.

This gives ∫
Fp1 dHα =

∫
Gp2 dHα = 1.

Using the Young inequality, we see that

F(x)G(x) ≤ 1
p1

F(x)p1 +
1
p2

G(x)p2 (2.2)

for every x ∈ Rn. Integrating the two sides of the inequality (2.2) yields that∫
FG dHα ≤ 2

(
1
p1

+
1
p2

)
= 2,

which is exactly the inequality (2.1).

Using a self-contained and direct argument, Orobitg-Verdera [8] proved the following
strong type inequality.

Lemma 2.2. Let 0 < α < n such that α
n < p. Then the following inequality∫

(M f )p dHα ≤ C
∫
| f |p dHα

holds for some constant C depending only on α, n and p.
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A well-known argument in [8] gives the following lemma which is also of great im-
portance in proving Theorem 1.2. Here, we only give the statement of this lemma.

Lemma 2.3. Let χQ be the characteristic function of the cube Q. Then for α/n < p, we have∫
M(χQ)

p dHα ≤ C`(Q)α,

where C depends only on α, n and p.

To prove Theorem 1.2, we need the following lemma which can be viewed as a corol-
lary of Lemma 2.1 and Lemma 2.3 as well.

Lemma 2.4. Let χQ1 and χQ2 be the two characteristic functions of the cubes Q1 and Q2, respec-
tively. If α

n < p, α1, α2 > 0 and α = α1 + α2, then we have∫ (
M(χQ1 , χQ2)

)p dHα ≤ C`(Q1)
α1`(Q2)

α2 ,

where C depends only on α, n and p.

Proof. The proof is based on Lemmas 2.1 and 2.3. Actually, we conclude that∫ (
M(χQ1 , χQ2)

)p dHα ≤
∫ (

M(χQ1)
)p(M(χQ2)

)p dHα

≤2
(∫ (

M(χQ1)
)p α

α1 dHα

) α1
α
(∫ (

M(χQ2)
)p α

α2 dHα

) α2
α

≤C`(Q1)
α

α1
α `(Q2)

α
α2
α

=C`(Q1)
α1`(Q2)

α2 ,

which is our desired result.

We need the following auxiliary inequality to pass from integration with the Lebesgue
measure to the Hausdorff content:∫

f (x)dx ≤ n
α

(∫
f

α
n dHα

) n
α

(2.3)

for f ≥ 0 and 0 < α ≤ n; see [8].
Besides, the key to the proof of Theorem 1.3 is a covering lemma. The version we

need is also the one employed by Orobitg-Verdera [8], and is due to Melnikov [7].

Lemma 2.5. Let 0 < α < n and {Qj}j be a family of non-overlapping dyadic cubes. Then there
exists a subfamily {Qjk}k satisfying the following two properties:

(i) ∑Qjk
⊂Q `(Qjk)

α ≤ 2`(Q)α, for each dyadic cube Q,
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(ii) Hα
(⋃

j Qj

)
≤ 2 ∑k `(Qjk)

α.

Based on part (i) of Lemma 2.5, one can show that the following inequality holds with
some constant C independent of f ≥ 0,

∑
k

∫
Qjk

f dHα ≤ C
∫
⋃

k Qjk

f dHα.

3 Proof of Theorems 1.1-1.3

Proof of Theorem 1.1. Without loss of generality, we assume f1 ≥ 0 and f2 ≥ 0. Since

M( f1, f2)(x) = sup
Q3x

1
|Q|2

(∫
Q

f1(y)dy
)(∫

Q
f2(y)dy

)

≤
(

sup
Q3x

1
|Q|

∫
Q

f1(y)dy

)(
sup
Q3x

1
|Q|

∫
Q

f2(y)dy

)
=(M f1)(x)(M f2)(x),

it follows from Lemmas 2.1 and 2.2 that(∫ (
M( f1, f2)

)p dHα

) 1
p

≤
(∫

(M f1)
p(M f2)

p dHα

) 1
p

≤2
(∫

(M f1)
p1 dHα

) 1
p1
(∫

(M f2)
p2 dHα

) 1
p2

≤C
(∫

f p1
1 dHα

) 1
p1
(∫

f p2
2 dHα

) 1
p2

.

This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. Without loss of generality, we also assume f1 ≥ 0 and f2 ≥ 0.
For each integer k, let {Qk

j,i}j be a family of non-overlapping dyadic cubes Qk
j,i such

that {
x : 2k < fi(x) ≤ 2k+1

}
⊂
⋃

j

Qk
j,i,

∑
j
`(Qk

j,i)
α ≤ 2Hα

d

{
x : 2k < fi(x) ≤ 2k+1

}
,

where i = 1, 2. Set

gi = ∑
k

2(k+1)pχAk,i ,
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where Ak,i =
⋃

j Qk
j,i. Thus we have f p

i ≤ gi.
Assume first that 1 ≤ p. Then a direct calculation yields that(

M( f1, f2)(x)
)p

= sup
Q3x

2

∏
i=1

1
|Q|p

(∫
Q

fi(y)dy
)p

≤ sup
Q3x

2

∏
i=1

1
|Q|p

(∫
Q
( fi(y))

p dy
) 1

p
(∫

Q
1 dy

) p−1
p

p

= sup
Q3x

2

∏
i=1

1
|Q|

∫
Q
( fi(y))

p dy

=M( f p
1 , f p

2 )(x)
≤M(g1, g2)(x).

Moreover, it can be derived that

M(g1, g2)(x)

= sup
Q3x

2

∏
i=1

1
|Q|∑k

2(k+1)p
∫

Q
χAk,i(y)dy

= sup
Q3x

∑
k

∑
h

2(k+1)p2(h+1)p
(

1
|Q|

∫
Q

χAk,1(y)dy
)(

1
|Q|

∫
Q

χAh,2(y)dy
)

= sup
Q3x

∑
k

∑
h

2(k+1)p2(h+1)p

(
1
|Q|

∫
Q

∑
v

χQk
v,1
(y)dy

)(
1
|Q|

∫
Q

∑
j

χQh
j,2
(y)dy

)

= sup
Q3x

∑
k

∑
h

2(k+1)p2(h+1)p ∑
v

∑
j

(
1
|Q|

∫
Q

χQk
v,1
(y)dy

)(
1
|Q|

∫
Q

χQh
j,2
(y)dy

)
≤∑

k
∑
h

2(k+1)p2(h+1)p ∑
v

∑
j

M(χQk
v,1

χQh
j,2
)(x).

Combining the above two inequalities, one can immediately obtain that(
M( f1, f2)(x)

)p ≤∑
k

∑
h

2(k+1)p2(h+1)p ∑
v

∑
j

M(χQk
v,1

, χQh
j,2
)(x).

Hence an application of Lemma 2.4 to {M(χQk
v,1

, χQh
j,2
)}v, j, k, h gives that∫ (

M( f1, f2)
)p dHα ≤C ∑

k
∑
h

2(k+1)p2(h+1)p ∑
v

∑
j

∫
M(χQk

v,1
, χQh

j,2
)dHα

≤C ∑
k

∑
h

2(k+1)p2(h+1)p ∑
v

∑
j
`(Qk

v,1)
α1`(Qh

j,2)
α2

=C ∑
k

∑
h

2(k+1)p2(h+1)p

(
∑
v
`(Qk

v,1)
α1

)(
∑

j
`(Qh

j,2)
α2

)
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≤C ∑
k

∑
h

2(k+1)p2(h+1)pHα1{x : 2k < f1 ≤ 2k+1}Hα2{x : 2h < f2 ≤ 2h+1}

=C

(
∑

k
2(k+1)pHα1{x : 2k < f1 ≤ 2k+1}

)(
∑
h

2(h+1)pHα2{x : 2h < f2 ≤ 2h+1}
)

.

Note that

∑
k

2(k+1)pHα1{x : 2k < f1 ≤ 2k+1}

≤∑
k

2(k+1)pHα1{x : f1 > 2k}

=∑
k

22p

2p − 1
2(k−1)p (2p − 1) Hα1{x : f1 > 2k}

=
22p

2p − 1 ∑
k

∫ 2kp

2(k−1)p
Hα1{x : f p

1 > 2kp}dt

≤ 22p

2p − 1 ∑
k

∫ 2kp

2(k−1)p
Hα1{x : f p

1 > t}dt

=
22p

2p − 1

∫ ∞

0
Hα1{x : f p

1 > t}dt

=
22p

2p − 1

∫
f p
1 dHα1 .

By the same approach as above, we can deduce that

∑
h

2(h+1)pHα2{x : 2h < f2(x) ≤ 2h+1} ≤ 22p

2p − 1

∫
f p
2 dHα2 .

Finally, we can therefore show that∫ (
M( f1, f2)

)p dHα ≤ C
(∫

f p
1 dHα1

)(∫
f p
2 dHα2

)
,

which leads to the proof of the case for p ≥ 1.
Assume now that α

n < p < 1. Since fi ≤ ∑k 2k+1χAk,i with i = 1, 2, it implies that

M( f1, f2) ≤∑
k

∑
h

2k+12h+1 ∑
v

∑
j

M(χQk
v,1

, χQh
j,2
).

Since p < 1, we deduce that(
M( f1, f2)

)p ≤∑
k

∑
h

2(k+1)p2(h+1)p ∑
v

∑
j

(
M(χQk

v,1
, χQh

j,2
)
)p

,



50 S. Liu, Q. He and D. Yan / Anal. Theory Appl., 39 (2023), pp. 42-52

and hence ∫ (
M( f1, f2)

)p dHα ≤C ∑
k

∑
h

2(k+1)p2(h+1)p ∑
v

∑
j
`(Qk

v,1)
α1`(Qh

j,2)
α2

≤C
(∫

f p
1 dHα1

)(∫
f p
2 dHα2

)
.

This completes the proof for the case α
n < p < 1.

Proof of Theorem 1.3. If one of the two integrals on the right-hand side of (1.5a) and (1.5b)
is infinite, then there is nothing to prove. Hence, we assume that∫

| fi|
α
n dHα < ∞

for i = 1, 2. Then by (2.3) we obatin that fi ∈ L1(Rn).
The proof of (1.5a) will be given first. We assume again, without loss of generality,

that f1 ≥ 0 and f2 ≥ 0. Given t > 0, let {Qj}j be the family of maximal dyadic cubes Qj
such that

1
|Qj|2

(∫
Qj

f1(y)dy
)(∫

Qj

f2(y)dy
)
> t. (3.1)

Then we can obtain that

{x : Md( f1, f2)(x) > t} =
⋃

j

Qj.

For each j ∈N, we deduce from (2.3) and (3.1) that

`(Qj)
2α ≤

(
1
t

(∫
Qj

f1(y)dy
)(∫

Qj

f2(y)dy
)) α

n

≤Ct−
α
n

(∫
Qj

f
α
n

1 dHα

)(∫
Qj

f
α
n

2 dHα

)
.

Applying Lemma 2.5 to the {Qj}j we obatin some subfamily {Qjk}k for which we can
write (

Hα{x : Md( f1, f2)(x) > t}
)2

=

Hα

⋃
j

Qj

2

≤ 4

(
∑

k
`(Qjk)

α

)2

≤C

∑
k

t−
α

2n

(∫
Qjk

f
α
n

1 dHα

) 1
2
(∫

Qjk

f
α
n

2 dHα

) 1
2
2
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≤Ct−
α
n

(∑
k

∫
Qjk

f
α
n

1 dHα

) 1
2
(

∑
k

∫
Qjk

f
α
n

2 dHα

) 1
2
2

≤Ct−
α
n

(∫
f

α
n

1 dHα

)(∫
f

α
n

2 dHα

)
.

This finishes the proof of inequality (1.5a). Next, we give the proof of the second inequal-
ity by using an analogous process.

Given t > 0. Let {Qj,i}j be the family of maximal dyadic cubes Qj,i such that

1
|Qj,i|

∫
Qj,i

fi(y)dy > tβi ,

where i = 1, 2. Then we can show that

{x : Md( f1, f2)(x) > t} ⊂
⋃

i

⋃
j

Qj,i.

In fact, if we choose x such that Md( f1, f2)(x) > t, i.e.,

sup
Q3x

1
|Q|2

(∫
Q

f1(y)dy
)(∫

Q
f2(y)dy

)
> t,

where the supremum is taken on the family of dyadic cubes containing x, then by the
definition of the supremum there exists a dyadic cube Q 3 x satisfying(

1
|Q|

∫
Q

f1(y)dy
)(

1
|Q|

∫
Q

f2(y)dy
)
> t.

It follows that

1
|Q|

∫
Q

f1(y)dy > tβ1

or

1
|Q|

∫
Q

f2(y)dy > tβ2

must hold. Then we can deduce from the maximum of Qj,i that

x ∈ Q ⊂
⋃

i

⋃
j

Qj,i.

By inequality (2.3), we have that

`(Qj,i)
α ≤

(
1

tβi

∫
Qj,i

fi(y)dy
) α

n

≤ Ct−βi
α
n

∫
Qj,i

f
α
n

i dHα.
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Applying Lemma 2.5 to the {Qj,i} we obatin some subfamily {Qjk ,i} for which one can
write

Hα{x : Md( f1, f2)(x) > t}

≤∑
i

Hα

⋃
j

Qj,i

 ≤ 2 ∑
i

∑
k
`(Qjk ,i)

α

≤C ∑
i

t−βi
α
n ∑

k

∫
Qjk ,i

f
α
n

i dHα ≤ C ∑
i

t−βi
α
n

∫
f

α
n

i dHα.

This finishes our proof.
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