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matrix of rank r provided that m is of O(r2slog2s), where s=max{n1,n2}. Nu-
merical examples are given to illustrate that the nonnegativity property would
be useful in the matrix recovery. In particular, we demonstrate the number
of samples required to recover the underlying low rank matrix with using the
nonnegativity property is smaller than that without using the property.
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1 Introduction

Matrix completion, the problem of filling the missing elements by partially observed
matrices became popular after the Netflix prize competition which was held in 2006.
In order to avoiding being an underdetermined and intractable problem, low rank is
often a necessary hypothesis to restrict the degree of freedoms of the missing entries.
The matrix completion problem can be formulated as the following optimization
problem:

minimize rank(X)

subject to PΩ(X)=PΩ(A), (1.1)

where X ∈Rn1×n2 is the decision variable, the set Ω of locations corresponding to
the observed entries((i,j)∈Ω if Aij is observed) is a set of cardinality m sampled
uniformly at random, and the corresponding sampling operator PΩ is defined by

[PΩ(X)]i,j =

{
Xij, if (i,j)∈Ω,

0, otherwise.

In general, the rank minimization problem listed in (1.1) is NP-hard and compu-
tationally intractable. Many methods were proposed to solve the matrix completion
problem, see for instance [1–4, 6–14]. In general, it can be divided into two cat-
egories: convex and non-convex optimization methods. Under the framework of
convex optimization, the nuclear norm minimization problem

minimize ‖X‖∗
subject to PΩ(X)=PΩ(A), (1.2)

is often applied to recover the unknown matrix entries, where the nuclear norm
‖X‖∗ of a matrix X is defined as the sum of its singular values. With some suit-
able assumptions (incoherence conditions), it has been shown that if the number
of observed entries satisfies m∼O(sr2 logαs) for some α≥ 0, the underlying rank
r matrix can be exactly recovered with high probability, where s= max{n1,n2}.
Meanwhile, many computationally efficient algorithms are designed to solve model
(1.2), see [15–18] and references therein. On the other hand, there are non-convex
optimization methods for solving (1.1) by parameterizing in a factorization form or
studying in a set of fixed rank matrices. The computational cost of most non-convex
algorithms are shown to be cheaper than that of the convex methods. The major
issue is how to choose suitable initial guesses in non-convex optimization methods
such that they can converge to the underlying low rank solution.
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Nonnegative data matrices appear in many data analysis applications. For in-
stance, in image analysis, image pixel values are nonnegative and the associated
nonnegative image data matrices can be formed for clustering and recognition, see
for instance [19–30]. In text mining, the frequencies of terms in documents are
nonnegative and the resulted nonnegative term-to-document data matrices can be
constructed for clustering, see for example [31–34]. In bioinformatics, nonnegative
gene expression values are studied and non- negative gene expression data matrices
are generated for diseases and genes classification, see [35–39]. The main aim of
this paper is to study the problem of nonnegative matrix completion by introducing
nonnegativity requirement for X in (1.1). In the literature, Xu et al. [42] proposed
to solve the nonnegative matrix completion problem by using an algorithm based on
the classical alternating direction augmented Lagrangian method. In [43], Xu and
Yin designed a block coordinate descent method to study the nonnegative matrix
completion problem. However, there is no theoretical result for the exact recovery
of the underlying nonnegative low rank matrix.

In this paper, we study the Riemannian optimization methods for the problem
of nonnegative matrix completion:

minimize
1

2
‖PΩ(X)−PΩ(A)‖2

F

subject to rank(X)=r, X≥0, (1.3)

that is to recover a nonnegative low rank matrix from its partial observed entries.
With the underlying low rank matrix incohence conditions, we show that when the
number m of observed entries are sampled independently and uniformly without
replacement, the inexact Riemannian gradient descent method can recover the un-
derlying n1-by-n2 nonnegative matrix of rank r provided that m is of O(r2slog2s),
where s=max{n1,n2}. Numerical examples are given to illustrate that the nonnega-
tivity property would be useful in the matrix recovery. In particular, we demonstrate
the number of samples required to recover the underlying low rank matrix with using
the nonnegativity property is smaller than that without using the property.

The rest of this paper is organized as follows. In Section 2, we study the Rie-
mannian gradient descent method for solving (1.3). In Section 3, we provide the
bounds on the number of sampled entries required for nonnegative low rank matrix
completion. In Section 4, numerical examples are given to show the advantages of
the proposed methods. Finally, some concluding remarks are given in Section 5.

2 The proposed algorithm
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2.1 Mathematical preliminaries

Denote

Mr :=
{
X∈Rn1×n2 , rank(X)=r

}
, (2.1)

as the set of all n1×n2 rank r matrices. It is well known thatMr forms an embedded
submanifold of the set of matrices with size n1×n2. And when the matrices in
Mr be endowed with the usual trace inner product, then Mr forms a Riemannian
submanifold of the embedding space Rn1×n2 . Denote

Mn :=
{
X∈Rn1×n2 , Xi,j≥0, i=1,··· ,n1, j=1,··· ,n2

}
(2.2)

as the n1×n2 nonnegativity matrices set. The projection onto the fixed rank matrix
setMr is derived by the Eckart-Young-Mirsky theorem [40] which can be expressed
as

πr(X)=
r∑
i=1

σi(X)ui(X)vTi (X), (2.3)

where σi(X), i= 1,··· ,r are first r singular values of X, and ui(X), vi(X) are first
r columns of the unitary matrices of U(X) and V (X). The projection onto the
nonnegative matrix set Mn is expressed as

π+(X)=

{
Xij, if Xij≥0,

0, if Xij<0.
(2.4)

Let X ∈ Rn1×n2 be an arbitrary matrix in the manifold Mr, and X =
U(X)Σ(X)V (X)T be a skinny SVD decomposition of X. It follows from [41, Propo-
sition 2.1] that the tangent space of Mr at X can be expressed as

TMr(X)={U(X)W T +ZV (X)T | W ∈Rn2×r, Z∈Rn1×r are arbitrary}. (2.5)

For a given matrix Y , the projection of Y onto the subspace TMr(X) can be written
as

PTMr (X)(Y )=U(X)U(X)TY +Y V (X)V (X)T−U(X)U(X)TY V (X)V (X)T . (2.6)

2.2 The inexact Riemannian gradient descent method

In this subsection, an Inexact Riemannian gradient descent method (IRGD) is stud-
ied to solve the nonnegative low rank matrix completion problem. Different from
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Figure 1: Inexact Riemannian gradient decent method using tangent spaces.

the Riemannian gradient descent method [17], there is an additional step in the
inexact version that projects the iterate onto the nonnegative matrix manifoldMn,
see Fig. 1.

In the algorithm, X0 =πr(PΩ(A)) is a SVD (singular value decomposition) trun-
cation of the observed matrix PΩ(A). Tl refers to the tangent space of Mr at Xl

defined as in (2.5), and PTl(Gl) refers to the projection of Gl onto Tl defined as in
(2.6). Here the subscript refers to the iteration index. The summary of Algorithm
2.1 is given as follows.

Algorithm 2.1 Inexact Riemannian gradient decent method.

Initilization: X0 = πr(PΩ(A)),Ω is a set of cardinality m sampled uniformly at
random.
for l=0,1,··· , do
1: Gl=PΩ(A−Xl);

2: αl=
〈PTl

(Gl),PTl
(Gl)〉

〈PTl
(Gl),PΩPTl

(Gl)〉
;

3: Wl=Xl+αlPTl(Gl);
4: W

′

l =π+(Wl);
5: Xl+1 =πr(W

′

l );
end for
Output: Xl when the stopping criterion is satisfied.

We see from Step 4 that we projects the iterate Wl (which is derived by updating
from Xl along the gradient descent direction on Tl) onto the nonnegative matrix
manifoldMn to getW

′

l via π2. In Step 5, Xl+1 is updated by using the svd truncation
of W

′

l .
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In order to show the new sequence generated by Algorithm 2.1 is convergent, the
following lemma proposed in [17] will be used in the sequel.

Lemma 2.1 (Lemma 4 in [17]). Let Xl be a rank r matrix and Tl be the tangent
space of the rank r matrix manifold at Xl. Suppose that X is another rank r matrix
on the manifold Mr, and σmin(X) denotes the minimum singular value of X. Then

(i) ‖(I−PTl)X‖F ≤
‖Xl−X‖2

F

σmin(X)
, (ii) ‖PTl−PT‖≤

2‖Xl−X‖F
σmin(X)

.

Next we need to prove the following results about the error in the projections.

Lemma 2.2. Let X and Xl be two rank r matrices. Denote p as the sampling rate
and suppose T and Tl are the tangent spaces of the fixed rank r matrix manifold at
X and Xl, respectively. Assume

‖PT−p−1PTPΩPT‖≤ε0 (2.7)

and

‖Xl−X‖F
σmin(X)

≤ ε0p
1
2

4(1+ε0)
(2.8)

are satisfied for some 0<ε0<1. Then

‖PΩPTl‖≤(1+ε0)p
1
2 and ‖PTl−p−1PTlPΩPTl‖≤

5ε0

2
. (2.9)

Proof. For the first inequality in (2.9). It follows from (2.7) that

‖PTPΩPT‖≤(1+ε0)p.

Then for any matrix Z∈Rn1×n2 , we have

‖PΩPT (Z)‖2
F =〈PΩPT (Z),PΩPT (Z)〉

=〈PT (Z),PTPΩPT (Z)〉
≤(1+ε0)p‖PT (Z)‖2

F .

Thus ‖PΩPT‖≤
√

(1+ε0)p. Moreover,

‖PΩPTl‖≤‖PΩ(PTl−PT )‖+‖PΩPT‖≤
2‖Xl−X‖F
σmin(X)

+‖PΩPT‖

≤ ε0p
1
2

2(1+ε0)
+
√

(1+ε0)p≤(1+ε0)p
1
2 .
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The second inequality can proved by (ii) of Lemma 2.1. Setting t=
√

(1+ε0)> 1,
then 2t4−2t3−t2+1 = (t2−1)(2t2−t−1)>0 is satisfied and the last inequality can
be derived.

For the second inequality in (2.9). With the above tools in hand we have

‖PTl−p−1PTlPΩPTl‖≤‖PTl−PT‖+p−1‖PTPΩPT−PTlPΩPT‖
+p−1‖PTlPΩPTl−PTlPΩPT‖+‖PT−p−1PTPΩPT‖

≤‖PTl−PT‖+p−1‖PT−PTl‖‖PΩPT‖
+p−1‖PTlPΩ‖‖PTl−PT‖+‖PT−p−1PTPΩPT‖

≤ 2ε0p
1
2

4(1+ε0)
+

2ε0

4
√

(1+ε0)
+
ε0

2
+ε0≤

5ε0

2
.

The proof is completed.

Lemma 2.3 (Lemma 4.6 in [17]). Assume the second inequality given in (2.9) is
satisfied. Then the stepsize αl in Algorithm 2.1 can be bounded as

2

(2+5ε0)p
≤αl=

‖PTl(Gl)‖2
F

〈PTl(Gl),PΩPTl(Gl)〉
≤ 2

(2−5ε0)p
.

Then we can prove the following theorem about errors of the iterates.

Theorem 2.1. Suppose the inequality given in (2.7) and

‖X0−A‖F
σmin(A)

≤ ε0p
1
2

4(1+ε0)
(2.10)

are satisfied with ε0 being a positive numerical constant such that β1= 22ε0
2−5ε0

<1. Then
the iterates Xl generated by Algorithm 2.1 satisfy

‖Xl−A‖F ≤βl1‖X0−A‖F , l=1,2,··· . (2.11)

Proof. We can prove (2.11) by induction. Suppose that in the l-th interaction Xl

satisfies

‖Xl−A‖F
σmin(A)

≤ p
1
2 ε0

4(1+ε0)
, (2.12)

with σmin(A) is the minimum nonzero singular of A. Recall that (2.7) is satisfied,
then by Lemma 2.2, we have

‖PΩPTl‖≤(1+ε0)p
1
2 , (2.13a)

‖PTl−p−1PTlPΩPTl‖≤
5ε0

2
. (2.13b)
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For the third step in Algorithm 2.1, denote Wl+1 =π+(X1+αlPTl(Gl)), we have

‖Xl+1−A‖F =‖Xl+1−Wl+Wl+1−A‖F
≤‖Xl+1−Wl+1‖F +‖Wl+1−A‖F
≤2‖Wl+1−A‖F . (2.14)

The second inequality is derived by noting that Xl+1 is the optimal rank r approx-
imation of Wl+1. Noting that the underling matrix A is nonnegative, then after
adding a nonnegative projection π+ in the proposed Algorithm 2.1, the iterative
result of each step will be closer to the underling matrix, i.e.,

‖Wl+1−A‖F =‖π+(Wl)−A‖F ≤‖Wl−A‖F . (2.15)

The projection π+ can help us to improve the effectiveness of the proposed algorithms
which can be seen from the experiments results given in Section 4. Combing (2.14)
and (2.15) and plugging Wl=X1+αlPTl(Gl) gives

‖Xl+1−A‖F ≤2‖Xl+αlPTl(Gl)−A‖F
=2‖Xl−A−αlPTlPΩ(Xl−A)‖F
≤2‖(PTl−αlPTlPΩPTl)(Xl−A)‖F +2‖(I−PTl)(Xl−A)‖F

+2|αl|‖PTlPΩ(I−PTl)(Xl−A)‖F
=:I1+I2+I3. (2.16)

For I1, applying Lemma 2.2 gives

I1 =2‖(PTl−αlPTlPΩPTl)(Xl−A)‖F ≤
20ε0

2−5ε0

‖Xl−A‖F .

For I2, by (i) of Lemma 2.1 and the assumption given in (2.12), we have

I2 =2‖(I−PTl)(A)‖F ≤
2‖Xl−A‖2

F

σmin(X)

≤ p1/2ε0

2(1+ε0)
‖Xl−A‖F ≤

ε0

2−5ε0

‖Xl−A‖F .

For I3, by the bound of αl given in Lemma 2.3, the bound of the spectral norm of
PΩPTl given in Lemma 2.2 and the assumption given in (2.12), we have

I3≤2|αl|‖PΩPTl‖‖(I−PTl)(A)‖F

≤ 4

(2−5ε0)
(1+ε0)p1/2‖Xl−A‖2

F

σmin(A)

≤ ε0

2−5ε0

‖Xl−A‖F .
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Taking the bounds of I1, I2 and I3 into (2.16) gives

‖Xl+1−A‖F ≤β1‖Xl−A‖F ,

where β1 = 22ε0
2−5ε0

< 1. Note that (2.16) is satisfied for l= 0 by the assumption of
Theorem 2.1, then the sequence derived by Algorithm 2.1 is contractive.

In Algorithm 2.1, a SVD truncation is needed to project Wl+1 back to the man-
ifoldMr. Such computational procedure can be expensive. Here we further modify
the step by using the tangent space of the iterate to find an approximation of the
πr(Wl+1) on the manifold such that the computational cost can be reduced. The
idea is shown as in Fig. 1 for illustration. Similar to the results in [17], the over-
all computational cost of πr(PTl(W

′

l )) in Algorithm 2.2 can be expressed as two
matrix-matrix multiplications. In addition, the calculation procedure involves the
QR decomposition of two matrices of sizes n1×r and n2×r matrices, and the SVD of
a matrix of size 2r×2r. The total cost per iteration is of 4n1n2r+O(n1r

2+n2r
2+r3).

In contrast, the computation of the best rank-r approximation of a non-structured
n1×n2 matrix costs O(n1n2r)+n1n2 flops where the constant in front of n1n2r can
be very large. In practice, the cost per iteration of the proposed Inexact Rieman-
nian gradient decent method using tangent spaces (InRGD-TS) is less than that of
original Inexact Riemannian gradient decent method (InRGD). In Section 4, numer-
ical examples are given to demonstrate the total computational time of the proposed
InRGD-TS method is less than that of the InRGD method. The resulting algorithm
is listed in Algorithm 2.2. Here Mr,X0,Tl and PTl are defined as in Algorithm 2.1.
Mn denotes the nonnegative matrices manifold. For Algorithm 2.2, we can show its
convergence stated in Theorem 2.2.

Algorithm 2.2 Inexact Riemannian gradient decent method using tangent spaces.

Initilization: X0 = πr(PΩ(A)),Ω is a set of cardinality m sampled uniformly at
random.
for l=0,1,··· , do
1: Gl=PΩ(A−X0);

2: αl=
〈PTl

(Gl),PTl
(Gl)〉

〈PTl
(Gl),PΩPTl

(Gl)〉
;

3: Wl=Xl+αlPTl(Gl);
4: W

′

l =π+(Wl);
5: Yl=PTl(W

′

l );
6: Xl+1 =πr(Yl);
end for
Output: Xl when the stopping criterion is satisfied.
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Theorem 2.2. Let Mr,A and T be given as in Theorem 2.1. Assume (2.7) and
(2.10) are satisfied with ε0 being a positive numerical constant such that β2= 132ε0

2−5ε0
<1.

Then the iterates Xl generated by Algorithm 2.2 satisfy

‖Xl−A‖F ≤βl2‖X0−A‖F , l=1,2,··· . (2.17)

Proof. Similar to the proof of Theorem 2.1, we can prove (2.17) by induction. Sup-
pose in the l-th interation Xl in Algorithm 2.2 satisfies (2.12). Then (2.13a) and
(2.13b) can be derived. Denote Wl=Xl+αlPTl(Gl), and Yl=PTl(π+(Wl)). Note that
Xl+1 is the optimal rank r approximation of Yl, and Yl is the closest point of π+(Wl)
on the tangent space Tl, we have

‖Xl+1−X‖F =‖Xl+1−Yl+Yl−A‖F
≤‖Xl+1−Yl‖F +‖Yl−A‖F ≤2‖Yl−A‖F
=2‖PTl(π+(Wl))−π+(Wl)+π+(Wl)−A‖F
≤2‖PTl(π+(Wl))−π+(Wl)‖F +2‖π+(Wl)−A‖F
≤2‖π+(Wl)−Wl‖F +2‖π+(Wl)−A‖F
=2‖π+(Wl)−A+A−Xl−αlPTl(Gl)‖F +2‖π+(Wl)−A‖F
≤2‖π+(Wl)−A‖F +2‖Xl+αlPTl(Gl)−A‖F +2‖π+(Wl)−A‖F
≤6‖Xl+αlPTl(Gl)−A‖F .

Analogous to (2.15),

‖π+(Wl)−A‖F ≤‖Wl−A‖F =‖Xl+αlPTl(Gl)−A‖F

can be derived and the last inequality follows. After choosing some suitable ε0 such
that β2 = 132ε0

2−5ε0
<1, and by the proof of Theorem 2.1 we have (2.17) is satisfied for

l+1. Then, by the assumption of Theorem 2.2, (2.17) is satisfied when l=0. Combine
them together, the iterates Xl generated by Algorithm 2.2 is convergent.

Remark 2.1. Besides Inexact Riemannian gradient descent methods, we can em-
ploy Inexact Riemannian conjugate gradient methods to solve the nonnegative ma-
trix completion problem. In the Inexact Riemannian conjugate gradient method,
the search direction is a linear combination of the projected gradient descent direc-
tion and the past search direction projected onto the tangent space of the current
iterate. Similar to Theorems 2.1 and 2.2, the underlying nonnegative matrix can be
exactly recovered by the Inexact Riemannian conjugate gradient method.
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3 The initialization and sampling complexity

In this section, we mainly study the number of observed entries required to exactly
recover the underling nonnegative low rank matrix. In this case, we need to introduce
the following definitions firstly.

Definition 3.1 (Definition 1.2 in [1]). Let X ∈Rn1×n2 be a rank r matrix with the
skinny singular value decomposition (SVD) as X =USV T . We assume X is µ0-
incoherent, that is, there exists an absolute numerical constant µ0>0 such that

‖PU(ei)‖≤
√
µ0r

n1

and ‖PV (ej)‖≤
√
µ0r

n2

for 1≤ i≤n1, 1≤j≤n2. Here el (l= i,j) is the l-th canonical basis of Rn1 and Rn2 ,
PU and PV are the orthogonal projections onto the column and row spaces of X,
respectively.

The two conditions given in (2.7) and (2.10) in Theorem 2.1 are used to guarantee
the convergence of Algorithm 2.1. For (2.7), it is a local restricted isometry property
which is saying that the operator PTPΩPT is close to an isometry on T if the number
of the observed entries is big enough. Under the framework of Bernoulli sampling
model, Candes and Retha [1] demonstrated that (2.7) plays a key role in nuclear
norm minimization for matrix completion problem. In the following discussion, we
set s=max{n1,n2}, t=min{n1,n2}.

Lemma 3.1 (Theorem 4.1 in [1]). Let X ∈Rn1×n2 be a µ0-incoherent matrix with
rank r. Suppose Ω with |Ω|=m is sampled according to the Bernoulli model. Then
for all β>1 ∥∥∥n1n2

m
PTPΩPT−PT

∥∥∥
op
.

√
µ0rsβ logs

m
,

holds with probability at least 1−3s−β provided that m&µ0rβslogs.

It follows from Lemma 3.1 that (2.7) is satisfied with probability at least 1−3s−β,
as long as m&µ0rβslogs, where µ0 is the incoherence condition constant stated in
Definition 3.1.

For (2.10), it is required to determine an initial guess that falls within a certain
small area of the underlying nonnegative matrix. If it is valid, the sequence generated
by Algorithm 2.1 can guarantee to converge linearly to the underling nonnegaive low
rank matrix. Here we adapt the trimming scheme proposed in [6,17] to construct an
initial guess. More precisely, the scheme is implemented by dividing the sampling set
Ω into L+1 parts, such that Ω=

⋃L
i=0Ωi and the initialization matrix was constructed
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by values from the L+1 subsets of Ω independently. In our setting, there is a
nonnegative projection as given in (2.4) to make sure the elements of the trimming
results are nonnegative. The scheme is given in Algorithm 3.1.

Algorithm 3.1 Initialization via resampled method and trimming method.

Partition Ω into L+1 equal groups, i.e., Ω=
⋃L
i=0Ωi, |Ω0|= ···= |ΩL|= m

L+1
=m̂.

Set Z0 =πr(
n1n2

m̂
PΩ0(A))

for l=0,··· ,L−1 do
1:Zl=UlΣrV

T
l ;

2: Ẑl=A
(i)
l Σr(B

(i)
l )T , where

A
(i)
l =

U
(i)
l

‖U (i)
l ‖

min
{
‖U (i)

l ‖,
√
µ0r

n1

}
, B

(i)
l =

V
(i)
l

‖V (i)
l ‖

min
{
‖V (i)

l ‖,
√
µ0r

n2

}
;

3: Z ′l+1 =πr(Ẑl+
n1n2

m̂
PT̂lPΩl+1

(X−Ẑl));
4: Zl+1 =π+(Z ′l+1);
end for
Output: X0 =ZL

Next we show the output of Algorithm 3.1 falls within the neighborhood required
by (2.10). Let us first state the following lemma.

Lemma 3.2 (Theorem 6.3 in [1]). Suppose X∈Rn1×n2, and Ω with |Ω|=m is a set
of indices sampled according to the Bernoulli model. Then for all β>2∥∥∥(I−n1n2

m
PΩ

)
X
∥∥∥.√s2tβ logs

m
‖X‖∞,

holds with probability at least 1−s−β provided m&βslogs.

By Lemma 3.2 and the incoherence conditions listed in Definition 3.1, the dis-
tance between the initiation value Z0 in Algorithm 3.1 and the underlying matrix
X can be estimated as follows.

Lemma 3.3. Suppose X∈Rn1×n2 satisfies the incoherence conditions given in Defi-
nition 3.1, Ω with |Ω|=m is a set of indices sampled according to the Bernoulli model.
Let Ωi, i=0,··· ,L be a division of Ω given in Algorithm 3.1 and Z0=πr(

n1n2

m̂
PΩ0(X)).

Then for all β>2,

‖Z0−X‖F ≤
σmin(X)

256κ2
(3.1)
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holds with probability at least 1−s−β provided that

m̂&µ2
0βκ

6r2slogs.

Proof. Set W0 = n1n2

m̂
PΩ0(X). First,

‖Z0−X‖≤‖Z0−W0‖+‖W0−X‖≤2‖W0−X‖≤2

√
s2tβ logs

m̂
‖X‖∞,

where the third inequality can be derived by Lemma 3.2 which holds with probability
at least 1−s−β. And then

‖Z0−X‖F ≤
√

2r‖Z0−X‖≤
√

8s2tr logs

m̂
‖X‖∞

≤
√

8µ2
0sr

2 logs

m̂
‖X‖≤ σmin(X)

256κ2
.

The third inequality is followed from the fact that

‖X‖∞=‖UΣV T‖∞≤
µ0r

t
σmax,

the fourth inequality is derived by m̂&µ2
0βκ

6r2slogs.

Lemma 3.4. Suppose X ∈Rn1×n2 with rank(X) = r, κ is the condition number of
X and L is defined as in Algorithm 3.1. Then for all β>1, the output of Algorithm
3.1 satisfies

‖X0−X‖F ≤
(

5

6

)L
σmin(X)

256κ2

with high probability provided

m̂&µ2
0r

2κ6sβ logs.

Proof. For l=0, Z0 =πr(
n1n2

m̂
PΩ0(X)), then by Lemma 3.3 we have

‖Z0−X‖F ≤
σmin(X)

256κ2

satisfied with high probability provided

m̂&µ2
0βκ

6r2slogs. (3.2)
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Assume that

‖Zl−X‖F ≤
(

5

6

)l
σmin(X)

256κ2
. (3.3)

Then by Lemma 13 in [17], we have Ẑl is an incoherent matrix with incoherence
parameter 100

81
µ0 and

‖Ẑl−X‖F ≤8κ‖Zl−X‖F .

Denote
Wl= Ẑl+

n1n2

m̂
PT̂lPΩl+1

(X−Ẑl) and Z ′l+1 =π1(Wl).

Note that X is nonnegative and Z ′l+1 is the optimal rank r approximation of Wl,
then the approximation error at the (l+1)th iteration can be decomposed as

‖Zl+1−X‖F =‖π+(Z ′l+1)−X‖F ≤‖Z ′l+1−X‖F
=‖Z ′l+1−Wl+Wl−X‖F
≤2
∥∥∥Ẑl+n1n2

m̂
PT̂lPΩl+1

(X−Ẑl)−X
∥∥∥
F

≤2
∥∥∥(PT̂l−n1n2

m̂
PT̂lPΩl+1

PT̂l

)
(Ẑl−X)

∥∥∥
F

+2‖(I−PT̂l)(Ẑl−X)‖F

+2
∥∥∥n1n2

m̂
PT̂lPΩl+1

(I−PT̂l)(Ẑl−X)
∥∥∥
F

:=I5+I6+I7.

Applying Lemma 3.1 to ∥∥∥PT̂l−n1n2

m̂
PT̂lPΩl+1

PT̂l

∥∥∥
in I5 gives

I5≤κ
√

100µ0βrslogs

81m̂
‖Zl−X‖F

holds with high probability.
By applying (i) of Lemma 2.1 and recall the assumption (3.3), we have

I6≤
2‖Ẑl−X‖2

F

σmin(X)
≤ 128κ2‖Zl−X‖2

F

σmin(X)
≤ 1

2
‖Zl−X‖F .

Note that Ẑl is independent of Ωl+1 with the incoherence parameter 100
81
µ0, then it

follows from Lemma 6 in [17] that∥∥∥n1n2

m̂
PTlPΩl+1

(PU−PUl
)−PTl(PU−PUl

)
∥∥∥≤√4800µ0sβr logs

81m̂
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holds with high probability. Moreover, due to X=UUTXand PT̂l(Ẑl)= Ẑl, we have

(I−PT̂l)(Ẑl−X)=−(I−PT̂l)(X)

=−UUTX+ÛlÛ
T
l X+UUTXV̂lV̂

T
l −ÛlÛT

l XV̂lV̂
T
l

=−(UUT−ÛlÛT
l )X(I−V̂lV̂ T

l )

=(PU−PÛl
)(Ẑl−X)(I−PV̂l).

Together with

PT̂l((PU−PÛl
)(Ẑl−X)(I−PV̂l))=PT̂l((I−PT̂l)(Ẑl−X))=0,

I7 can be bounded as follows,

I7 =2
∥∥∥n1n2

m̂
PT̂lPΩl+1

(I−PT̂l)(Ẑl−X)
∥∥∥
F

=2
∥∥∥n1n2

m̂
PT̂lPΩl+1

(I−PT̂l)(Ẑl−X)−PT̂l(I−PT̂l)(Ẑl−X)
∥∥∥
F

≤2
∥∥∥n1n2

m̂
(PT̂lPΩl+1

−PT̂ )(PU−PÛl
)
∥∥∥‖Ẑl−X‖F

≤2

√
4800µ0βsr logs

81m̂
‖Ẑl−X‖F

≤16κ

√
4800µ0βsr logs

81m̂
‖Zl−X‖F .

Combining the bounds of I5, I6 and I7 together, we can get

‖Zl+1−X‖F ≤

(
1

2
+182κ

√
µ0βsr logs

m̂

)
‖Zl−X‖F ≤

5

6
‖Zl−X‖F

holds with high probability provided

m̂&µ0βκ
2sr logs. (3.4)

Therefore taking a maximum of the right hand sides of (3.2) and (3.4) gives

‖ZL−X‖F ≤
(

5

6

)L
σmin(X)

256κ2

with high probability provided m̂&µ2
0βκ

6sr logs.

Combining the above results, we can get the following results.
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Theorem 3.1. Suppose X ∈Rn1×n2 is nonnegative with rank(X)=r, κ is the con-
dition number of X. Let Ω (|Ω|=m) be a set of indices sampled according to the
Bernoulli model. Let X0 be the output of Algorithm 3.1. Then the iterates generated
by Algorithm 2.1 converge to X with high probability provided

m&
µ2

0

ε20
κ6βsr2 logslog

(slogs

24ε0

)
.

Proof. This result follows from Lemma 2.2, Theorem 2.1, and Lemma 3.4.

4 Experimental results

In this section, numerical results are presented to show the effectiveness of the pro-
posed inexact Riemannian gradient descent method (InRGD) and its version using
tangent spaces (InRGD-TS) for nonnegative low rank matrix competition. We also
make use of our results to derive the Inexact Riemannian conjugate gradient method
without using tangent spaces (InRCG) and using tangent spaces (InRCG-TS) for
comparison. On the other hand, we would like to compare low rank matrix com-
pletion methods without using nonnegativity. Both Riemannian gradient descent
(RGD) and Riemannian Conjugate Gradient method (RCG) (see for example [17])
are employed in the comparison. All the experiments are performed under Windows
7 and MATLAB R2018a running on a desktop (Intel Core i7, @3.40GHz, 8.00G
RAM).

The relative error (RES) is defined by

RES=
‖X−A‖F
‖A‖F

,

where X is the recovered solution and A is the ground-truth nonnegative matrix.
Moreover, in order to evaluate the performance for real-world nonnegative matri-
ces, the peak signal-to-noise ratio (PSNR) is used to measure the equality of the
estimated nonnegative matrices, which is defined as:

PSNR=10log10

n1n2(Xmax−Xmin)2

‖X−A‖F
,

where Xmax and Xmin are maximal and minimal entries of A, respectively. The
stopping criterion of the algorithms are all set to

‖Xl+1−Xl‖F
‖Xl‖F

≤10−5.
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4.1 Synthetic data

We perform the proposed InRGD and InRGD-TS methods, InRCG and InRCG-
TS methods, RGD and RCG methods on synthetic nonnegative low-rank matrix
data. We randomly generate n1-by-r matrix B and r-by-n2 matrix C with entries
uniformly distributed in the interval [0,1]. A is generated by normalizing BC to
ensure that each element belongs to [0,1]. Notice that we have rank(A0)=r. We set
n1 = 500,n2 = 800 and n1 = 1000,n2 = 800, and choose r= 40. We set the sampling
rate (sr) from 0.1 to 0.9 with step size 0.1. Table 1 reports the average results over

10 tests of CPU Time (CPU) and the residual (RSE) ‖A−Yc‖F‖A‖F
, where Yc is computed

matrix. According to the table, when sr is in between 0.1 and 0.5, the RSEs
of the proposed methods InRGD and InRGD-TS are smaller than those of RGD
and RCG. The nonnegativity constraint should be useful in the matrix recovery.
Also the computational times required by InRGD and InRCG are less than that
required by RGD and RCG. Because the cost of SVD decomposition is avoided, the
computational times required by InRGD-TS and InRCG-TS are always less than
that required by InRGD and InRCG. Moreover, the performance of InRCG and
InRCG-TS is comparable with InRGD and InRGD-TS, respectively.

Table 1: Average results of 10 tests related to the Cputimes and RES of the recovered matrices by
RGD, InRGD, InRGD-TS, RCG, InRCG and InRCG-TS on synthetic data.

n1 =500, n2 =800, r=40

sr
RGD InRGD InRGD-TS RCG InRCG InRCG-TS

CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE

0.1 700.7 0.593 709.7 0.380 175.8 0.380 242.6 0.583 445.5 0.294 173.6 0.294
0.2 595.5 0.197 701.6 0.105 179.2 0.105 887.9 2.994 905.3 0.021 365.3 0.021
0.3 683.6 0.048 488.4 9.17e-09 128.9 9.17e-09 1019.0 0.911 891.3 0.016 369.2 0.016
0.4 703.7 0.026 398.4 3.35e-09 102.3 3.30e-09 794.0 0.653 114.6 1e-09 46.9 8.99e-09
0.5 518.0 1.96e-09 234.9 1.90e-09 62.1 1.73e-09 162.1 3.85e-10 113.9 8.63e-10 43.8 4.53e-10
0.6 59.0 1.22e-09 52.3 8.82e-10 13.5 8.30e-10 46.5 3.06e-10 40.6 2.21e-10 17.0 2.21e-10
0.7 33.5 6.65e-10 32.6 5.14e-10 9.0 5.14e-10 32.1 1.72e-10 32.7 2.25e-10 14.0 2.17e-10
0.8 43.7 5.97e-10 42.1 4.67e-10 11.8 4.44e-10 38.3 1.77e-10 38.5 8.38e-11 16.8 3.36e-10
0.9 26.1 2.36e-10 25.0 2.82e-10 8.7 2.83e-10 27.3 9.70e-11 29.0 4.35e-11 12.9 4.58e-11

n1 =1000, n2 =800, r=40

sr
RGD InRGD InRGD-TS RCG InRCG InRCG-TS

CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE

0.1 1508 0.332 1534 0.224 415.5 0.224 2057.0 1.57 2086.1 0.2047 997.9 0.2047
0.2 1425 0.058 1153 7.57e-09 333.6 7.31e-09 1974.8 1.79 558.9 1.21e-09 253.1 1.21e-09
0.3 830.8 2.30e-09 298.3 2.28e-09 85.2 2.49e-09 611.7 6.06e-10 115.1 7.92e-10 54.9 7.92e-10
0.4 219.8 1.13e-09 185.7 1.19e-09 54.8 1.43e-09 158.8 4.87e-10 96.1 5.65e-10 45.2 5.65e-10
0.5 77.6 7.22e-10 71.4 1.06e-09 22.1 6.34e-10 79.6 1.74e-10 67.3 2.54e-10 31.7 2.54e-10
0.6 49.8 6.91e-10 49.8 6.91e-10 16.2 6.91e-10 53.3 1.08e-10 55.1 1.74e-10 26.9 1.74e-10
0.7 41.4 5.24e-10 41.1 4.49e-10 14.1 4.50e-10 47.1 1.54e-10 49.1 1.91e-10 24.5 1.91e-10
0.8 33.9 3.74e-10 33.8 3.74e-10 12.2 3.74e-10 38.8 1.67e-10 43.0 1.79e-10 22.3 1.79e-10
0.9 43.6 4.91e-11 43.9 4.91e-11 15.4 4.91e-11 43.6 4.32e-11 47.8 2.67e-11 23.9 2.67e-11
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Next we check the recovery ability of our algorithms as a function of rank(X)
and the proportion ρ of observed nonnegative entries. The data sets are generated
randomly similar to Table 1. We fix the matrix size to be n=n1 =n2 =400, and test
different values of ρ and different values of rank(X)/n. For each pair (rank(X)/n,ρ),
we simulate ten trials and declare a trial to be successful if the recovered matrix
X satisfies ‖X−A‖F‖A‖F

≤ 10−5. Fig. 2 reports the recovery results of different methods

(InRGD, InRCG, RGD and RCG). In the figure, a black pixel refers to failure
case and a white pixel refers to a success case. It is clear from the results that
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Figure 2: Recovery for varying matrix ranks and sampling numbers under the same matrix size n=400.
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Table 2: Average results of 10 tests relate to the CPU and RES of the recovered matrices by RGD,
InRGD, InRGD-TS, RCG, InRCG and InRCG-TS on synthetic data with Gaussian noise.

n1 =400, n2 =400, r=20, σ=0.1

sr
RGD InRGD InRGD-TS RCG InRCG InRCG-TS

CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE

0.1 1.56e+02 6.70e-01 1.78e+02 4.03e-01 6.08e+01 4.01e-01 2.17e+02 1.53e+00 2.37e+02 4.10e-01 1.21e+02 4.07e-01
0.2 1.59e+02 3.42e-01 1.82e+02 2.89e-01 6.31e+01 2.87e-01 2.19+02 4.66e-01 2.50e+02 2.90e-01 1.26e+02 2.91e-01
0.3 1.60e+02 2.15e-01 1.84e+02 2.09e-01 6.65e+01 2.09e-01 2.22e+02 2.16e-01 2.49e+02 2.08e-01 1.28e+02 2.08e-01
0.4 1.65e+02 1.63e-01 1.85e+02 1.61e-01 6.89e+01 1.63e-01 2.27e+02 1.63e-01 2.49e+02 1.63e-01 1.30e+02 1.63e-01
0.5 1.67e+02 1.32e-01 1.66e+02 1.32e-01 7.09e+01 1.32e-01 2.26e+02 1.32e-01 2.29e+02 1.32e-01 1.33e+02 1.32e-01
0.6 1.70e+02 1.11e-01 1.71e+02 1.11e-01 7.42e+01 1.11e-01 2.29e+02 1.11e-01 2.32e+02 1.11e-01 1.35e+02 1.11e-01
0.7 1.71e+02 9.69e-02 1.72e+02 9.69e-02 7.39e+01 9.69e-02 2.34e+02 9.69e-02 2.35e+02 9.70e-02 1.36e+02 9.70e-02
0.8 1.04e+02 1.07e+02 1.07e+02 8.72e-02 4.62e+01 8.72e-02 1.40e+02 8.72e-02 1.37e+02 8.72e-02 8.22e+01 8.72e-02
0.9 1.85e+02 1.86e+02 1.86e+02 7.89e-02 8.64e+01 7.98e-02 2.44e+02 7.98e-02 2.44e+02 7.98e-02 1.49e+02 7.98e-02

n1 =400, n2 =400, r=20, σ=0.01

sr
RGD InRGD InRGD-TS RCG InRCG InRCG-TS

CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE

0.1 1.53e+02 4.40e-01 1.58e+02 3.00e-01 5.97e+01 3.01e-01 2.18e+02 1.02e+00 2.75e+2 2.73e-01 1.50e+02 2.75e-01
0.2 1.83e+02 8.51e-02 1.55e+02 1.87e-02 6.75e+01 1.87e-02 2.76e+02 2.17e+00 6.32e+01 1.87e-01 3.48e+01 1.87e-02
0.3 1.11e+02 1.27e-02 3.27e+01 1.27e-02 1.31e+01 1.27e-02 2.70e+02 4.76e-01 2.00e+01 1.27e-02 1.08e+01 1.27e-02
0.4 1.95e+01 1.04e-02 1.65e+01 1.04e-02 6.88e+00 1.04e-02 1.53e+01 1.04e-02 1.03e+01 1.04e-02 5.70e+00 1.04e-02
0.5 2.69e+01 8.96e-03 1.62e+01 8.96e-03 6.64e+00 8.96e-03 2.47e+01 8.96e-03 1.16+01 8.96e-03 6.44e+00 8.96e-03
0.6 7.64e+00 7.99e-03 7.14e+00 7.99e-03 3.28e+00 7.99e-03 8.14e+00 7.99e-03 7.76e+00 7.99e-03 4.23e+00 7.99e-03
0.7 5.92e+00 7.29e-03 6.02e+00 7.29e-03 2.61e+00 7.29e-03 6.92e+00 7.29e-03 7.63e+00 7.29e-03 4.53e+00 7.29e-03
0.8 4.63e+00 6.78e-03 4.86e+00 6.78e-03 2.06e+00 6.78e-03 5.59e+00 6.78e-03 5.75e+00 6.78e-03 3.52e+00 6.78e-03
0.9 4.13e+00 6.35e-03 3.83e+00 6.35e-03 1.91e+00 6.35e-03 4.56e+00 6.35e-03 5.39e+00 6.35e-03 3.02e+00 6.35e-03

n1 =400, n2 =400, r=20, σ=0.001

sr
RGD InRGD InRGD-TS RCG In-RCG InRCG-TS

CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE CPU RSE

0.1 1.72e+02 4.50e-01 1.81e+02 3.03e-01 7.06e+01 3.02e-01 2.69e+02 1.12e+00 2.67e+02 2.67e-01 1.47e+02 2.73e-01
0.2 1.81e+02 8.87e-02 1.18e+02 1.79e-03 4.84e+01 1.79e-03 2.81e+02 2.42e+00 2.72e+02 2.52e-02 1.47e+02 2.52e-02
0.3 1.48e+02 1.26e-03 3.06e+01 1.26e-03 1.25e+01 1.26e-03 2.76e+02 3.21e-01 2.73e+01 1.26e-03 1.43e+01 1.26e-02
0.4 5.08e+01 1.02e-03 2.56e+01 1.02e-03 1.01e+01 1.02e-03 4.62e+01 1.02e-03 1.49e+01 1.02e-3 7.94e+00 1.02e-02
0.5 1.51e+01 8.09e-04 1.28e+01 8.90e-04 5.11e+00 8.90e-04 1.44e+01 8.90e-04 1.04e+01 8.90e-04 5.48e+00 8.90e-04
0.6 1.27e+01 7.92e-04 1.10e+01 7.92e-04 4.75e+00 7.92e-04 1.20e+01 7.92e-04 9.89e+00 7.92e-04 5.54e+00 7.92e-04
0.7 8.78e+00 9.69e-02 7.31e+00 7.31e-04 3.08e+00 7.31e-04 9.50e+00 7.31e-04 9.28e+00 7.31e-04 4.89e+00 7.31e-04
0.8 6.59e+00 8.72e-02 6.70e+00 6.76e-04 3.06e+00 6.76e-04 7.83e+00 6.76e-04 8.38e+00 6.76e-04 4.48e+00 6.76e-04
0.9 3.69e+00 7.89e-02 3.88e+00 6.35e-04 1.75e+00 6.35e-04 4.36e+00 6.35e-04 7.66e-01 6.35e-04 3.19e-01 6.35e-04

the nonnegativity projection used in InRGD and InRCG can help in the recovery
underlying nonnegative low rank matrix.

Finally, we would like to show the performance of the proposed algorithm when
a Gaussian noise of zero mean and variance σ (=0.1,0.01,0.001) is added to nonneg-
ative low rank matrices. The residuals of the computed solutions by the proposed
algorithms (InRGD and InRGD-TS) are reported in Table 2. In the table, the
results by the other Riemannian algorithms (InRCG and InRCG-TS) and the Rie-
mannian algorithm without using nonnegativity projection (RGD and RCG) are
also reported. Similar to Table 1, it is clear that the performance of the proposed
algorithms (InRGD and InRGD-TS) is better than that of RGD and RCG when sr
is small.
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4.2 Real image data

In this experiment, we present image (nonnegative pixels) completion results. The
original two images “Barbara” and “Pepper” with sizes n1×n2=256×256 are shown
in Fig. 3. Let Ω be the set of observed entries that are generated randomly. ρ=
|Ω|

n1×n2
is the percentage of observed entries. Similar to the synthetic data case, we

compare our proposed InRGD and InRCG methods with the RGD and RCG matrix
completion methods. Tables 3 and 4 show that the InRGD and InRCG methods
perform better that the RGD and RCG methods in the RES, PSNR and SSIM
values with different sampling rates, different ranks. We need to remark that if RSE
is greater than 1, i.e., the algorithm failed to recover the underlying image, then “-”
is used in Tables 3 and 4 to indicate these situations. The original images and some
recover results under different sampling rates and ranks are given in Fig. 3.

sr=0.5, r=35 (22.00, 0.520) (24.04, 0.537) (20.74, 0.511) (23.82, 0.534)

sr=0.6, r=40 (25.73, 0.607) (25.97, 0.612) (25.37, 0.607) (25.96, 0.609)

sr=0.5, r=35 (23.18, 0.485) (24.72, 0.505) (16.47, 0.459) (24.69, 0.499)

sr=0.6, r=40 (26.47, 0.576) (27.08, 0.583) (25.68, 0.572) (26.90, 0.584)

Figure 3: Recovered images by RGD, In-RGD, RCG, In-RCG algorithms with different sampling ratios
and rank choices. The original images, the observed images, the recovered images by RGD, In-RGD,
RCG and In-RCG are respectively listed from the first column to the fifth column. The corresponding
sampling rates, the rank assumptions, psnr and ssim values are listed at the bottom of every images.
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Table 3: The RES, PSNR and SSIM values of the recovered results by RGD, InRGD, RCG and InRCG
on “Barbara”.

r sr
RGD InRGD RCG InRCG

RES PSNR SSIM RES PSNR SSIM RES PSNR SSIM RES PSNR SSIM

20

0.2 0.509 10.78 0.089 0.320 14.83 0.141 - - - 0.322 14.77 0.142
0.3 0.210 18.47 0.321 0.178 19.90 0.340 0.466 11.55 0.295 0.172 20.22 0.347
0.4 0.123 23.12 0.453 0.122 23.21 0.456 0.123 23.10 0.455 0.122 23.21 0.456
0.5 0.106 24.40 0.503 0.106 24.42 0.503 0.106 24.40 0.503 0.106 24.42 0.503
0.6 0.100 24.96 0.524 0.100 24.96 0.524 0.100 24.96 0.524 0.100 24.96 0.524
0.7 0.096 25.32 0.547 0.096 25.32 0.547 0.096 25.32 0.547 0.096 25.32 0.547
0.8 0.093 25.53 0.556 0.093 25.53 0.556 0.093 25.53 0.556 0.093 25.53 0.556

25

0.2 0.621 9.06 0.047 0.375 13.45 0.092 - - - 0.375 13.44 0.098
0.3 0.296 15.50 0.262 0.201 18.84 0.312 - - - 0.206 18.65 0.304
0.4 0.139 20.05 0.452 0.132 22.54 0.459 - - - 0.132 22.50 0.458
0.5 0.100 24.91 0.532 0.101 24.86 0.531 0.100 24.91 0.531 0.101 24.86 0.531
0.6 0.089 25.89 0.571 0.089 25.89 0.571 0.089 25.89 0.571 0.089 25.89 0.571
0.7 0.084 26.39 0.593 0.084 26.39 0.593 0.084 26.39 0.593 0.084 26.39 0.593
0.8 0.082 26.70 0.608 0.082 26.70 0.608 0.082 26.70 0.608 0.082 26.70 0.608

30

0.2 0.681 8.25 0.033 0.408 12.71 0.078 - - - 0.399 12.89 0.079
0.3 0.390 13.10 0.186 0.257 16.72 0.233 - - - 0.254 16.82 0.238
0.4 0.181 19.75 0.412 0.152 21.26 0.429 - - - 0.151 21.36 0.432
0.5 0.120 23.31 0.631 0.108 24.24 0.536 0.115 23.73 0.529 0.108 24.22 0.534
0.6 0.085 26.29 0.598 0.085 26.30 0.598 0.085 26.29 0.598 0.085 26.30 0.598
0.7 0.078 27.11 0.626 0.078 27.12 0.626 0.078 27.11 0.626 0.078 27.12 0.626
0.8 0.073 27.62 0.645 0.073 27.62 0.645 0.073 27.62 0.645 0.073 27.62 0.645

35

0.2 0.699 8.03 0.034 0.447 11.91 0.072 - - - 0.422 12.42 0.077
0.3 0.496 11.01 0.115 0.296 15.49 0.179 - - - 0.296 15.50 0.180
0.4 0.235 17.50 0.358 0.175 20.05 0.387 - - - 0.181 19.78 0.391
0.5 0.140 22.00 0.520 0.111 24.04 0.537 0.162 20.74 0.511 0.114 23.82 0.534
0.6 0.086 26.22 0.607 0.085 26.38 0.608 0.086 26.22 0.607 0.091 25.76 0.605
0.7 0.073 27.62 0.649 0.073 27.63 0.649 0.073 27.62 0.649 0.073 27.63 0.649
0.8 0.068 28.30 0.674 0.068 28.30 0.674 0.068 28.30 0.674 0.068 28.30 0.674

40

0.2 0.738 7.57 0.028 0.489 11.13 0.062 - - - 0.454 11.77 0.069
0.3 0.590 9.50 0.077 0.344 14.19 0.135 - - - 0.335 14.41 0.142
0.4 0.316 14.93 0.282 0.201 18.84 0.340 - - - 0.198 18.97 0.343
0.5 0.163 20.69 0.504 0.134 22.38 0.508 0.279 16.01 0.476 0.132 22.51 0.505
0.6 0.091 25.73 0.607 0.089 25.97 0.612 0.095 25.37 0.607 0.089 25.96 0.609
0.7 0.073 27.68 0.666 0.073 27.70 0.666 0.073 27.68 0.666 0.073 27.7 0.666
0.8 0.064 28.85 0.697 0.064 28.85 0.697 0.064 28.85 0.697 0.064 28.85 0.697

5 Conclusions

In this paper, Riemannian optimization methods are proposed to recover a nonneg-
ative low rank matrix from its partial observed entries. With the underlying matrix
incoherence conditions, we show that when the number m of observed entries are
sampled independently and uniformly without replacement, the inexact Riemannian
gradient descent method can recover the underlying n1-by-n2 nonnegative matrix of
rank r provided that m is of O(r2slog2s) with s=max{n1,n2}. Numerical examples
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Table 4: The RES, PSNR and SSIM values of the recovered results by RGD, InRGD, RCG and InRCG
on “Pepper”.

r sr
RGD InRGD RCG InRCG

RES PSNR SSIM RES PSNR SSIM RES PSNR SSIM RES PSNR SSIM

20

0.2 0.600 10.26 0.079 0.332 15.39 0.148 - - - 0.384 14.12 0.094
0.3 0.267 17.27 0.277 0.192 20.13 0.319 0.556 10.91 0.258 0.228 18.66 0.273
0.4 0.134 23.24 0.419 0.134 23.25 0.419 0.134 23.28 0.418 0.137 26.10 0.425
0.5 0.118 24.39 0.472 0.117 24.41 0.473 0.118 24.39 0.472 0.111 24.93 0.489
0.6 0.111 24.92 0.491 0.111 24.92 0.491 0.111 24.92 0.491 0.100 25.82 0.531
0.7 0.106 25.27 0.511 0.106 25.27 0.511 0.106 25.27 0.511 0.093 26.43 0.559
0.8 0.104 25.49 0.528 0.104 25.49 0.528 0.104 25.47 0.528 0.900 26.74 0.573

25

0.2 0.636 9.74 0.052 0.378 14.26 0.094 - - - 0.385 14.12 0.094
0.3 0.380 14.22 0.212 0.225 18.76 0.283 - - - 0.228 18.66 0.274
0.4 0.161 21.67 0.406 0.138 23.01 0.418 0.171 21.17 0.402 0.137 23.10 0.425
0.5 0.112 24.86 0.488 0.110 24.95 0.489 0.112 24.81 0.488 0.111 24.93 0.489
0.6 0.101 25.75 0.529 0.100 25.83 0.532 0.101 25.74 0.529 0.100 25.83 0.531
0.7 0.093 26.42 0.559 0.093 26.43 0.559 0.093 26.42 0.560 0.093 26.43 0.559
0.8 0.090 26.74 0.573 0.090 26.74 0.573 0.089 26.74 0.573 0.089 26.75 0.573

30

0.2 0.654 9.51 0.038 0.404 13.69 0.080 - - - 0.405 13.66 0.077
0.3 0.456 12.69 0.175 0.260 17.50 0.234 - - - 0.259 17.56 0.243
0.4 0.222 18.89 0.367 0.164 21.49 0.400 0.675 9.23 0.330 0.158 21.87 0.405
0.5 0.116 24.55 0.496 0.111 24.91 0.502 0.118 24.36 0.495 0.115 24.89 0.503
0.6 0.092 26.54 0.558 0.091 26.60 0.559 0.092 26.54 0.558 0.091 26.60 0.559
0.7 0.084 27.33 0.585 0.084 27.34 0.585 0.083 27.33 0.585 0.083 27.34 0.585
0.8 0.079 27.82 0.607 0.079 27.82 0.607 0.077 27.82 0.607 0.079 27.82 0.607

35

0.2 0.705 8.85 0.034 0.437 13.02 0.079 - - - 0.424 13.26 0.079
0.3 0.524 11.44 0.113 0.300 16.26 0.185 - - - 0.298 16.32 0.185
0.3 0.281 16.82 0.318 0.187 20.39 0.369 - - - 0.196 19.99 0.363
0.5 0.135 23.18 0.485 0.168 24.72 0.505 0.293 16.47 0.459 0.114 24.69 0.499
0.6 0.091 26.65 0.569 0.101 26.82 0.572 0.092 26.58 0.570 0.089 26.86 0.572
0.7 0.077 28.09 0.613 0.078 28.09 0.613 0.077 28.08 0.614 0.077 28.10 0.614
0.8 0.071 28.79 0.636 0.071 28.79 0.636 0.071 28.79 0.636 0.071 28.79 0.636

40

0.2 0.736 8.48 0.027 0.481 12.16 0.061 - - - 0.456 12.64 0.065
0.3 0.567 10.75 0.070 0.338 15.25 0.137 - - - 0.336 15.28 0.136
0.4 0.392 13.96 0.250 0.223 18.84 0.323 - - - 0.221 18.92 0.320
0.5 0.183 20.55 0.451 0.138 20.04 0.473 0.361 14.67 0.422 0.131 23.44 0.477
0.6 0.093 26.47 0.576 0.138 27.08 0.583 0.101 25.68 0.572 0.088 26.90 0.584
0.7 0.071 28.69 0.631 0.071 28.77 0.631 0.072 28.69 0.631 0.071 28.76 0.631
0.8 0.065 29.57 0.663 0.065 29.59 0.682 0.065 29.58 0.663 0.065 29.58 0.663

are shown that the nonnegativity property would be useful in the matrix recovery.
In particular, we demonstrate the number of samples required to recover the under-
lying low rank matrix with using the nonnegativity property is smaller than that
without using the property. As a future research work, it would be interesting to
show the convergence rate of the inexact Riemannian gradient descent with i.i.d.
Gaussian noise.
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