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Melnikov Functions for a Class of Piecewise
Hamiltonian Systems
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Abstract This paper is concerned with the number of limit cycles for a
class of piecewise Hamiltonian systems with two zones separated by two semi-
straight lines. By constructing a Poincaré map, we obtain explicit expressions
of the first, second and third order Melnikov functions. In addition, we apply
their expressions to give upper bounds of the number of limit cycles bifurcated
from a period annulus of a piecewise polynomial Hamiltonian system.
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1. Introduction

In recent years, the research on non-smooth systems has attracted more and more
attention, especially on piecewise near-Hamiltonian systems, see [7,18,21,22] and the
references therein. One of important topics in bifurcation problems for piecewise
smooth systems is to study the number of limit cycles or periodic solutions of
them, which is an extension of the Hilbert’s 16th problem. As is known, there are
two main methods to investigate limit cycle bifurcations: the Melnikov function
method [1,2,6,7,12,15,19,24] and the averaging method [3,4,9,13,16,17]. It
was proved in [5, 14] that the above two methods are equivalent in studying the
number of limit cycles of planar C'* near-Hamiltonian systems or piecewise C'*>°
near-integrable systems in two or higher dimensional spaces.

In 2010, Liu and Han [12] considered a piecewise near-Hamiltonian system of
the form

&= Hf (z,y) +ef(x,y), 0
y:*H;»(I,y)+€g+(SC,y>7 ’
z <0,

i =H, (z,y) +ef (2,y),

y = —H;(l‘, y) + Gg_(l‘,y),
where HF, H;E, fE, 9T € C™ and € > 0 is a small real parameter, and established a
formula of the first order Melnikov function which was widely used in studying the

number of limit cycles bifurcated from periodic orbits, see [8,10,23] for example.
Recently, more general results have appeared for piecewise smooth systems with
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multiple zones [11, 18,20, 25]. For instance, Tian and Han [18] studied the num-
ber of limit cycles bifurcated from a period annulus of a class of planar piecewise
near-Hamiltonian systems with three different switching curves. The authors [11]
investigated limit cycle bifurcations in piecewise near-Hamiltonian systems with
multiple switching curves and obtained a formula of the first order Melnikov func-
tion. Yang, Yang and Yu [24] studied a planar piecewise Hamiltonian system with
two zones separated by the two semi-straight lines and presented expressions of the
first and second order Melnikov functions. In [2], Chen, Li and Llibre considered
piecewise smooth differential systems in R™ separated by a hyperplane and obtained
some recursion formulas of higher order Melnikov functions.

Motivated by the works mentioned above, in this paper, we consider a piecewise
Hamiltonian system of the form

{(E = Hy(x=y>6)7

Y= 7Hz(may76)a (11)

where

H+($7y7€)a (l‘,y) S E17

H(z,y,€) = {H(m,y,@a (z,y) € Za,

H*(x,y,¢) = HE (x,y) + eHi (2, y) + €HE (x,y) + - -, (1.2)

with Hzi(x,y) eC®, ¢=0,1,2,..., € > 0is a small real parameter, X; and X, are
the regions with a common boundary consisting of two semi-straight lines

lh:y=kx px>0

and
l2 Y= kaa p2x > Oa

where p1, ug = £1 with (kq, p1) # (ka, u2), see Fig.1. By constructing a Poincaré
map of system (1.1), we shall derive expressions of the first, second and third order
Melnikov functions.

The rest of this paper is organized as follows. In Section 2, we establish a
Ponincaré map of system (1.1) and present expressions of the first, second and
third order Melnikov functions. In Section 3, we give an application to illustrate
our results and estimate the number of limit cycles bifurcated from a piecewise
polynomial Hamiltonian system.

2. Expressions of Melnikov functions

Consider system (1.1). We make the following basic assumptions for the unper-
turbed system (1.1)].—¢ as in [11]:

(A1) There exist an interval J = («, 8) and two points Ag(h) = (ag(h), kiao(h)) €
{1 and Alo(h) = (alo(h), kgalo(h)) € [y such that for h € J

Hyf (Ao(h)) = Hy (Aso(h)) = h,

_ g (2.1)
Hy (Ao(h)) = Hy (A1o(h)).
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Figure 1. Phase portrait of system (1.1).

(A2) There is a family of closed orbits denoted by L, = L} U L?,h € J with
clockwise orientation where L} is defined by Hy (z,y) = h, (z,y) € %1, starting
from Ag(h) and ending at A1o(h), L7 is defined by H (x,y) = H™ (Ao(h)), (z,y) €
Yy, starting from A;g(h) and ending at Ag(h).

(A8) The arcs L} and L? (h € J) are not tangent to the switching lines /; and ls
at points Ag(h) and Ajg(h). In other words, for each h € J,

OHF OHF
O (Aro() )ty () + k2= O (Avo(h) ) aty () # 0,
ox dy (2.2)
OHF OHF '

- (As0(h)) ab(h) + ko o (Avo(h))ap(n) #0.

Our main goal is to study the number of limit cycles bifurcated from the period
annulus {Lp,h € J}. First of all, we give a definition of bifurcation function of
system (1.1). Consider the orbit of system (1.1) starting from Ag(h) € ;. For
sufficiently small |e| > 0, it has a first intersection point with the line I3, denoted
by

Aq(e,h) = (ale, h), kaa(e, h)). (2.3)
For the orbit of system (1.1) starting from Aj(e, h) € lo, we denote its first inter-
section point with the line [; by

B(e, h) = (ble, h), k1b(e, h)). (2.4)

See Fig.1 for illustration. For smoothness of Ag(h), A1p(h), A1(e, h) and B(e, h), we
have the following lemma from [11].

Lemma 2.1. Let assumptions (A1)-(A3) hold. Then the functions Ag(h), A10(h),
A1(e,h) and B(e, h) are C*° smooth with respect to (h,€).

Following [11,12], for any integer k& > 1, we can write for h € J and |e] > 0
sufficiently small

Hy (B(e, h)) = Hy (Ao(h)) =€F (h, €)
ko (2.5)
= Z eI M;(h) + O(e"1).

Here, the functions F'(h,€) and M;(h) in (2.5) are called a bifurcation function and
the jth order Melnikov function of system (1.1), respectively. The orbit from Ag(h)
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to B(e, h) defines a Poincaré map or return map of system (1.1). From [7], we have
the following bifurcation theorem.

Theorem 2.1. [7] Under the assumptions (A1) — (A8), suppose that for all 1 <
j < k-1 M;jh) =0 in (2.5) and that My(h) has at most | zeros in h € J,
multiplicity taken into account. Then for small |¢| > 0 system (1.1) has at most |
limit cycles bifurcating from the period annulus {Ly,h € J}, multiplicity taken into
account.

The aim of this paper is to develop formulas of the Melnikov functions up to
third order. From (2.5), it is obvious that for 1 < j <k

107Vt

M](h) = ﬁ del

(0, h), (2.6)

where V" (e,h) = Hy (B(e, h)).

Before presenting our main results, we first give two preliminary lemmas which
will be used in deducing expressions of M;j(h), Ma(h) and Ms(h) in (2.6). For
convenience, we introduce the following functions of h

vit (h) =H; (Ao(h)) — H (A1o(h)),

+ +
K () =25 (o) + k2% = (o)),
2 [+ 2+ 27t
K3(0) =2 (o) + 28 S (uo ) + BT (),
3yt 3yt 37+
K1) =55 (A1) + 3ka 528 (CAna() + 3K 502 (Auo(h)
s O3HE
+k§ 6y3 (Alo( )) (2.7)
+ +
Wi (1) =257 (o (1) + b 5 (o),
2 r7E 2 77+ 2 17t
W5 () =250 (A1) + 20 2 (1) + K225 (Ao(0),
3yt 377+ 37t
W) =20 (Aol >>+3k1§ 2 (Ao() + 382575 (Ao(0)

83Hi

Lemma 2.2. Under the notations in (2.7), we have for the function a(e, h) in (2.3)

2 0m) = K;((hh))

a0 ~ s (20 2k g{(hh)) R (ﬁiﬁ((h,f))g)

%(o, h) = 0+11 3 <6v3+(h) — 6K (h) ;1;((}2) — 3K75(h) Igﬁ((hh)) ) :
i (09~ 2h0 g () )
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Ki(h) vt (h) vt () ot (h) 2
K () K <2“2+ () = 2K (g~ K (2255 )

v 8
- () )

Proof. For |¢| > 0 sufficiently small, H(A; (e, h)) has the following Taylor ex-
pansion

3 o
HE(Ay (e, h)) =HE(Aro(h Zi' 5 Oh ) + O(e"), (2.8)

where Si(e, h) = H (A1 (e, h)).
By (2.3), taking the first order partial derivative of SijE (e, h) with respect to e,
we get

a8 OHE dale, h) OHE dale, h)
e (6 1) == —(Ai(e, h)) =5 — + k2 Dy (Ar(e b)) —5
OHE OH* dale, h)
(B ey + b2 (e ) 2B (2
It follows from (2.9) and the formula of K (h) in (2.7) that
S+ da
5 (0,h) = Kﬁ(h)a(o,h) = fE(h). (2.10)

Further, taking the partial derivatives with respect to € on the left and right hands
of (2.9), we can obtain that

O (b = (a;Hf (e 286D 1 T 4 ey 2
0TI ey 20 g P ey 225 )
. aage, h oy (65 (Ar(e, 1) + ko aayi (As(e, h))) . %
=% e + 2055 ey + BT (e )

(ag h)) ; (3? (Ar(e. ) +k25§j (4. h)>)82‘§;’“.

(2.11)
By (2.11) and the formulas of KX (h) and KZ(h) in (2.7), we have

2 qE a 24
o0 = K50 (S20.m) 4 K0 T2 0,m)

= £5(h). (212)
3 gt
Similarly, we can obtain Bd%(e, h) from (2.11) that

235+ (e.h) = (33Hi dale, h) PHE dafe, h)
¢ gale, )

De s Al ) =5 +kzax26y(‘41(€’h)) De

+ 2ks
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OPHE Oa(e, h) , PHE Oa(e, h)

axQé (A1(€,h)) e 2k28 8 2(141( h)) e +]€§
37t ale 37+ ale
B OIES SR R SIS =y
a(e 2+ 2gE
.(f’((aevh)> + (‘781{2 (Aie, h))+2k2%g (Ai(e, b)) + 13
2H* (e 2a(e, h 2HE
.‘98H2 (Ax(e, h))) 9 (&’h)a 8(62’ "y <aaf; (Ai(e,h))
2 i 2 77+
( h) 52Hzi ( h)\ 0%a(e, h)
o) 4 15T (e my 21 )
+ 30/ €
+ (86'1 (Au(e, h))+k28§ (Ax(e, h)))a 8(65 h)
37+ 37+ 37t
(8853 (Ar{esh) + 3o (e, ) + 3K T (s (1)
37t ale 277+
i (i) (a(ah)) +3( TR Chate) + 2k,
2HE 2H* a(e 2a(e
e (e + BT (e ) 2 T
+ :I:
+ <8§[ (A1(e, h)) +k288y (41 (e, h)))
3(1 €
9 8(637 h). (2.13)
From (2.13) and the formulas of K (h), KZ(h) and K (h) in (2.7), we obtain
3ot a " )
O3 0. =K (520 m) 4+ 8K T2 (0,h) - S 2 (0,h)
0%a
+KEW 20,1
=/5(h). (2.14)

From (2.10), (2.12) and (2.14), we can rewrite Hii(Al(e,h)) in (2.8) as

3
2(h) + o

SHA + 0. (2.15)

Hi(Av(e, h)) =H (Ao(h)) + ¢ ﬁ(h)+ 51

We obtain from (1.2) that
H*(Av(e, h),€) =Hy (Av(e, h)) + eHF (Av (e, h)) + € Hy (Av(e, h)) + € Hy (Av (e, b))
+ O(eh).

Combining (2.15) and the above equation, we have

62 63
(s ), €)= (- (Aao () + e 1) + S () + S35 (0) + 06 )
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62 63
(A (h) + e (0 + 5 () + G750 + O )
62 63
& (HE(Aua(h) + s (00 + 5 B0 + G I + O )

62 63
+ & (HF (Aol + 7500 + 5500 + ) +O() ).

Hence,
H=(As(e ), €) =Hg (Aro(h)) + € f5i () + HE (Avo() ) + & (o e () + i)
+ H (o)) + € (S (h) + 5 i5(0) + S5 (h) + HE (Ano (1))
+ O(eh). (2.16)
From (1.2) again

H*(Ao(h), €) = Hy (Ao(h)) + eH; (Ao(h)) + € Hy (Ao(h)) + € HF (Ao(h)) + O(e").
(2.17)

Then note that system (1.1) is Hamiltonian and
H+(A1(€7 h’)a 6) = H+(A0(h)7 6)'

Inserting (2.17) and the expansion of H (A1 (e, h),€) in (2.16) into the above equal-
ity, and comparing the like powers of €, we can obtain

FoL(h) + B (Avo(R)) = H (Ao(h)),
ST () + 5 () + FIF (Avo()) = H (Ao(h)) (218)

S () + S S5 () + H (Aso() = H (Ao(1)).

In the following we will solve 22(0, h), %(O,h) and %(O,h) from the three
equations in (2.18), respectively.
Firstly, substituting (2.10) into the first equation of (2.18), we have

K (h) 90, ) + Hif (Avo(h)) = Hi (Ao(h).

which implies that

@(0 h) = Hi (Ao(h)) — Hi (Aw(h)) _ v (R)
T K (h) T Ky (h)

o (2.19)

Secondly, combining (2.10), (2.12) and the second equation of (2.18), we have

5 (Kb (Ge000) "+ KT 0.) + KA MO0

+ H (Aio(h)) = Hf (Ao(h)).
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We can solve from the above equation that

0%a 1
C2(0,h) =———
862( ) K (h)

- wim (Geo.m)).

(28 (Aa(h) — 211 o) — 285 5 0.1

Substituting (2.19) into the above equation, we have

0%a 1 vy (h) v (h) \2
32O =5 0 (2u2+(h) ~ 2K 2 o5 K(j;(h)(Karl(h)) ) (2.20)

Finally, it follows from (2.10), (2.12), (2.14) and the third equation of (2.18)
that

a a 2 3
31'([( (h)(‘; (0, h)) +3K0+2(h)%(o,h) (32(0 h)+K0+1(h)g =20, h))

+ 5 (Kf;(h)(ga 0.n))" +K1+1(h)g 2, h)) + K () o

+ Hy (A1o(h)) = Hy (Ao(h)).

da

o (0.h)

We can solve from the above equation that

3a a
Z?(o, h) :KO;(h) <6H3+(A0(h)) — 6H (Ayp(h)) — 6K2+1(h)%(07 h)

—s(wh0m(220.m) + k0 22 0.m)

a 2 a
3G 52 (0,1) - 920, )~ Ky (1) (e 0,) )

Substituting (2.19) and (2.20) into the above equation, we obtain that

d3a 1 v (h) of (R) \?
CEREAT (6“; = 6ic 0 G 31 (g )
Ky () vy (h) vy’ (h)
3 g (240~ 250G~ Kan (5 55) )
K&(h) v (h v (h
O ey (2400~ 200 R — w00
of () \2 of (h) )’
() )~ (55) ) 220
Combining (2.19), (2.20) and (2.21) gives the conclusion of Lemma 2.2. This ends
the proof. O

Lemma 2.3. Under the notations in (2.7), we have for the function b(e, h) in (2.4)

Ko (h)

- 'Ul_(h) + Ka,_l(h)

ab 1 (

&(Oa h) :W Ui_(h))v
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% 1

_ s 2k )W) (K ()
R O] ( 20 00 2060 05 = 2 (i
N Ea) a0
— o () + 8 G (200 () = 2K ()0 = K(h)
W) 2 e g ) o W) (K
Gegan)) 50~ e (R @

Ty~ a0 () ) - (7

vf (h) \3 Koy (h) vf (h) vf (h)
: ( ) 3K(O)+1(h) oA 205 (h) — 2K, (h)

)
0 () ) 0 GG o (i

1

_ Wyo () _ _ vy (h)
= 60 (h) = 3 (= o (1) + K () o)

- _ oo () W) - _ oy oi (h)
) ( —2v, (h) + 2K11(h)K0+1(h) - QWOE(h) ( — vy (h) + Ko (h)—+~

— vt o 2
e () = 2168 )20 — K00 (L)) + K

vf () )2> _ Wa
Kg, (h) (W (h))?

(= vy (h) + Koy (h)

)\ Wi h)
) 35
Jal) o (h)

< — 205 (h) + 2K (h) 2~

Ko, (h)

(203 (h) — 2K7, (h)

ot (h) V) N2y L e (0 N2 Wig(h)
- Kb (5 5) )+ Kt (i Gs) — 5

vf(h)f) g W)

(= or )+ Koo
01

vi (h) N2 Wy (h) _ W)
. ) 76Wz‘1(h>(7vl (h)+K01(h)K$(h))}.
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Proof. For |¢| > 0 sufficiently small, H=(B(e, h)) has the following Taylor expan-
sion
+ + & 9l Vit 4
HiE(B(e, h)) = H (Ao(h))‘F;ﬁw(oa m)+0(),  (222)
where V:E(e, h) = HEX(B(e, h)).
Through a similar computing process as (2.9), (2.11) and (2.13), we have

ovE OH* OH* db(e, h)
B¢ (e7h)—< . (B(e,h)) + k1—+ 8y (B(€7h))>5e’ (2.23)
Vi 0*H}t 0*H;* L O HF
e o) =( T (Bl + 2hy G (e ) + 1 T (B ) )
ab(e,h)\> [(OHF OHFE 9%b(e, h)
(P (G e+ 1 O ey ) G
(2.24)
and
33‘/ii aSH;I: aSH:I: 283 ;
RE: (e,h)( g3 (Bleh) + 3k 5 a0 (Ble h) +3ki 55 5 (Ble, b))
PHF ab(e,h)\* O*HF
3 i ’ i
k5 (B(e,h))) (ae ) +3( 53 (Ble,h)) + 2k,
O*H* ,O?H*E db(e, h) 8%b(e, h
o e + R (e ) P Y
OHE OH* %b(e, h)
It is direct to see from (2.23) and the formula of W (R) in (2.7) that
+
PV (0,0) = WE R 2(0.) = g (0. (2.26)
Oe Oe ’
From (2.24) and the formulas of W (h) and W3 (h) in (2.7), we have
D?VE ob d%b
(0.0 = W) (5/01) WM T 0.0) = gh(h).  (2:27)

Based on (2.25) and the formulas of W (h), W (h) and W (k) in (2.7), we obtain

317+ 2
88‘/3 (0,h) =W (h)(gb(o h)) +3W5(h%(o,h) ‘;2(0 h)
3
P 22 (0.h)

=g (h). (2.28)
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By (2.26)-(2.28), H(B(e, h)) in (2.22) can be expressed as
2 &3

€

51 g5(h) + O(eY).  (2.29)

H(B(e, h)) = H; (Ao(h)) + eg;i (h) +
We obtain from (1.2) that
H™(B(e, h), ) =Hy (B(e,h)) + eHy (B(e, h)) + € Hy (B(e, h)) + e’ Hy (B(e, h))
+ O(e").
Combining the expansion of H; (B(e, h)) in (2.29) and the above equation, similar
to (2.16), we have
_ _ _ _ 1 _ _
H™(B(e, h), €) =Hg (Ao(h) + €92 (0) + HT (Ao(R))) + (539 (R) + g (h)
_ 1 _ 1 _ _ _
+ Hy (Ao(1))) + € (590(h) + 5;9m2(R) + 92 (k) + Hy (Ao(h)))
+ O(eh). (2.30)
Note that system (1.1) is Hamiltonian and
Hi(Al(Ea h)7 6) = Hi(B(ea h)a 6)'

Substituting (2.30) and the expansion of H~(Aj(e, h),€) in (2.16) into the above
equality, we have

Hy (Aso() + e foa (h) + By (Aso()) + € (5 Sz () + Fiz (1) + H (Aso(n))
+ & (o fm®) + o) + F(h) + Hy (Ao(R)) +O(e)

= Hy (Ao(h)) + ¢ (g5, () + Hy (Ao(h))) + € (5y05a(1) + a13 () + Hy (Ao(n) )

+ 63(%953%) + %gl}(h) + g9, (h) + Hy (Ao(h))) 4O,

(2.31)
Comparing the like powers of € on the left and right sides of (2.31), we have
for(h) + Hy (Aro(h)) = go1(h) + Hy (Ao(h)),

S () S () + Hy (Aso() = g (h) + 953 () + Hiy (Ao(h),  (2:32)
S0+ 5y Fiah) + F () + Hy (Aio(R) = 5103(h) + 5,95a(h) + g3 ()

+ Hy (Ao(h)).

In the following we will solve %(0, h), %(O,h) and S—Z’(O, h) from the three
equations in (2.32), respectively.
Firstly, substituting (2.10) and (2.26) into the first equation of (2.32), we have

da ob

Ky () 5 (0,h) + H (Aso(R) = W () 50, ) + Hy (Ao(h).



134

W. Hou & S. Liu
We can solve from the above equation that

0b 1
e (0.h) = o

L - _,,,0a
W1 (h) <H1 (Aro(h)) = Hy (Ao(h)) + Km(h)E(O, h)).

Then by (2.19) in Lemma 2.2 and the formula of vi-(h) in (2.7), we have

b 1 _ K (h)
&(O,h)w(—vl(h)nL oL vf’(h)).

K(Tl(h) (2.33)

Secondly, substituting (2.10), (2.12), (2.26) and (2.27) into the second equation
of (2.32), we have

3 (K (Gr00) + Kn530.0) + Krmeo.n

2
+ (o) = 5 (W) (G0.0) W (055 010 ) 4+ 75,0
0b

: &(07 h) + Hy (Ao(h)).

We can solve from the above equation that

5 0.1 = <2H2(A10(h)) ~ 2H; (Ao(R) + 2K (1) 9 (0, )
0b

Oe

Wi 220.0) + K (1) 22 0.0) + Ko (231
(B0,m)" - wem (220, h>)2>.
Then from (2.19), (2.20) and (2.33), we have
#o 1 . (b Wh) (Ko (h)
5 OW =5= 5 ( = 20y () 265 () (2 0% — 20k (oot ()

K (h)
UJr

2y~ )

N ) Walh) (Ka()
() KW G~ T ()

vy ()
(2.35)

Finally, inserting (2.10), (2.12), (2.14) and (2.26)-(2.28) into the third equation
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of (2.32), we have

a 2a 34
i (K (0.m) "+ 3rmm 5 0.0 - T2 + Knt) 55 0.1))

83(
+—;!(}( (h)(g“(o h)) 4—l(ﬂ(h)g - (0, h)>-+l(m(h)ga(0,h)

H (o) = 55 (Ws(h) (G0.m) "+ 3, 5200 55

G0 ) o (Wi (G0m) + Wi G2 0m) + W ()

L ob
Oe

(0,h) + Wy (h)

(0,h) + Hy (Ao(h)),

which implies that
0%b 1 _ 0% oa 0%a
9 +5(0,h) = W()_l(h) (K (h)a 5(0,h) + 3Ky (h) e (0,h) - FEl (0,h)

+ Kqy(h) - (g“(o h)) + 3Ky (h )‘;22 (0, 1) + 3K 3 (h)

(a“ (0, h)) + 6K2’1(h)%(0, h) — 6uy (h) — 3W5(h)

Oe
0b b ob

S0+ 5 01) = W () (52(0,)) = 3 ()

T —swim)(2o.m)’ 6W2‘1(h)gi(0,h)>. (2.36)

Substituting (2.19)-(2.21), (2.33) and (2.35) into (2.36), we have

0= T { 0 <6”;(h) Baciy K?(hfz)) - ggg (e
210 S0 i (L)) s (7 )*
) K$(h)<;§ﬁ(<]lfz>>3> o K;(ZZ)) (2 (0 = 2850 +1((;2)
— Kgh(h) (;gl((hlz) )+ Kgg(h)(lgl((’z) )+ 32%% (205 ()
9K, (h) Igl((h}z) ~ K (2 +((hh))) )+ 3Kf2(h)<;§1((h}3))2
T 6K (h) K(;((IZ)) ~ 6v5 (h) - (VVVVO%E(%))Q (—or () + K )%)
- ( ~ 205 () + 2K, (A) Igl(fh’) 2 (e &(h)%)

+

Kot () (o ) — oz (0 L) gt o () 2
Ty @ () = 2K )2 o — K (S 55) )
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_ vf (h) N2 Wgy(h) < )
R0 (5 G5) — i (0T B+ Kot 1 o)
_ We(h) W _ vf(h _
ey (7 )+ K510 32 ) W01 ( 20 ()
() W) < ) o1(h)
+2K11(h)K0+1(h) *ZWN)( 1<h>+K01(h> A0 )> 0
_ + N ( ) + U+(h) 2 (h)
(2U2 (h) 2K11(h) K01(h) KOQ(h)(KE"l(h)) ) + 02( )(K{ﬁ(h))
_Weh - LW N2\ W)
W (7 00+ K2 o) > S
i) N W of (h)
RG] = g (= )+ Ka e gs) o (2:37)
This ends the proof. O

Based on the previous discussion, now we present the explicit formulas of the
first, second and third order Melnikov functions of piecewise Hamiltonian system

(1.1).

Theorem 2.2. Consider system (1.1) with the assumptions (A1)-(A38). The first
order Melnikov function of system (1.1) is given by

Wi (-
Ma(h) = (— 5 (h)) +of (b,

where Wi (h) and viE(h) are defined in (2.7).
Proof. From (2.6), the first order Melnikov function M;j (k) of system (1.1) is

Mi(h) = a(;/o (0, h). (2.38)
Substituting (2.26) and (2.33) in Lemma 2.3 into (2.38), we have
M (h) =155 (1) 20 (0, )
_Wei(h) _ Ko (h)
_W&(h) (— vy (h) + Kgé(h) vf(h)>, (2.39)

where v (h), Wi (h) and K (h) are defined in (2.7).

We claim that N B
Woi(h) Koy (h)
W (h) Kgy (h)

=1. (2.40)
In fact, noting that

Ao(h) = (ao(h), klao(h)) and Alo(h) = (alo(h), kgalo(h))7
and differentiating two equalities in (2.1) with respect to h, we can obtain

oHF

+ +
(A5 (o + k2 2255 g ) ) = (205 o)+ 5 22 (0 a0) = 1,

(2.41)
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(Ao(h)) + k1

<8H0_ OHy
ox dy
It follows from (2.41) that

(Ao ) ab(k) = (%52 (Aro(0) + ka0 (Aro(0) o).

20 (Ao () + b1 255 (Ao () 25 (Ao(h)) + ka2 (Aro(R)

0
d =1
_ P — T+ I 9
85;0 0 "5; (Ao(h)) Bé{g (A1o(h)) + k2 85; (A1o(h))

)
(Ao(h)) + ks
(

which means that (2.40) holds.
By (2.39) and (2.40), we obtain the formula of the first order Melnikov function

.
M = o (— vl(h)> o (h)

This finishes the proof. O

Remark 2.1. By applying the more general result of the formula of the first order
Melnikov function in [11], we can give a shorter proof of Theorem 2.2. From [11],
the first order Melnikov function of system (1.1) is

Hf,(Ao) + k1 Hg, (Ao)
Hg, (Ao) + k1Hg,(Ao)

M; (h) :/A —H} dx — Hy dy +
AoAio

//\ —Hy,dx — Hy,dy.
A10Ao

We can prove that the formula of the first order Melnikov function in Theorem 2.2
is equivalent to the above formula. In fact,

Hi" (Ag) + k1HJ;J(A0)
Hg, (Ao) + k1Hg, (Ao)
_ / dHF HS_;(AO) + kleg_;(AO) /
AroAo Hg, (Ao) + k1Hg, (Ao)
Wi ()
W1 (h)

M, (h) ://\ Hidx + H{ dy + //\ Hy,dx + Hy,dy
A10A0 AOA10

dH{

—

AoAio

= H; (Ao(h)) — H (A1o(h)) +

_ Worlh) [ _
—ot 0y B (- ocw),

(1 Cana(h) = Ay (Aol

Theorem 2.3. Consider system (1.1) with the assumptions (A1)-(A3). If Mi(h) =

0, then the second order Melnikov function of system (1.1) is given by

_ Wai(h)
Woy (h)

Mo (h) Moy (h) + Maz(h),

where

My (h) = —vy (k) + Ky (h)

vy 02(h) ( v (h) \2
(), Knlh) <h>)),

K (h) 2 \Kg(h
vy o vl
Mas(h) = vi (h) — Ky (h) K1+((hh)) B KOQQ(h) <K1+((hh))>27
01 01

WE(h), K& (h), K& (h), K& (h), vii(h) and v (h) are defined in (2.7).
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Proof. From (2.2) and (2.7), we know that Wi (k) # 0. Then it follows from
(2.39) that M;(h) =0 if and only if

ob
P 0.n) = (2.42)
O
According to (2.6), the second order Melnikov function My (h) of system (1.1) is
1 92Vy"
My (h) = ——2 . 2.4
2 () =g T8 (0,1) (243

By (2.27) in Lemma 2.3 and (2.42), the function Ms(h) in (2.43) can be rewritten
as

wy) <V 0
W(;'[ _,..0a
=S ( (1) + 2653 () 92 (0, )
K ()22 0.0 +K02(h)<22(0, h)) ) (2.44)

Inserting (2.42) and the expressions of %(0, h), %(O,h) in Lemma 2.2 into
(2.44), we obtain that

Wi (h B by Kg(h) £ vf(h) \2
00 =2 G < 0 K+ 5 () )
Wi (h) Ky (h) vl (h)  Kgy(h) ¢ vy (h) \?
e e (0 R0 - R ) )
)y (k) + Maa(B) (2.45)
Woi (h) ’
where where M (h) and Mag(h) are defined in Theorem 2.3. This completes the
proof. O

Theorem 2.4. Consider system (1.1) with the assumptions (A1)-(A3). If My(h) =
Ms(h) =0, then the third order Melnikov function of system (1.1) is given by

Woi (h)

Ms(h) = 35 )

Ms1(h) + Msa(h),

’Uii_ h Ki&-Q h Uii‘ h 2 K+ h Uii_ h 3
M3(h) = v3 (h) — K3, (h) Kgrl((h) 2( )<K3L1((h))) N OZ‘( )(K;f(h)))
K (h) Kg(h) vf (h)
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Wai(h), Kqi(h), Kaz(h), Kgs(h), Kii(h), Ki5(h), K3 (h), v (k) and vz (h) are
defined in (2.7).

Proof. Note that Wi5(h) # 0. From (2.39) and (2.44), it is easy to see that
M (h) = Ma(h) = 0 if and only if

0b 9%b

5(0.h) = Z5(0,m) = 0. (2.46)

According to (2.6), the third order Melnikov function of system (1.1) is

1 83VO+

5 g (0h). (2.47)

M3z (h) =

It follows from(2.28), (2.36), (2.46) and (2.47) that

Wi (h) 0%

Ms(h) === 5a (O:h)
— W—E(h) — 0%a oa 8%a
—W <K () g (0 1) + BKG3(R)==(0, h) - 50, h) + Ky (h)
(520 + 3K 0 S a0, + 3K (Se0.)
+6K21(h)g (0,h) — 6vg (h)>~ (2.48)

Based on (2.40) and Lemma 2.2, the third order Melnikov function Mjz(h) in
(2.48) can be rewritten as

Ma(h) _gggg [7 vy + Ky (h) ;%((hh)) N K;Z(h) (;iﬁ((hh)))? N ng(h) (21;((’"2))3
+ 2&2:; (v () = K, () }%((’Z)) - K(%(h) ( ;iﬁ((hh))y) ?,%E:i 21;(83)
(st — 5 Kgﬁ ((hh)) - K(%(h) (Ig(h}j))?) + [vi () - K3, (h) %((h}z)
G N A e
G ) R o (50 - a4
ot
' (K:)ﬁ((hh)))Q)
Woi (h)

= Ms1(h Msa(h),
Wes () 31(h) + M32(h)

where Msz;(h) and M3a(h) are defined in Theorem 2.4. The proof is completed.
O
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AN

Figure 2. Phase portrait of system (3.1).

3. Applications

In this section, as an application of the main results, we consider a Hamiltonian

system
. (_i) +e€ (ng/(y)> + €2 (Hi(y)) ) (z,y) € X1,

) Hy'(9) H;'(y) .
(59 e (). .
—T 0 0
where 0 < e K 1,
m+1 ) m+1 .
Hi(y) =Y afy', HY(y) = > by, (3:2)
i=0 i=0

m > 1 is an integer, ¥; and X, are the regions bounded by the two semi-straight
linesl; :y=2, x>0and ly : y = —z, x > 0. See Fig.2 for illustration.

Obviously, the unperturbed system (3.1)|c—o is Hamiltonian with the following
Hamiltonian function given by

1
H(z,y) = 5(@”2 +97),

and has a family of periodic orbits with clockwise orientation denoted by

1
Ly = {(I,y)|§(5€2 + y2) = h’}v
with h > 0. In this case, we have Ag(h) = (V'h, Vh) and Ajo(h) = (vVh, —V'h). For
any integer m > 1, we have the following result for piecewise polynomial Hamilto-
nian system (3.1).

Theorem 3.1. If the first order Melnikov function Mi(h) is not zero identically,
then for sufficiently small |e] > 0, system (3.1) has at most [%] limit cycles bifur-
cated from the period annulus Ly, multiplicity taken into account, where [-] denotes
the integer part function. Moreover, this upper bound can be reached.
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Proof. According to Theorem 2.2, the first order Melnikov function of system
(3.1) is
_Wai(h)

M) =3 )

(—vp (b)) + i (h). (3-3)
Next, we compute the coefficients W (h) and vit (k). For convenience of calcu-

lation, we discuss the case m odd and the case m even, respectively.
For m is even, we compute from (2.7) that

Wi (h) = 2vh, W5, (h) = 2Vh, (3.4)
v (h) =2 ad, (V)Y T, o () =2 ag; (V)T (3.5)
§=0 j=0

Substituting (3.4) and (3.5) into (3.3), we have

o3

My(h) =2Vh (a3;,y — ag;q)h . (3.6)
§=0
For m is odd, by direct calculation, we have
m/2—1 m/2—1
Uf(h) =2 a;_jJrl(\/};)QjJrla vy (h) =2 a2—j+1(\/};)2j+1- (3.7)
Jj=0 j=0
Substituting (3.4) and (3.7) into (3.3), we can obtain
myt
My(h) =2vh Y (a3, — ag;iq)H. (3.8)
§=0

From (3.6) and (3.8), it is easy to observe that M;(h) has at most [%] zeros in h
on (0, 400), multiplicity taken into account. Hence, by Theorem 2.1, system (3.1)
has at most [%] limit cycles bifurcated from the period annulus Lj, multiplicity
taken into account. Moreover, noting that aQij 41 are independent with each other,
there exists a choice of parameters aQij 41 such that M (h) has exactly [%] zeros in
h on (0, +00), which means that this upper bound can be reached. O

Theorem 3.2. Suppose that My(h) = 0 and Ms(h) # 0. For sufficiently small
le| > 0, system (3.1) has at most m — 1 limit cycles bifurcated from the period
annulus Ly, multiplicity taken into account.

Proof. If M;(h) =0, we need to use the second order Melnikov function My (h)
to estimate the number of limit cycles of system (3.1). According to Theorem 2.3
and (3.4), we have

_ Egh(h) — Kgp(h)
2

Ma(h) = (v (h) = vy (1)) -

+

vy (h) \?
'(Koﬁ(h)) '

0 gy () = K5 ()i ()
01
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Similarly to Theorem 3.1, for m is even, we can calculate from (2.7) that

2]+1 2J+1
—22%1 v —22%1 :

o3

Kgy(h) = Kgp(h) = 2, 03 (h) = vy (h) =2 ) (0341 — by ) (VAP H, - (3.10)
7=0

m—4+1 m—+1

K (h) = = 3 jaf (VR Kq(h) = = ) jag (=VRY™!

It follows from (3.6) that M;(h) = 0 if and only if a;'jJrl = ag,,4 for j=0,1,

ce,m
Hence, K (h) — K;;(h) can be reduced to
%
Kfi(h) = Ky (h) = =) 2j(a3; — az;)(—VR)¥ ™!
j=1
%
=" 2j(ag; — az;) (VR (3.11)
j=1
Substituting (3.10) and (3.11) into (3.9), we can obtain
El
Z 2j+1 2J+1)(\/ﬁ)zj+1 - \/EZ 2j(a3; — az_j)(\/E)QFQ
j=1
. Z a;rj_H(\/E 2
j=0
=2vVhG (h), (3.12)

where

m
2

Gi(h) = Z(bgjﬂ 2j+1 )h? —ZZ] a2j aQJ yhi~t Z%]H ,

J=0

and deg(G1) = § — 1+ % = m — 1, which implies that M3(h) has at most m — 1
zeros in h on (0, +00), multiplicity taken into account, if it is not zero identically.
For m is odd, we can calculate the following coefficients from (2.7)

m—1

2

vi(h) =2 b (V)T vy (h) =2 Z by (VR)TY,
7=0
Kf(h) = Kgp(h) =2, vf (h) —vy (h) =2 (b3 1y — by ) (VR)P T, (3.13)
7=0
m—+1

m—+1

K0 == > jaf (=VRY L, Kiyh) == > ja (~VRy !
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As a matter of fact from (3.8), My(h) = 0 if and only if a;_j-s—l = ag;4q for j =
0,1,--+, 2 Then K} (h) — K;;(h) can be reduced to

Kﬂ(h) Z 2.7 a/23 a‘2j ( \/E)Qj_l

m+1
= Z 2j(a3; — ag;)(Vh)¥ 1. (3.14)

Substituting (3.13) and (3.14) into (3.9), we have

m_1 mtL
2 2
Ma(h) =2 (0341 — b ) (VR = VI Y~ 2j(ad; — ag)) (V)2
7=0 j=1
m—1
2
> asa(Vh)
j=0
=2VhGy(h), (3.15)
where
m2—1 m+1
Ga(h) = (b3;41 — by 1)H — Z 2j(a3; — ag;)W' " Z agjp1h?,
7=0 J=1

and deg(Ga) = ™ — 1+ =L = m — 1. It is easy to see that Ms(h) has at
most m — 1 zeros in h on (0, +00), multiplicity taken into account, if it is not zero
identically.

Thus, according to Theorem 2.1 together with (3.12) and (3.15), system (3.1)
has at most m — 1 limit cycles bifurcated from the period annulus L; by the second
order Melnikov function, multiplicity taken into account. O
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