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Dynamics Behavior of a Stochastic Predator-Prey
Model with Stage Structure for Predator and Lévy
Jumps*

Xiaomei Wu!, Sanling Yuan!'

Abstract In order to study the effects of external environmental noise on the
interaction dynamics between predator and prey populations, in this paper, we
develop a predator-prey model with the stage structure for predator and Lévy
noise. By constructing an appropriate Lyapunov function, we first prove that
the proposed model exists the uniqueness of global positive solution. Then,
we analyze the persistence and extinction of the proposed model. Finally, we
perform some numerical simulations to verify the correctness of the theoretical
results.
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1. Introduction

Predation relationships are the most common in nature, the research on predator-
prey models has attracted the attention of many researchers [1-6]. These researches
laid the foundation for the future work. For the typical predator-prey model, it is
generally assumed that predators are equally capable of hunting prey species. But
the physiology of species in nature is complex. In many species, individuals are
only able to hunt when they are adults, and the immature predators have to rely
on mature ones for nourishment. Thus predatory ability could be ignored, such as
sparrows, penguins and so on. Recently, some scholars have paid attention to the
predator-prey models with the stage structure, and they have done some work in
this research direction [7—10]. In addition, scholars have developed many predator-
prey models with different functional response functions, especially for the Holling
type II functional response, which is the most commonly used and takes the form
of f(z) = %, where b is the search rate and m is the search rate multiplied by
the handling time [11-14].

Some research work on the predator-prey model with Holling type II functional
response has been developed and investigated. For example, Wang and Chen [15]
proposed and analyzed the following predator-prey model with Holling type II func-
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tional response and the stage structure for predator:

da(t) bx(t)z(t)

G el = aa(t) - TT
dy(t)  kbx(t)z(¢)

?th T 1t+ma (D +di)y(®), (1.1)
O _py(e) — are(o)

I(O) :m07y(0) = y(),Z(O) = 20,

where = z(t), y = y(t) and z = z(¢t) denote the densities of prey, immature and
mature predators at time ¢, respectively. r is the intrinsic growth rate of the prey,
a represents the intraspecific competition rate of the prey, b is the consumption
rate of mature predators to prey, k(0 < k < 1) is the conversion efficiency of prey
into newborn immature predators, d; and ds represent the death rates of immature
and mature predators, D is the rate at which immature predators become mature
predators, x(0) = zg, y¥(0) = yo and z(0) = 2o are initial values. All the parameters
are positive constants. By defining the basic reproduction number of the predator
Ry = m as the average number of offsprings produced by a mature
predator in its lifetime, Georgescu and Morosanu [16] showed that if Ry < 1, then
the prey-only equilibrium (Z,0,0) is globally asymptotically stable on R3 , while if
Ry > 1, the prey-only equilibrium (2,0,0) is unstable, and there exists only one
positive equilibrium.

However, there exists certain limitation for the deterministic model (1.1), and it
cannot reflect the effect of environmental factors on the dynamical behavior of model
(1.1). Thus, by taking into account the influence of external environment noise,
Liu [17] introduced the standard white noise into model (1.1) and then obtained
the following stochastic model:

bxz
1+mx

do = {m(r —az) — } dt + oy2d By (t),

(1.2)

kbxz
dy = L o (D + dl)y] dt + o9ydBa(t),

dz =[Dy — doz]dt + 032dBs(t),

where 0%, 03, 03 are the intensities of the environment white noise, By (t), Ba(t) and
Bs;(t) are mutually independent standard Brownian motions with By (0) = By(0) =
B;(0) = 0.

In addition, sudden environmental disturbance, such as hurricanes, earthquakes,
floods, etc, can also have a significant impact on the predator and prey species. In
order to better understand the effects of these phenomena on the dynamics of the
predator-prey model, it is worth studying the predator-prey model with jumps
process. Applebaum and Siakalli [18] extended Mao’s techniques to the case of
nonlinear stochastic differential equations driven by Lévy jumps and studied the
probability stability, almost certainty stability and moment exponential stability of
the stochastic differential equation. Zhao and Yuan [19] pointed out that Lévy noise
can affect the optimal harvesting strategy of inshore and offshore fisheries. Liu and
Bao et al. [20,21] analyzed the Lotka-Volterra system affected by Lévy noise, and
the results indicated that Lévy noise has a certain effect on the dynamics of the
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system. For this reason, we developed the following model incorporating the Lévy
noise:

bx(t)z(t)

dz(t)= [;C(t)(r—aas(t)) T 14 ma(t)

[ kbx(t)2(1)
dy(t)= [ 1+ ma(l)

dz(t)=[Dy(t) — doz(t)] dt + o32(t)dBs(t) + /Y v3(u)z(t™ )N (dt, du),

} dt+oy2(t)dBy (1) + / v1 (u)z(t™ )N (dt, du),
Y

_(D+dy) y(tﬂ At oxy(0)aBa(0) + | aluly() N (dt,dw)

(1.3)
where x(t7), y(t~) and z(¢~) are the left limits of x(¢), y(¢) and z(t), N is the
Poisson counting measure with compensator N and characteristic measure A on a
measurable subset Y of (0,00) with A(Y) < oo, and it is assumed that A is a Lévy
measure such that N (d¢,du) = N(dt, du) — A(du)dt.

In this paper, we mainly discuss the persistence and extinction of the model
(1.3). The structure of the paper is organized as follows. In section 2, we give
some notations and lemmas which will be useful in the subsequent proof process.
In section 3, we prove the existence and uniqueness of global positive solution of
the model. In sections 4 and 5, the sufficient conditions of the persistence and
extinction of model (1.3) are obtained. Finally, numerical simulations are carried
out to verify the correctness and feasibility of the obtained results.

2. Preliminaries
In this section, for the sake of narration, we give some notations, lemmas and
assumptions which will be used later. Let (2, F,{F;},5,,P) denote a complete

probability space with a filtration {F;},-, satisfying the usual conditions. Define

R = {(z(t),y(t), 2(t)) € R® : z(t) > 0,y(t) > 0,2(¢) > 0},

—1)o?
aa=D+d — % - %/Y (1 +72(w)? = 1 — 072(u)] A(du),
v =y = O L [ (0 5a0)” = 1= (0] M),

_ %/0 f(s)ds, (f)" = tlggo sup%/O f(s)ds, (f), = hm inf= / f(s

//m 1-tys () N (ds, du), H = /% ) (147 ()] A(du), i = 1,2, 3.

Assumption 2.1. For model (1.3), there exist two constants Cy, C2 > 0 such that

/Y {I%(u)l2 V[In(1 + ')’i(u))]2} A(du) < Cy < oo,

[ 0+ @) = 1= 0] M) < Ca <
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Lemma 2.1. Assume that v;(u) is a bounded function and |y;(u)] < & <1, u €
R,i = 1,2,3, where §, v are positive constants, v € (0,1). By Taylor formula, we
have

H; /% — In(1 4 7;(u))] A(du)

< [ [t =0+ 52—

52
<— .
~2(1 = )22

Lemma 2.2 ( [22]). Suppose that x(t) € C(Q x [0, 00],R).

(i) If there are three positive constants T, 6 and dy such that

Inz(t) < 5t—50/ ds+Zal tHZk / /ln 14, (u))N(dt, du) a.

for allt > T, where a;, § and B; are constants, then we have

<x>*§5 a.s., ifé > 0;
0

lim z(t) =0a.s., if6 <0
t—o0

(i1) If there exist three positive constants T, 6 and dg such that

Inz(t) > 5t—50/ ds—i—z ;B t)—%—Zk / /ln (147:(w)) N (dt, du) a.

)
for allt > T, where a;, § and k; are constants, then we have (x), > 5 a.s.
0

Lemma 2.3. For any initial value, the system (1.3) has the following properties.

dB dB
lim fo (5)dB1(s) =0, lim fo 2() =0,
t—o0 t t—>oo t
dB ~)N(ds,d
lim fo (s) 3()_0 lim fofy% (ds, u): ,
t—oo t o0 t
lim fo fY 72 (u N(ds du) _ fo fY 3 (u N(ds du) B
t—00 t o t—>oc t =Y
' In(1 + ds,d
fliliT(t):O( _1’2’3) fonn +7t( A (S U)(Z—123)

The process of proving is similar to the references [23,24]. Here we omit it.
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3. Existence and uniqueness of the global positive
solution

In this section, we will prove that system (1.3) has a unique global positive solution

with any positive initial value. Then, we have the following theorem.

Theorem 3.1. For any initial value (2(0),y(0),2(0)) € R3, there exists a unique
solution (z(t),y(t), 2(t)) of system (1.3) on t > 0 and the solution will remain in
R3 with probability one, namely (z(t),y(t),z(t)) € RY for all t > 0 almost surely

(a.s.).

Proof. Since the coefficients of system (1.3) satisfy the local Lipschitz condition,
then for any initial value (2(0),y(0),2(0)) € R%, there exists a unique local solution
(z(t),y(t),2(t)) € R3 on t € [0,7,), where 7, denotes the explosion time. Now we
will prove the solution is global. To this end, let ng > 1 be sufficiently large such

that (x(¢),y(t),z(¢)) all lie within the interval [nio,no}. For each integer n > no,
define the stopping time as [25]

Tn:inf{te [0,7¢) : min{z (t),y (t),z(¢)} S%ormax{m(t),y(t),z(t)} zn}.

Throughout this paper, we set inf @ = oo (as usual @ denotes the empty set).
Clearly, lim,, o Ty, = Too as n — oo and (z(t),y(t), z(t)) € R3, ¢ > to. This is to
say, we need to prove T,, = oo a.s. If the assertion is not true, then here exists a
pair of constants T > 0 and € € (0,1) such that P(1c < T) > e. Hence, there
exists an integer ni > ng such that

P(r, <T)>eforalln >n;. (3.1)
Define a C?-function V : R'i — R by

T 1
V(z,y,2z) = (x—c—clnz)—&—%(y—l—lny)—i—(z—l—lnz),

where ¢ is a positive constant to be determined later. The nonnegativity of this
function can be seen from

uw—1—Inu >0 for any u > 0.

Applying Ité’s formula [26] to function V, we have
dV =LVdt 4 o7 (2(t) — ¢) dB1(t) + % (y(t) — 1) dBs(t) + o3 (2(t) — 1) dBs(¥)

—c/ [1n(1+71 (u))—M N (dt, du)
Y &

— 1 I ) = 72 () ()] eatdw

- /Y I (1 + 3 (w) — 73 (u)z (t7)] N(dt,du).

According to the definition of the operator L, we can get

LV:(l—%) [az(r—aw)— bz ]+;(1—1)[1€be —(D+dy)y

1+mz Y 14+ mx
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2 2 2

coyf 05 1 o3 Hy

—++ 24+ (1-=)[Dy—d 2 +cHi+—+H

+2+2k+( Z)[y 22 + 5+ cHi + == + Hs
brz Dy D+d; cbz
2
= — _—— = — D —
ar® + (ac+r)x JAtma) = + Dy 3 y+1+mx

2

co? 1 o
—d22—CT+1+(D+d1+2 + H3

2 k 2

(k—1)Dy dy cal
2 . + cbz — daz + 5

H,
cH
>+d2+2+ 1+

g—axQ—&—(ac—l—r)w—i—

2

1
+k(D+d1+02

Hy
2)+d2+ +CH1+?+H3

2

k—1)D 1 2
S—ax2+(a6+7“)x+(k)y—l—cbz—dgz—l—k<D+d1+022>
o2

ca? o3 Hy
- - +cHi +— + H,
+ 2 +d 9 +cHy + 2 + Hs

(ac+r 1 co?  o?
<—F——+-|D+d d b—d — + =
0 k<+1+ )+2+(c 2)+2+2

+CH1+?+H3,

d
where the third inequality is obtained by 0 < & < 1. Letting ¢ = ?2, we can get
¢cb — dy = 0. Then we have

(ac+ r)2

LV <
- 4a

1 o2 co? o2 Hs>
—(D+d -2 d 143 H — + Hj.
+k< +1+2)+ 2 + 5 +2+C 1+k+ 3

From Lemma 2.1, we can get

Ug>+d2+w%+2+ o

(ac—i—r)2
2 2 2 2(1-6)%0?

LV <
Vs 4a

1

52 52

+ + =K.
2% (1—8)%v2  2(1—68)>02

So we obtain

AV <Kdt + oy (z(t) — ¢)dB, (t) — c/ [m (147 () = 22O Gy duy
y c

#2000 - 10— [ I ) =72 (0)y ()] Nt du)
o (2(8) — 1) /Y [l (145 (u) — 73 () 2 (£7)] W (dt, du) (3.2)
Integrating both sides of (3.2) from 0 to 7, AT = min {r,, T} yields
T NT Th AT
/ dV =K(t, AT) + o / (x(s) —c)dBj (s)
0 0

o9 Ta AT

T AT
T e 0B () oy / (2(s) — 1) dBs (s)
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—c/OT"AT/Y [ln(l-l—’}’l (u))—M N (ds, du)

Cc

_ Ii/OTn /Y [ (1472 (u) — 72 (w)y (s7)] N (ds, du)
T AT N
_ /0 /y I (1 + 3 (w) — 73 (u)z (s7)] N (ds, du). (3.3)

Since the solution (x(t),y(t), z(t)) is Fi-adapted, taking the expectation on both
sides of (3.3), we have

EV (2,y,2) <V (2(0),y(0),2(0)) + KE (o AT) <V (2(0),y(0),2(0)) + KT.

(3.4)
Letting Q, = {weQ:7, =7, (w) <T} for n > n; and from (3.1), we have
P(r, <T) > . Note that for every w € ,, there is at least one of z (7,,w)

1
and y (1,,,w) and z (7,,w) equaling either n or —. Hence, one can get that
n

V(z(tn,w),y (Tn,w) , 2 (Tn,w))
Z(n—c—cln%) A(n—1—Inn)A (i—c—kcln(nc)) A (; —1+1nn) .

It then follows from (3.4) that
V(2(0), 5(0), 2(0)) + KT
>E |:IQn(w)V({L‘(Tn7LU),y(Tn7W)7Z(Tn,W)):|

1 1 1
26{(n—c—cln2)/\(n—1—lnn)/\<n—c—clnn6)/\ (n—l—i-lnn)},

where I, is the indicator function of €2,,. Letting n — oo, then one can see that
00 >V (2(0),4(0), 2(0)) + KT = o0,

which leads to the contradiction, thus we must have 7o, = oo a.s. The proof is thus
completed. O

4. Extinction of model (1.3)

Definition 4.1 ( [27]). (1) The population x is said to be persistent in the mean if
limy o0 % fot x(s)ds > 0. (2) The population z is said to be extinct if lim;_, o x(t) =
0, a.s.

Theorem 4.1. Let (z(t),y(t), z(t)) be the solution of model (1.3) with any given
positive initial value (z(0),y(0),2(0)). If 2r < 0%, then we have

lim z(t) = O,tlgrolO y(t) = O,tlgrolo z(t) =0, a.s.

t—o00

Proof. Applying Itérs formula to the first equation of model (1.3) yields

bz o

2
Ty /Y (In(1 + 71 (1)) — 71 (w)) A(du) | dt

dlnz(t) = |r —ax —
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+ o1dBy () + / In(1 + 1 (u))N(dt, du)
Y

bz o ~
< {7‘ Bk e 2} dt + o1dBy (t) + /Y In(1 + 1 (u))N(dt, du)
< |:’I‘ 2} dt + o1d By (t) + /Yln(l + 1 (w))N(dt, du), (4.1)

where
/ ra () — In(1 + 7 (u))]A(du) = / (14 72() — 1~ In(1 + 7 ()] A(du) > 0.
Y Y

Integrating both sides of (4.1) from 0 to ¢, we obtain

Inz(t) — Inz(0) < [r - Uj} t+o1B1(t) + M (). (4.2)

Dividing both sides of (4.2) by t and taking the supremum, then by Lemma 2.2, we

can get
Inz(t ?
nx()<r—021 <0. (4.3)

Let W (t) = y(t) + 2(t). Then applying Ité's formula to In W yields

lim sup
t—o0

kbxz
jEw— d1y — daz Ung + 0322

y+z 2(y + 2)?

+/J“l (i) - y(zfz—(qibf(zt(t)—ﬂ“du)

dlnW =

[
+ Uzy de )+ Yln(1+ = y(t~ ), )N dt, du)
+ 032 ng )+ Yln( > (dt, du)
g[kbx _ min{dl, A}t + iydez( ) + (t)

2@WYE) Y Fidt du
+/Yln <1+ R )>N(dt,d)
B\ 5 ar du
+/Y1n <1+y(t_)+z(t_)>N(dt,d )

+/ In(1 4 vs(w)) N (dt, du). (4.4)
Y

Integrating both sides of (4.4) from 0 to ¢ yields

In W(t) —1In W(O) < [kbx — min {dl, do }] t + 0od By (t) + O'3ng(t) + M, (t) + M3(t).
(4.5)
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Dividing by t on both sides of (4.5) yields

InW(t) — InW(0)

O'Qng(t) O'3ng(t) MQ(t) M3(t)
; .

<kbr — i
<kbx —min {dy,d2} + . + - + - + ;

By inequality (4.3), we know that z(t) — 0 exponentially a.s. Then there exist ¢,
and a set . C € such that

kb.
P(Q.) > 1—€and1 xx < kbx < kbe for t >ty and w € Q..

Taking the supremum on both sides of (4.6), we can get

W(t
limsup¥ < kbe — min {d;,d2} < 0.

t—o0

Letting ¢ — 0, we have limsup,_, WT(” < —min{dy,d2} < 0. Therefore we have
that lim; o0 y(t) = limy o0 2(t) = 0, a.s. The proof is thus completed. O

5. Persistence of model (1.3)

Theorem 5.1. For model (1.3), when c1,ca > 0, there exists a positive constant
K such that

P{w:[kx(t)+y(t)+20t)] < K} >1—¢,Vt>0.

Proof. Let M;(t) = 2%(t) + ¢%(t)
have

29(t). Applying Itérs formula to Mi(t), we

dM (t) =€’ {xg(t) + ye(t) + ze(t) + Hzre_l(t) [x(t)(r —ax(t)) — %

0(0 — 1)o?2(t)

n +af(t) /Y [(1 4+ 71 ()’ — 1 - 6y ()] A(du)

b (t)2(t) 0(0 — 1oy’ ()
1+ ma(t) 2

O D+ ao)] +
2 0) [ [0+ 22(0)" ~ 1~ 6700] Nc) + 6 ()[Dy() ~ dy=(0)]

+23t+wﬂA[a+ygwﬁ—1—0%wﬂAmw}m
O(t)dBy(t) + el ooy’ (t)dBay(t) + Oelo32% (t)dBs(t)
/Y (147 (u)? —1) N (dt, du)

T ety )/ ((1+72(w)? — 1) N(dt, du)

((1 4+ 73(w)? — 1) N(dt, du)

{ <T+ + 2 2oty 9/ (1 +m(w)” = 1= 0m(w)] A(du))
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kbx( )z(t)
ma(t)
—62929(t)} dt + elora?(t )d31 (t) + Oeloay? (t)dBa(t) 4 Oel o3z (t)d Bs(t)

+ etx‘g(t)/y (1 + 31 (w)? — 1) N(dt, du)
4 etyg(t)/y (1 + 72(w)’ — 1) N(dt, du)
+etz9(t)/y (1 +3(w)? — 1) N(dt, du)
SetH ()t + Oetora® (1) dBy(t) + Oet ooy’ (£)ABa(t) + el os2? (t)d Bs(t)
Feta® (1) /Y (1 + 71 (w)? — 1) N(dt, du)

— aba” (1) + 0y (1) s — eafy’ (1) + DO 1)y (1)

+ etgﬁ(t)/y (1 + 72(w)’ — 1) N (dt, du)
+et2%(t) /Y ((1 4+ y3(u)? — 1) N(dt, du), (5.1)

where
H(D) = 027(0) (r+ 5+ S0 13 [, [0+ (@) — 1= 031 ()] Aldw))

—afxf+1(t) + de_l(t)%);((f)) —c10y%(t) + DOZO 1 (1)y(t) — 2020 (1) < g(h) < oo.

Integrating both sides of (5.1) from 0 to ¢ and taking expectation, then we have
¢
e! E(M,(t)) = E(M,(0)) + E/ e®(H(s))ds < M;(0) + g(0)e’
0

According to the definition of M (t), we have
limsup Ela? (1) + y°(¢) + 2(0)] < g(0).

From |z(t) + y(t) + 2(¢)| < z(t) + y(¢) + 2(t), we have

limsup E |2(t) +y(t) + 2(t)| < g(1) = g1,
t—o00

limsup E |z(t) + y(t) + 2(t)]° < g(2) = g
t—o0
Let Ms(t) = kx(t) + y(t) + 2z(t). Applying Ités formula to Ms(t), we have
dM,(t) = [krz — kraz? — (D +dy)y 4+ Dy — doz) At + koyxd By (t) + oayd Ba(t)

+ 032dB3(t) —|—k/}/’yl(u)x(t*)ﬁ(dt,du) + /ng(u)y(f)lv(dt,du)

+ / v3(u)z(t )N (dt, du)
<[krxz 4+ Dy]dt + ko1xd By (t) + o2ydBa(t) + 032dBs(t)
s / 1 () ()N (dt, du) + / o (u)y(t-) N (dt, du)

+ /Y v3(u)z(t7 )N (dt, du)
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<[S(z+y+ 2)]dt + koy2d By (t) + o2yd Ba(t) + o32d B3 (t)
[ nwat)F @b+ [ () Kt du
+ / v3(u)z(t7 )N (dt, du), (5.2)
Y

where S = max[kr, D, 1]. From (5.2), when ¢ > 0, we have

B[ s [ke(s) + 4l + 200

t<s<t+1

t+1
<E[S(z(t) +y(t) + 2(¢))] + ko E [ sup / x(s)dBl(s)}

t<s<t+1.J¢

+0—2E[ sup 1/: 5)dBs(s }+0—3E[ sup /le(s)ng(s)]

t<s<t+ t<s<t+1J¢
t+1
+kE{ sup / /'yl ds du)]
t<s<t+1.J¢

+
{ sup / /'yg ds du)]
t<s<t+1

t4+1
{ sup / /73 N(ds du)}
t<s<t+1

By using Burkholder-Davis-Gundy inequality [28] and the Holder inequality, we can

get
pl [ aame] o ([ o)
gJ<EAHWM@+y@+z@W>a
E L;gﬂ/jﬂy(S)de(S)] <JE (/tt+1y2(8)d8)

gJ(E[HWa@+y@+w@W){

t+1 t+1 %
E [ sup / z(s)ng(s)} <JE </ 22(5)d3>
t<s<t+1J¢ t

SJ<E[HWa@+y@+w@W)Z (53)

t+1
[ sup / / 7 (u ds du)}
t<s<t+1
t+1
< JE (/ / Vi (u N(ds du))

[N

Nl=

and



Dynamics Behavior of a Stochastic Predator-Prey Model

405

=

<i([ ﬁ(uwdu));(E [ e ere) 6

Similarly, we have

t+1
{ sup / /’)/2 ds du)}
t<s<t+1

<J (/ yz(u)A(du))Q (E/;+1 l2(s) + y(s) +z(s)|2ds),
Bl [ [ ¥ )

W=

<i([ W3<u>x<du>)2 (E / - |x<s>+y<s>+z<s>|2ds)é. (55)

Submitting (5.3), (5.4) and (5.5) into (5.2) results in

E [ sup [kz(s) +y(s) + z(s)]] < S¢1 + (ko1 + o2+ (73)ng + 201 92
t<s<t+1
Thus, there exists a positive constant G such that

E[ sup [kx(s)—!—y(s)—!—z(s)]] <G, t=0,1,2,...

t<s<t+1

Let K be a sufficient large number such that K = % By Chebyshev inequality we

obtain

Plw:|kx(t) +y(t) +2(t)| > K} < K 'Elka(t) + y(t) + 2(t)| < K'G =«.

Therefore, we have
P{w:[kx(t)+y(t)+2(t)] <K} >1—¢, t>0.

This completes the proof.

O

Theorem 5.2. Let(x(t),y(t), z(t)) be the solution of system with any initial value

(2(0),4(0), 2(0)) € Rf. We have

(1) Ifr—— >0, then limsup,_, ., (), < 2*; ifr—%%—Hl >0, thenliminf, o (x),

> z,.. Here

= -1 ‘7% —~ 03 -1 -1 -1
T =a (r—), Ty = (r——H1> (a +b(D+dy)”"dy " Dkr)

(2) If k < r?, then we have

. < .. N
limsup (z), < 1, htrgggf (2); = n2,

t—o00

where
m =dy'D(D +dy) " Ykra*, my =dy ' D(D + dy) Y (krZh — kak).

Moreover, we have

hmsup( ), < (D +dy) " krzy — kak], liminf (y), > (D + di) " 'kaz*.
t—

t—o0
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Proof.
z o?
dlnz(t) =|r —az — | _me - 71 + /Y(ln(l + 71 (u)) — %(U))/\(dU)] dt
+01dBy(t) + / In(1 + 7 (u)) N (dt, du). (5.6)
Y

Integrating both sides of (5.6) from 0 to ¢, we can get

na(t) — lnz(0) = (r— ";) t—a/otx(s)ds—b/ot %ds
+ o1 By(t) — Hut + Mi(D).

Then
2

Ina(t) < (r - "21) ‘- a/ot 2(s)ds + F(t) i= A= Ao /Ot 2(s)ds + F(t), (5.7)

where F(t) = Inx(0) + M;(t), and lim;—, Fit) = 0. From Lemma 2.2, we know
that

t—o0

I A
limsupf/ x(s)dz < —,
t Jo
which means
. of\  —~
limsup (z), <a™ ! (r - ) = x*.
t—o0 2

Let M = Dkx + Dy + (D + dy)z, then we have

dM =Dkdz + Ddy + (D + d;)dz
=[Dkx(r — az) — (D + dy)daz] dt + Dko12dB1(t) + Doayd Ba(t)

+ (D + dy)oszdBs(t) + Dk:/ 71 (w)z(t )N (dt, du)

+D / o (W)y(t- YN (dt, du) + (D + di) /Y ()2 ()N (At du).  (5.8)
Integrating (5.8) from 0 to ¢ on both sides, we can get
Dk(z(t) — z(0)) + D(y(t) — y(0)) + (D +d1)(2(¢) — 2(0))

=Dkr /Ot x(s)ds — Dka /Ot 2%(s)ds — (D + dy)ds /Ot 2(s)ds

+Dk0’1/ ( )dBl( )+DO’2/ ( )dBQ( ) (D+d1)0’3/ Z(S)ng(S)

0

+Dk/ /71 N (ds, du) +D/ /72 “)N(ds, du)
D—|—d1//’y3 dsdu)

Therefore, we can get

[ =tohas =0+ s [Dkr [, soris Dt [[ (00
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+ Dkoy / s)dBy(s) + Dk / / v (u N(ds, du)
+D//72 N(ds du)+D02/ y(5)dBa(s)

(D+d1)03/ +(5)dBs(s) + (D + dy) / /73 N (ds, du)

— [Dk(a(t) — 2(0)) + D(y(t) — y(0)) + (D + d1)(2(t) — 2(0))}]

=(D+dy)"tdy? [ijr/o z(s)dx — cha/0 22(s)dx | + (1), (5.9)

where
$(t) =(D +dy) "'y [Dkal / 2(s)dB1(s) + Doy / y(s)dBa(s)

(D+d1)0‘3/ s)dBs(s +Dk:/ /71 ds du)

+D//'yg ds du) + D+d1//’y3 ds ,du)

— [Dk(x(t) — 2(0)) + D(y(t) — y(O))+(D+d1)(Z(t)—Z(O))]]-

Integrating both sides of (5.6) from 0 to ¢ yields
o2 ¢ Eo2(s)
1 ~1 A _p | 28 B
nz(t) — Inz(0) = <T 5 )t a/o x(s)ds b/o 1+mx(s)ds+al 1(t)
— Hit + M (t)
o2 t ¢
> r— 71 —Hy |t— a/ z(s)ds — b/ z(s)ds + o1 B1(t) + My (t).
0 0
(5.10)
Substituting (5.9) into (5.10) yields

2

Inz(t) — Inx(0) > <r - % - Hl>t — a/otx(s)ds + o1 B1(t) + My (t)

—b [(D +dy) "yt (Dkr /Ot z(s)ds — Dka /Ot xQ(s)ds) + w(t)} .
(5.11)

Dividing by ¢t on both sides of (5.11), we have

t™1n L > (7‘ - % - H1> — (a+b(D +dy)"*dy ' Dkr) (z),
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t
+b(D + dl)—ldglt—lea/ 2%(s)ds + o(t)
0

> (r -5 - H1> —(a+b(D +dy)""dy ' Dhkr) (x), + o(t)

where
o(t) =t~! { —b(t) + o1 By (t) + My(t)],

and limy_, o 0(t) = 0.
From lemma 2.2, we can get

t—o00

liminf (z), > (r— % —Hl) (a+b(D +di)"'dy ' Dkr) = 7.

Integrating the first two equations of the model (1.3) yields
k(x(t) — 2(0) +y(t) — y(0)

t

kr fot z(s)ds  ka fot 2%(s)ds (D +dy) fot y(s)ds
- ¢ B t B t

koq fot x(s)dB (s Lo fo 5)dBs(s k‘fo Jy m(u N(ds, du)

J’_
t t t
fo fy ’72 U (dS du)
t

Then we have

kr fot z(s)ds  ka fg 22(s)ds k01 fo s)dBi(s)

Joy(s)ds y(ts)ds =(D +dy)"

t t t
02 f() s)dBa(s kfo Jy m(w)z(s™) N(ds, du)
t t
+f5 Jy 12 (Wy(IN (s, dw) k() = 2(0)) +y(t) ~ y(0)
t t
(5.12)
Integrating the third formula of the model (1.3) yields
z(t) — 2(0) Dfot ds d2 fot (s)d 03 fo s)dBs(s
t t t
ds,d
y o f”?’ t N(ds,dw) (5.13)

Substituting (5.12) into (5.13), we can get

fot z(s)ds kr fg z(s)ds  ka fot 22 (s)ds N ko fo s)dBy(s)
t

=dy;'D(D +dy)7! - - -
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Lo Iyl dB2 Lk iy Jy m(u)z(s™)N(ds, du)
fo Jy v2(u t N(ds,du) k(xit) - x(O))tJr y(t) — y(O)}
o [PLEEOMB) | [y et Flan) 0 th)]
—d;'D(D + ;)" lkr fgf 9)ds _ ka Otgf(s)ds o), (5.14)
where
SMBi(s) 2 fy y()dBa(s

t t

B Jy Jy ni()a(sT)N(ds,du) |y Jy 12(wy(s7)N(ds, dw)

+ 7 1

_ k(z(t) —2(0) +y(t) — (0)]
t

a; [f )dBy(s) | fo Jy 1a(w)=(s )N (ds, du>_z<t>—z<0>]
t t t '

From Lemma 2.3, we can get lim;_,, 6(¢) = 0.

Taking the limit of (5.14) as t — oo yields

4 4

t k; t d k t o d
Jim t‘1/ Z(S)d8=d51D(D+d1)‘1l rJo2(s)ds _ ka o 2°(s) S]
o 0

From Theorem 5.1, there exists a positive constant x such that

t
0.< | i Jo @ (8)ds
T |t=oo t

< K. (5.15)

Therefore, we have

¢
limsuptfl/o z(s)ds < dy *D(D + dy) " Ykra* =,

t—o0

t
liminf ¢! / 2(s)ds > dy 'D(D + dy) " (krws — kak) = 2.
t—oo 0
On the other hand, from equality (5.12) and Lemma 2.3, we know that
f(f y(s)ds kr fg z(s)ds  ka fg x?

t t t

lim
t—o00

= (D + dl)_l [
From (5.15), we know that

t
lim inf ¢! / y(t)ds > (D + dy) ks — kar),
0

t—o00
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t—o0

t
lim sup t_l/ y(t)ds < (D + dy) " ‘kazx*.
0

This completes the proof. O

6. Numerical simulations

In this section, we will use Euler numerical approximation [29] to verify our results.

First of all, considering the absence of environmental noise, we select the pa-
rameters of the model as follows: r = 0.6,a = 0.15,b = 0.1,m = 0.5,k =0.3,D =
0.3,d; = 0.03,d2 = 0.02,01 = 09 = 03 = 0,71 = 72 = 73 = 0. At this time, model
(1.3) is a deterministic system, and the dynamic behavior of system (1.3) is shown
in the Fig. 1.

L~ A~~~

0 500 1000 1500 2000
t

Figure 1. The time series of prey z(¢), immature predators y(t), and mature predators z(t). Here the
blue line represents the prey xz(t), the red line represents the densities of immature predators y(t) and
the green line denotes mature predators z(t).

Considering the influence of external environment on the system and keeping the
inherent parameters unchanged, the parameters of environmental noise are selected
as follows: o? = 1.44,05 = 0.25,03 = 0.01,7; = 0.001,72 = 0.002,73 = 0.03.
According to Theorem 4.1, we can get 1.2 = 2r < ¢} = 1.44. From Fig. 2, we can
see that system (1.3) is extinct with probability one.

)
—y(t)
—2z(t) ]

0 100 200 300 400 500
t

Figure 2. The time series of the extinction of immature and mature predator and prey with the
o} = 1.44,03 = 0.25,03 = 0.01,~; = 0.001,v2 = 0.002,v3 = 0.03.
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Now, we take the following parameter values:
0% =0.25,03 = 0.0001, 02 = 0.0001,v; = 0.001,72 = 0.01,y3 = 0.01,x = 0.4.

According to Theorem 5.1, we compute that

ca=D+d — w - %/Y [(1+ 72(w)? =1 — 6y2(u)] A(du) = 0.324658,
ey =dy — % - % [(1+73(u)? — 1 — Oy3(uw)] A(du) = 0.014658.
Y

From Theorem 5.2, we can get

2

r—%—H1:0.475>0,m<Tx*

= 2.2708,
a

. 2
7 =a (r - "21> — 3.1663,

2
T = (T — % - H1> (a+b(D+dy) 'dy ' Dkr)~! = 0.5677,

(D + dy) " krzy — kar] = 0.0909, (D + dy) ‘kaz* = 0.4318,
m = dy ' D(D+dy) " kra* = 25.9094, 1, = dy ' D(D +dy) " (krz, — kak) = 1.3727.

Then, we have

¢ ¢
0.5677 < litm inft_l/ x(s)ds < lim supt_l/ x(s)ds < 3.1667,
0 0

—00 t—o00

t t
0.0909 < litminft_l/ y(s)ds < 1imsupt—1/ y(s)ds < 0.4318,
hde el 0 0

t—o00

t—o0 t—00

t t
1.3727 < lim inf til/ z(s)ds < limsup til/ z(s)ds < 25.9094.
0 0

From Fig. 3(a), we can see that the prey x is persistent in the mean, and from
Figs. 3(b) and 3(c) we can see that immature predator y and mature predator z
are both persistent in the mean. This means that model (1.3) is persistent in the
mean.

Finally, we keep the other parameters unchanged and change the intensity of
the noise. Letting 73 = 0.3, 72 = 0.11, 3 = 0.1, from Fig. 4 we know that system
(1.3) is extinct. Comparing Fig. 3 with Fig. 4, we can find that the Lévy jumps
may suppress the survival of the species.

7. Conclusions

In this paper, we analyze a stochastic predator-prey model with the stage structure
for predator and Holling type II functional reaction. By constructing appropriate
Lyapunov functions, we first prove that the proposed model exists a uniqueness
global positive solution. Then we obtain the sufficient conditions for the extinc-
tion and persistence in the mean of the proposed model. Finally, some numerical
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Figure 3. The time series of the immature and mature predator and prey with of = 0.25,05 =
0.0001, crg = 0.0001, v; = 0.001,v2 = 0.01,v3 = 0.01,x = 0.4.

4
—x(t)
—y(?)
3 —z(t)
2
1
0
0 100 200 300 400 500
t
Figure 4. The time series of immature and mature predators and prey with v; = 0.3, 72 = 0.11,

v3 = 0.1.

simulations are carried out to verify the correctness of the theoretical results. By
numerical results, we find that large environmental noise is not conducive to the
survival of species, even leads to species extinction.

Some interesting questions deserve further investigation. On one hand, one can
consider other functional responses of model (1.3). On the other hand, one can
introduce the continuous-time Markov chain or impulsive effects into model (1.3).
Of course, these investigations will be more complex, and we will devote ourselves
to these investigations in the future.

Acknowledgements

The authors express their sincere gratitude to the editors and reviewers for their
helpful comments and suggestions.

References

[1] R. Arditi and L. Ginzburg, Coupling in predator-prey dynamics: ratio-
dependence, Journal of Theoretical Biology, 1989, 139, 311-326.

[2] H. Freedman and R. Mathsen, Persistence in predator-prey systems with ratio-
dependent predator influence, Bulletin of Mathematical Biology, 1993, 55, 817—
827.



Dynamics Behavior of a Stochastic Predator-Prey Model 413

3]

K. Wang, Permanence and global asymptotical stability of a predator—prey
model with mutual interference, Nonlinear Analysis Real World Applications,
2011, 12(2), 1062-1071.

R. Cantrell and C. Cosner, On the dynamics of predator—prey models with the
Beddington—-DeAngelis functional response, Journal of Mathematical Analysis
and Applications, 2001, 257, 206-222.

F. Peng and K. Yun, Dynamics of a modified Leslie-Gower model with double
Allee effects, Nonlinear Dynamics, 2015, 80, 1051-1062.

S. Xu, M. Qu and C. Zhang, Investigating the turing conditions for diffusion-
driven instability in predator-prey system with hunting cooperation functional
response, Journal of Nonlinear Modeling and Analysis, 2021, 3(4), 663-676.

H. Freedman and J. Wu, Persistence and global asymptotic stability of single
species dispersal models with stage structure, Quarterly of Applied Mathemat-
ics, 1991, 49(2), 351-371.

Y. Xiao and L. Chen, Global stability of a predator-prey system with stage
structure for the predator, Acta Mathematica Sinica, 2004, 20(1), 63-70.

N. Zhu and S. Yuan, Spatial dynamics of a diffusive prey-predator model with
stage structure and fear effect, Journal of Nonlinear Modeling and Analysis,
2022, 4(2), 392-408.

P. Georgescu and Y. Hsieh, Global dynamics of a predator-prey model with
stage structure for the predator, Siam Journal on Applied Mathematics, 2007,
67(5), 1379-1395.

X. Li, H. Wang and Y. Kuang, Global analysis of a stoichiometric producer-
grazer model with Holling type functional responses, Journal of Mathematical
Biology, 2011, 63, 901-932.

H. Chen and C. Zhang, Analysis of the dynamics of a predator-prey model with
Holling functional response, Journal of Nonlinear Modeling and Analysis, 2022,
4(2), 310-324.

G. Skalski and J. Gilliam, Functional responses with predator interference: vi-
able alternatives to the Holling type II model, Ecology, 2001, 82(11), 3083-3092.

S. Thota, A three species ecological model with Holling type-1I functional re-
sponse, Information Sciences Latters, 2021, 10(3), 439-444.

W. Wang and L. Chen, A predator-prey system with stage-structure for preda-
tor, Computers & Mathematics with Applications, 1997, 33(8), 83-91.

P. Georgescu and G. Morosanu, Global stability for a stage-structured predator-
prey model, Scientific Research Journal, 2006, 10, 214-226.

Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamics of a stochastic predator—
prey model with stage structure for predator and Holling type II functional
response, Journal of Nonlinear Science, 2018, 28(3), 1151-1187.

D. Applebaum and M. Siakalli, Asymptotic stability properties of stochastic
differential equations driven by Lévy noise, Journal of Applied Probability,
2009, 46, 1116-1129.

Y. Zhao and S. Yuan, Optimal harvesting policy of a stochastic two-species com-
petitive model with Lévy noise in a polluted environment, Physica A: Statistical
Mechanics and its Applications, 2017, 477, 20-33.



414

X. Wu & S. Yuan

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

M. Liu and K. Wang, Stochastic Lotka—Volterra systems with Lévy noise, Jour-
nal of Mathematical Analysis and Applications, 2014, 410(2), 750-763.

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka—Volterra population
dynamics with jumps, Nonlinear Analysis: Theory, Methods & Applications,
2011, 74(17), 6601-6616.

M. Liu and C. Bai, Dynamics of a stochastic one-prey two-predator model with
Lévy jumps, Applied Mathematics and Computation, 2016, 284, 308-321.

Q. Liu and D. Jiang, The threshold of a stochastic delayed SIR epidemic model
with vaccination, Physica A: Statistical Mechanics and its Applications, 2016,
461, 140-147.

Y. Zhou and W. Zhang, Threshold of a stochastic SIR epidemic model with
Lévy jumps, Physica A: Statistical Mechanics and its Applications, 2016, 446,
204-216.

X. Mao, Stochastic Differential Equations and Applications, Horwood Publish-
ing, Chichester, 1997.

B. @ksendal and A. Sulem, Stochastic Control of jump diffusions, Springer,
2005.

Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with
vaccination, Applied Mathematics and Computation, 2014, 243, 718-727.

D. Applebaum, Lévy Processes and Stochastic Calculus (Second Edition), Cam-
bridge Unversity Press, Cambridge, 2009.

P. Protter and D. Talay, The Euler scheme for Lévy driven stochastic differen-
tial equations, The Annals of Probability, 1997, 25, 393-423.



	Introduction
	Preliminaries
	Existence and uniqueness of the global positive solution
	Extinction of model (1.3)
	Persistence of model (1.3)
	Numerical simulations
	Conclusions

