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Abstract. In this paper, we propose a simple energy decaying iterative thresh-
olding algorithm to solve the heat transfer problem. The material domain is
implicitly represented by its characteristic function, and the problem is formu-
lated into a minimum-minimum problem. We prove that the energy is decreasing
in each iteration. Numerical experiments for two types the heat transfer prob-
lems (volume to point and volume to sides) are performed to demonstrate the
effectiveness of the proposed methods.
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1 Introduction

Topology optimization has been widely applied to the design of heat transfer systems
to improve their performance while minimizing material usage and manufacturing
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costs [1, 7, 14, 19, 21]. Thermal management of electronic components involves con-
trolling their temperature to ensure that they operate within safe limits and perform
optimally. Electronic components generate heat during operation, and if the heat is
not dissipated efficiently, it can lead to premature failure or reduced performance.
Effective thermal management is critical for the performance and reliability of elec-
tronic components, particularly in high-power applications such as data centers [18],
power electronics [15], and electric vehicles [17,20].

Topology optimization methods can be used to design heat sinks and other cool-
ing devices that are highly optimized for thermal management. These methods can
help to improve the performance and efficiency of electronic components and other
thermal management systems, while also reducing their size and weight. There are
several different topology optimization methods that can be used for thermal man-
agement, including density-based methods which use a density function to represent
the material distribution within the heat transfer devices and update the density
function iteratively to optimize the material distribution for maximum heat transfer
efficiency [2,3,8,11,24]; level set methods which use a level set function to represent
the geometry of thermal conductive material [13, 25]. See [6, 10] for reviews.

Among the various methods used for topology optimization, the threshold dy-
namics method [9, 16] has recently gained attention due to its ability to handle
complex and nonlinear problems with high computational efficiency. The thresh-
old dynamics method is a mathematical framework for topology optimization based
on iteratively updating a characteristic function which separates the design domain
into two regions. The method has been successfully applied to various engineering
problems, including image segmentation [22, 23], fluid channel design [5], flow net-
work design [12], minimum compliance problem [4], by optimizing the characteristic
function to achieve a desired performance objective.

In this paper, we present a novel application of the threshold dynamics method
to topology optimization of heat transfer systems. We focus on the implementation
of the method and its performance in optimizing the thermal performance of heat
transfer systems. Specifically, we demonstrate the effectiveness of the method in
improving the heat transfer rate and reducing thermal resistance by optimizing the
topology of heat transfer components.

To achieve this, we start by introducing the conductive steady-steate heat trans-
fer problem defined by Bejan [2]. The problem represents an electrical device that
is cooled down by a limited amount of high conductive material aiming at driving
the produced heat to a heat sink, located at the boundary of the finite size volume.
We then formulate the optimization problem in terms of characterization function
of the domain and design a threshold dynamics method to solve the problem. We
present the results of our numerical simulations, demonstrating the effectiveness of



266 L. Cen and X. Wang / Ann. Appl. Math., 39 (2023), pp. 264-280

the threshold dynamics method in optimizing the topology of heat transfer systems.
We discuss the implications of our findings and outline the potential for further
research in this area.

2 Problem formulation

Consider the steady-state heat transfer problem on a two-dimensional domain stud-
ied by Bejan [2]:

−∇·(k∇T )=q on Ω, (2.1a)

(k∇T )·n=0 on Γ\ΓD, (2.1b)

T =T0 on ΓD, (2.1c)

where T is temperature with unit K, q is heat generation rate per unit volume with
unit W/m3, and k is thermal conductivity with unit W/mK. As in [2], we assume
that the volume generates heat uniformly and thus q is constant. Two kinds of
material with different thermal conductivity k0,k1,k1>>k0 distribute over Ω. Let χ
be the characteristic function indicating the domain with high thermal conductivity

χ(x)=

{
1, k(x)=k1,

0, k(x)=k0.

Then
k(χ)=k0+(k1−k0)χ. (2.2)

The problem is to design the optimal heat conducting paths to minimize the average
temperature over Ω subject to a limited amount of high thermal conductive material.
The optimization problem is

min
χ,T

1

|Ω|

∫
Ω

Tdx (2.3)

subject to ∫
Ω

χdx≤V

−∇·(k(χ)∇T )=q on Ω,

(k(χ)∇T )·n=0 on Γ\ΓD,
T =T0 on ΓD.

Multiplying T−T0 to both sides of (2.1b) and integrating by parts, we have∫
Ω

q(T−T0)dx=

∫
Ω

k(χ)|∇T |2dx.
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Therefore, minimizing the average temperature (when q is a constant) is equiva-
lent to minimizing the heat dissipation which is the right hand side of the above
equation. In developing an optimization algorithm, instead of updating χ and T
simultaneously, it is easier to update T by solving the steady-state equation when χ
is given. We would like to seek an equivalent formulation of the above optimization
problem so that solving the steady state equation would minimize an energy given
χ and then χ could be updated to minimize the same energy again with T fixed.

Lemma 2.1. Let T be the solution to (2.1b) and denote R∗=k∇T , then

R∗∈argmin
R∈S

∫
Ω

1

k
R·Rdx,

where

S:={R :Ω−→R2 :−∇·R=q, R·n=0 on Γ\ΓD}.

Remark 2.1. The set S can be seen as the admissible heat flux set (or more
precisely, admissible negative heat flux set). If T̃ is the solution to the heat transfer
equation with an arbitrary heat conductivity distribution k̃, that is, if−∇·(k̃∇T̃ )=0,
k̃∇T̃ ·n=0 on Γ\ΓD and an arbitrary boundary condition on ΓD, it would be easy to
see that R̃= k̃∇T̃ ∈S. This lemma shows that the minimizer to

∫
Ω

1
k
R·Rdx among

all admissible negative heat flux, is exactly k∇T , which is the negative heat flux of
T that solves the heat equation with heat conductivity k with a constant Dirichlet
condition on ΓD.

The proof of the lemma is given in Appendix.
Let

B :=

{
χ :Ω−→{0,1};

∫
Ω

χdx≤V
}
.

Since the thermal conductivity k(χ) is a piece-wise constant function, then

1

k(χ)
=

1

k0

+

(
1

k1

− 1

k0

)
χ.

We apply a convolution to χ to smooth the function

1

k(Gσ∗χ)
=

1

k0

+

(
1

k1

− 1

k0

)
Gσ∗χ,

where

Gσ=
1

2πσ2
e
−||x||2

2σ2 .
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Denote

J (χ,R) :=

∫
Ω

1

k(Gσ∗χ)
R·Rdx. (2.4)

Problem (2.3) is then reformulated as

min
χ∈B

min
R∈S
J (χ,R). (2.5)

3 A thresholding algorithm

For this min-min problem (2.5), we can design a coordinate descent algorithm which
alternately finds the descent direction of one variable while fixing the other variable.
Given an initial guess χ0, we update R and χ in the following order,

R0,χ1,R1,··· ,Rm,χm+1,··· ,

where

Rm=argmin
R∈S

J (χm,R), (3.1a)

χm+1 =argmin
χ∈B

J (χ,Rm). (3.1b)

The algorithm goes as follows

Algorithm 3.1.

1: Input: σ,V,k1,k0 and initial guess χ0 with
∫

Ω
χ=V .

2: m←0
3: repeat
4: ρ←Gσ∗χm
5: k(Gσ∗χm)← 1

( 1
k1
− 1
k0

)Gσ∗χm+ 1
k0

6: Solve (2.1b) with k=k(Gσ∗χm) for Tm

7: Rm←k(Gσ∗χm)∇Tm

8: φm←Gσ∗
[(

1
k1
− 1

k0

)
Rm ·Rm

]
9: δ←sup{a : |{x∈Ω:φm(x)<a}|≤V }

10: Ãδ⊂{x∈Ω:φk(x)=δ} and |Ãδ|=V −|{x∈Ω:φk(x)<δ}|
11: χm+1(x)←1 if φm(x)<δ or x∈ Ãδ
12: χm+1(x)←0 otherwise
13: m←m+1
14: until convergence
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4 Energy decaying property

In this section, we show that Algorithm 3.1 designed above has the energy decaying
property.

Lemma 4.1. Given φm, let us denote δ by

δ=sup{a : |{x∈Ω:φm(x)<a}|≤V }. (4.1)

We define

χm+1 =

{
1, φm<δ or x∈ Ãδ,
0, otherwise,

(4.2)

where Ãδ is any subset of the level set {x∈Ω :φk(x) = δ} and |Ãδ|= V −|{x∈Ω :
φk(x)<δ}|. Then

∫
Ω
χm+1dx=V and∫

Ω

χm+1φmdx−
∫

Ω

χφmdx≤0, ∀χ∈B with

∫
Ω

χdx=V.

Moreover, if δ≤0, ∫
Ω

χm+1φmdx−
∫

Ω

χφmdx≤0, ∀χ∈B,

that is,

χm+1 =argmin
χ∈B

∫
Ω

χφmdx.

Proof. First, we show that |{x∈Ω:φ<δ}|≤V and |{x∈Ω:φ≤δ}|≥V . There exists
δ1≤δ2≤···≤δn≤···, δn−→δ, and |{x∈Ω:φm<δn}|≤V . Since {x∈Ω:φm<δ1}⊂{x∈
Ω:φm<δ2}⊂···⊂{x∈Ω:φm<δn}⊂··· and ∪∞n=1{x∈Ω:φm<δn}={x∈Ω:φ<δ}, by
the monotone set theorem,

|{x∈Ω:φ<δ}|= lim
n−→∞|{x∈Ω:φm<δn}|≤V.

Similarly, since there exists δ̂1≥ δ̂2≥···≥ δ̂n ···, δ̂n−→δ and |{x∈Ω:φm<δ̂n}|≥V . We
have

|{x∈Ω:φ≤δ}|= lim
n−→∞|{x∈Ω:φm<δ̂n}|≥V.

Therefore, Ãδ exists.
Denote

Aδ={x∈Ω:φm(x)<δ}, Aδ={x∈Ω:φm(x)=δ} and Aδ={x∈Ω:φm(x)>δ}.
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Note for any χ∈B, we have

(χm+1(x)−χ(x))φm(x)≤(χm+1(x)−χ(x))δ

by considering the following situations of x:

χm+1(x)=1, ρ(x)≤1, χ(x)−χm+1(x)≤0, χm(x)<δ, when x∈Aδ,
χm(x)=δ, when x∈Aδ,
χm+1(x)=0, ρ(x)≥0, χ(x)−χm+1(x)≥0, χm(x)>δ, when x∈Aδ.

Therefore,∫
Ω

χm+1φmdx−
∫

Ω

χφmdx=

∫
Ω

(χm+1−χ)φmdx≤δ
(∫

Ω

χm+1dx−
∫

Ω

χdx

)
.

If ∫
Ω

χdx=V =

∫
Ω

χm+1dx, δ

(∫
Ω

χm+1dx−
∫

Ω

χdx

)
=0,

and thus ∫
Ω

χm+1φmdx−
∫

Ω

χφmdx≤0.

If

δ≤0, δ

(∫
Ω

χm+1dx−
∫

Ω

χdx

)
≤0, ∀χ∈B,

since for any χ∈B, we have

V =

∫
Ω

χm+1dx≥
∫

Ω

χdx.

This completes the proof.

Theorem 4.1. For any σ>0, J (χ,R) is nonincreasing in each iteration of χ and
R in Algorithm 3.1. That is, ∀m≥1,

J (χm+1,Rm)≤J (χm,Rm)≤J (χm,Rm−1).

Proof. By Lemma 2.1,

Rm−1 =k(Gσ∗χm−1)∇Tm−1∈S, Rm=k(Gσ∗χm)∇Tm=argmin
R∈S

J (χm,R).

Therefore,
J (χm,Rm)≤J (χm,Rm−1).
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Note

J (χ,Rm)=

∫
Ω

[
1

k0

+

(
1

k1

− 1

k0

)
Gσ∗χ

]
Rm ·Rmdx

=constant+

∫
Ω

(
1

k0

− 1

k1

)
(Gσ∗χ)Rm ·Rmdx

=constant+

∫
Ω

χGσ∗
[(

1

k0

− 1

k1

)
Rm ·Rm

]
dx

=constant+

∫
Ω

χφmdx.

By Lemma 4.1,∫
Ω

χmdx=

∫
Ω

χm+1dx=V and

∫
Ω

χm+1φmdx≤
∫

Ω

χmφmdx.

Therefore,

J (χm+1,Rm)≤J (χm,Rm).

This completes the proof.

5 Numerical implementation

We discretize the rectangular domain Ω={(x,y)|a1≤x≤a2, b1≤y≤b2} into uniform
squares with side length h and sides parallel to the coordinate axes. Denote the
collection of all open uniform squares as Sh. On each square, the characteristic
function χh is assumed to be constant and the temperature Th is bilinear, that is,

χh∈{χ :Ω−→{0,1}|χh|e=0, or χh|e=1, ∀e∈Sh}.
Th∈Wh :={T ∈H1(Ω,R)|T |K∈Q(ē), ∀e∈Sh},

where ē is the closure of e and the bilinear function space Q= {c1xy+c2x+c3y+
c4,c1,c2,c3,c4∈R}. To let Th satisfy the Dirichlet boundary condition, additionally

Th∈WD
h :={T ∈Wh|T |ΓD =T0}.

An approximation of the solution to (2.1b) in WD
h solves∫

Ω

k∇Th∇Phdx=

∫
Ω

qPhdx, ∀Ph∈WD
h ,
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where k=k(ρh) and ρh∈{ρ:Ω−→[0,1]|ρ|e∈P0(e), ∀e∈Sh} approximates the convolution
Gσ∗χ by a weighted average. Concretely,

ρh|e=
∑

|i|≤r,|j|≤r

g(i,j)χh|e+(i,j),

g(i,j) =Ce−
i2+j2

2σ2
h2 ,

where e+(i,j) is the element defined by {(x+ih,y+jh)|(x,y) ∈ e} and C is the
normalization factor to enforce ∑

|i|≤r, |j|≤r

g(i,j) =1.

After solving for Th, we could find Rh ∈ {R : Ω−→R2|R|e ∈P1(e), e∈Sh} and the
objective functional as follows,

Rh|e=k(ρh|e)∇Th, ∀e∈Sh,

Jh=

∫
Ω

1

k(ρh)
RhRhdx=

∑
e∈Sh

[(
1

k1

− 1

k0

)
ρh|e+

1

k0

]∫
e

RhRhdx

=
∑
e∈Sh

χh|e

( 1

k1

− 1

k0

) ∑
|i|≤r,|j|≤r

g(i,j)

∫
e+(i,j)

RhRhdx

+
1

k0

∑
e∈Sh

∫
e

RhRhdx.

χh is then updated according to φh which is elementwise defined as

φh|e=

(
1

k1

− 1

k0

) ∑
|i|≤r,|j|≤r

g(i,j)

∫
e+(i,j)

RhRhdx, ∀e∈Sh.

Let M be the largest integer so that Mh2≤V . The new χh takes 1 on the elements
corresponding to M smallest element values of φh and 0 elsewhere.

6 Numerical experiments

In this section, we test our algorithm on two examples. The first is the volume-
to-point problem considered by Bejan [2], in which the high conductive material
conducts heat uniformly generated in the volume to a point heat sink on the bound-
ary. We approximate the point by a short isothermal boundary as in [8]. The
second is the volume-to-sides problem, where the plate is surrounded by isothermal
boundary which is considered in [11].
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6.1 Volume-to-point problem

We consider a unit square plate with side length A=1 as shown in Fig. 1. The heat
is generated uniformly over the plate. It is surrounded by adiabatic boundaries. The
only way to cool the plate down is to conduct heat to a short isothermal boundary
with length C on the middle of the bottom side, on which T =T0. Since we are
concerned about

∫
Ω
k∇T ·∇Tdx, the value of T0 does not affect the computational

results. For simplicity we let T0 =0. We also let the quantity q
k0

=50.

Due to symmetry, we only need to compute the right half of the domain. On
the line of symmetry, the temperature satisfies the Neumann boundary condition.
We always use a uniform initial distribution. The convergence criterion is that
||χnh−χn−1

h ||L1 < 1e−4. The maximum number of iterations required to meet the
convergence criterion for the experiments in this subsection is 205 and the average
number of iterations is 108.1. Fig. 2 shows the optimal designs for σ=2.5×10−3 and
with different resolutions. We can see that the overall topology of the distribution is
quite stable when mesh is refined. The distribution looks like a tree with branches
extending to the adiabatic boundaries. The results with a half of the σ=1.25×10−3

are shown in Fig. 3. In this case, the branches are finer with smaller σ compared
to those in Fig. 2. We could still see from the figure that the overall topology is
relatively stable when mesh is refined. Fig. 4 verifies the energy decaying property
of our algorithm. We show the case when the volume fraction is 0.2, k1/k0 = 500,

Figure 1: The volume-to-point problem.
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Figure 2: Mesh resolution = 200×200,500×500,700×700,800×800 from left to right. Volume fraction
=0.2, σ=2.5×10−3, k1

k0
=500, C=0.05.

Figure 3: Mesh resolution = 700×700,800×800,950×950,1300×1300 from left to right. Volume
fraction =0.2, σ=1.25×10−3, k1

k0
=500, C=0.05.

Figure 4: The objective versus the number of iterations. Volume fraction=0.2, Mesh resolution 500×
500, σ=2.5×10−3, k1

k0
=500.

and σ = 2.5×10−3. The objective functional decays in each iteration. All other
experiments could also produce similar energy curves.

Fig. 5 shows the optimized distribution as the volume fraction (of the high con-
ducting material) increases. The volume distribution tends to concentrate on the
tree trunk, especially close to the isothermal boundary while the thickness of the
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Figure 5: Volume fraction = 0.1, 0.2, 0.3, 0.4 from left to right. Mesh resolution 500×500, σ =
2.5×10−3, k1

k0
=500, C=0.05.

Figure 6: σ=1.5×10−4,2×10−3,2.5×10−3,3×10−3 from left to right. Volume fraction =0.2, mesh
resolution 500×500, k1

k0
=500, C=0.05.

Figure 7: k1

k0
=50000,10000,500,100 from left to right. Volume fraction=0.2, mesh resolution 500×500,

σ=1.25×10−3, C=0.05.

smallest branches seems unchanged. When the volume fraction is the same, the
optimized distribution depends on filter size σ and conductivity ratio k1

k0
. In Fig. 6,

when σ becomes larger, we can see that the distribution contains less fine branches.
This is because after convolution with Gσ the fine branches will have lower conduct-
ing efficiency when σ is larger. Similarly when k1

k0
becomes smaller, thin branches

conduct heat less efficiently compared to when k1
k0

is large. As shown in Fig. 7, as
k1
k0

becomes smaller, branches becomes thicker.
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6.2 Volume-to-sides problem

Here we consider a square plate all of whose boundary is isothermal with T =T0 as
shown in Fig. 8. Inside the plate, heat is generated uniformly. Due to symmetry, we
only optimize over the upper left quadrant of the plate. On the vertical line and the
horizonal line of symmetry (dashed lines in Fig. 8), we impose Neumann boundary
conditions on T . We set volume fraction to be 0.5 and A=1. T0=0 and q

k0
=50. The

initial distribution is uniform and the convergence criterion is the same as that for
the volume-to-point problem. The average number of iterations for the experiments
presented here is 150.9. The results for different mesh resolution are shown in Fig. 9.
The distribution of the void region (white region) looks like a leaf in each quadrant of
the plate. As the mesh is refined, the distribution stabilizes. Fig. 10 shows that as the
volume fraction of high conductive material increases, mainly those parts close to the
vertical and horizontal symmetric lines of the plate get thickened, which effectively
transfer heat generated in the center to the isothermal boundaries. The influence of
the conductivity ratio k1

k0
and the filter size σ to the optimized distribution can be

seen in Fig. 11 and in Fig. 12 respectively. Similar to the volume-to-point problem,
the results exhibit finer structures when the conductivity ratio becomes larger or
the filter size becomes smaller.

Figure 8: The volume-to-sides problem.
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Figure 9: From left to right, mesh resolution is 500×500, 600×600, 1400×1400, 1600×1600. k1

k0
=

100,σ=2.5×10−3. Volume-to-sides problem.

Figure 10: From left to right, volume fraction = 0.1,0.2,0.3,0.4. σ = 2.5×10−3, k1

k0
= 100. Mesh

resolution is 600×600.

Figure 11: From left to right, k1

k0
= 10,50,100,500. Mesh resolution is 600×600. σ = 2.5×10−3.

Volume-to-sides problem.

Figure 12: From left to right, σ=2.5×10−3,5×10−3,1×10−2,2×10−2. Mesh resolution is 600×600.
k1

k0
=500. Volume-to-sides problem.
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7 Conclusions

By reformulating the heat transfer problem into a min-min problem, we developed a
volume-preserving coordinate descent method, in which the characteristic function
is updated by an iterative thresholding method. The method is simple to use and
has the energy decaying property. The characteristic function gives a black-or-white
design without need of post-processing. Numerical experiments are conducted to
show the efficiency of the method. We also studied the effects of the conductivity
ratio and filter size on the optimized distributions.

Appendix: Proof of Lemma 2.1

Proof. It is easy to see that R∗=k∇T ∈S by (2.1b) and the definition of S. We also
have ∫

Ω

1

k
R∗ ·R∗dx=

∫
Ω

1

k
k∇T ·k∇Tdx=

∫
Ω

k∇T ·∇Tdx.

Now we show that R∗ minimizes
∫

Ω
1
k
R·Rdx over S. ∀R∈S,∫

Ω

1

k
R∗ ·R∗dx−

∫
Ω

1

k
R·Rdx

=

∫
Ω

1

k
(R∗−R)·(R∗+R)dx

=

∫
Ω

1

k
(R∗−R)·(R−R∗)dx+2

∫
Ω

1

k
(R∗−R)·R∗dx.

Substituting R∗ with k∇T first and then integrating by parts, we have∫
Ω

1

k
(R∗−R)·R∗dx=

∫
Ω

(R∗−R)·∇Tdx

=

∫
Γ

(T−T0)(R∗−R)·nds−
∫

Ω

∇·(R∗−R)(T−T0)dx. (A.1)

Since T =T0 on ΓD, R·n=R∗ ·n=0 on Γ\ΓD, ∇·R∗=∇·R in Ω,∫
Ω

1

k
(R∗−R)·R∗dx=0.

Therefore, ∫
Ω

1

k
R∗ ·R∗dx−

∫
Ω

1

k
R·Rdx=

∫
Ω

1

k
(R∗−R)·(R−R∗)dx≤0.

This completes the proof.
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