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Abstract. In this article, we develop a new well-balanced finite volume central
weighted essentially non-oscillatory (CWENO) scheme for one- and two-dimensional
shallow water equations over uneven bottom. The well-balanced property is of
paramount importance in practical applications, where many studied phenomena can
be regarded as small perturbations to the steady state. To achieve the well-balanced
property, we construct numerical fluxes by means of a decomposition algorithm based
on a novel equilibrium preserving reconstruction procedure and we avoid applying
the traditional hydrostatic reconstruction technique accordingly. This decomposition
algorithm also helps us realize a simple source term discretization. Both rigorous theo-
retical analysis and extensive numerical examples all verify that the proposed scheme
maintains the well-balanced property exactly. Furthermore, extensive numerical re-
sults strongly suggest that the resulting scheme can accurately capture small perturba-
tions to the steady state and keep the genuine high-order accuracy for smooth solutions
at the same time.

AMS subject classifications: 74S10

Key words: Shallow water equations, source term, CWENO scheme, decomposition algorithm,
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1 Introduction

In this article, we concern with developing a high-order finite volume CWENO scheme
for shallow water equations (SWEs), which in one-dimensional space enjoy the following
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form

ht+(hu)x =0, (1.1a)

(hu)t+

(
hu2+

1
2

gh2
)

x
=−ghbx. (1.1b)

Here, h(x,t), u(x,t) and b(x) represent the water depth, the depth-averaged velocity, and
the bottom, respectively. The constant g=9.812 denotes the gravitational constant. High
order schemes solving SWEs enjoy the key role in fields of the hydraulic science and the
coastal engineering [1–3].

The geometric source term on the right hand side of (1.1) is due to the uneven bottom
topography. For conciseness, the system (1.1) can be rewritten as a compact vector form

Ut+F(U)x =S(U,b), (1.2)

with

U=(h,hu)>, F(U)=
(

hu,hu2+
1
2

gh2
)>

and S(U,b)=(0,−ghbx)
>

being the vector of the conservative variable, the physical flux, and the source term, re-
spectively. The system (1.1) keeps a subtle equilibrium between the flux gradient and
the source term. From the mathematical point of view, the system (1.2) holds non-trivial
steady state solutions that satisfy an ordinary differential equation (ODE)

F(U)x =S(U,b).

Herein, we are interested in the still water steady state solutions as follows

u=0, h+b=Constant. (1.3)

In general, the traditional schemes coupled with standard numerical fluxes as well as di-
rect discretizations of the source term fail to maintain the above delicate equilibrium, and
lead to non-physical oscillations especially near discontinuities, which will not disappear
even on a very refined mesh.

Well-balanced schemes [4, 5] can preserve the steady state up to the machine accu-
racy at the discrete level and resolve small perturbations of the steady state even on a
relatively coarse mesh [6], then increase the computational efficiency correspondingly.
Following the original works [4, 5], many researchers have made extensive attempts in
the development of well-balanced schemes. Representative researches mainly include:
kinetic scheme [7], gas-kinetic scheme [8], central-upwind scheme [9], weighted essen-
tially non-oscillatory (WENO) schemes [10–19], Hermite WENO scheme [20], central
schemes [21, 22], Runge-Kutta discontinuous Galerkin (RKDG) methods [23–25], ADER
(Arbitrary DERivatives in time and space) schemes [26,27], spectral element method [28],
Godunov-type method [29], element-free Galerkin method [30], ADER discontinuous
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Galerkin (ADER-DG) method [31], and so on. The research on the well-balanced schemes
has become a very popular subject. The latest progresses of this subject can be found in
the book of Gosse [32]. For a historic review about this subject, we refer to [33, 34] for
more details.

The key objective of this article is to develop a new well-balanced finite volume
CWENO scheme by means of a novel full equilibrium preserving reconstruction pro-
cedure. This type of reconstruction procedure can lead to a decomposition algorithm,
which helps us construct well-balanced numerical fluxes and achieve a simple source
term discretization easily.

Specifically, during the process of constructing numerical fluxes at inter-cells, we
are free of using the traditional hydrostatic reconstruction technique [35]. The hydro-
static reconstruction technique [35] is often applied to construct well-balanced numerical
fluxes [19, 24, 25, 31].

In addition, for the source term discretization, the resulting scheme only uses simple
Gaussian quadrature rules and avoids using complex source term splitting. Compared
with the traditional WENO reconstruction in [36, 37], the linear weights of the CWENO
reconstruction are not needed to guarantee the accuracy of the reconstruction in smooth
regions and can be chosen rather arbitrarily. Moreover, all the nonlinear weights in-
volved in the CWENO reconstruction do not depend on particular points. Particularly,
the CWENO reconstruction here is especially suitable for finite volume schemes with re-
spect to hyperbolic balance laws such as SWEs (1.1), where high-order quadrature rules
using several points are needed for the cell averages of the source term.

This article is organized as follows: In Section 2, we present well-balanced finite vol-
ume CWENO schemes for one-dimensional SWEs. Subsequently, we extend the pro-
posed scheme to two-dimensional system in Section 3. In Section 4, we implement ex-
tensive numerical examples to demonstrate the performance of the resulting scheme. Fi-
nally, some conclusions are drawn in Section 5.

2 Construction of well-balanced finite volume CWENO scheme
for one-dimensional problems

In this section, we concentrate on construction of the well-balanced finite volume CWENO
scheme for one-dimensional SWEs (1.1).

2.1 Notations

Firstly, we divide the spatial domain [a,b] into N uniform cells with Ij = [xj− 1
2
, xj+ 1

2
] for

j=1,··· ,N, where

a= x 1
2
< x 3

2
< ···< xN+ 1

2
=b.
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In addition, we denote the cell center and the uniform mesh size by xj =
1
2 (xj− 1

2
+xj+ 1

2
)

and ∆x= b−a
N , respectively. Under the framework of finite volume schemes, we look for

numerical solution U j(t) to approximate the cell average of the exact solution U(x,t) on
cell Ij, namely

U(xj,t)≈
1

∆x

∫
Ij

U(x,t)dx.

2.2 General formulation of the CWENO scheme

In this article, our semi-discrete finite volume CWENO scheme for the one-dimensional
shallow water equations (1.2) enjoys the following form

d
dt

U j(t)+
1

∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
=

1
∆x

∫
Ij

S(U,b)dx. (2.1)

Here, the notation F̂j+ 1
2
, f̂ (U−

j+ 1
2
,U−

j+ 1
2
) denote numerical fluxes and are used to approx-

imate the physical fluxes at inter-cells, i.e., F(U(xj+ 1
2
)). The detailed construction of F̂j+ 1

2
will be described in Section 2.5.

2.3 A brief review of the CWENO reconstruction

Within the context of finite volume schemes, we only have cell averages at hands at each
time level. To construct numerical fluxes and approximate the source term, we need val-
ues at inter-cells as well as values at the inner point of a cell for the usage of quadrature
rules with high-order accuracy. Therefore, we need to employ reconstruction procedures
to get the above values. Among them, the traditional WENO reconstruction is very suc-
cessful and allows us to construct high-order WENO schemes (see [36–39] and references
therein). However, the WENO reconstruction procedure has few shortcomings.

• Firstly, the linear weights dk depend explicitly on the location of x̂∈ Ij.

• The computation of linear and nonlinear weights is required at different points on
the inter-cells.

• In particular, in the case of the SWEs with the source term, more reconstruction
procedures are needed to approximate the cell average of the source term.

• Moreover, for interior points, the linear weights may not exist (e.g., third-order
WENO reconstruction at cell centre) or be non-positive (e.g., fifth-order WENO re-
construction at cell centre).

In this article, we apply the CWENO reconstruction procedure [40]. This CWENO
reconstruction procedure can provide an entire reconstruction polynomial defined ev-
erywhere in a given cell and is especially convenient for the evaluation of the geometric
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source term. In the following, we first present a brief review of the CWENO reconstruc-
tion operator.

Fixing a stencil {Ij−r,··· , Ij+r} involving 2r+1 cell averages ūj−r,··· ,ūj+r, we need to
obtain the reconstruction value at point x̂∈Ij with the help of the CWENO reconstruction.
The specific steps of the CWENO reconstruction are as follows:

1) Firstly, we can get a polynomial of degree 2r denoted by Popt(x) based on the 2r+1
cell averages ūj−r,··· ,ūj+r.

2) Secondly, we obtain a set of lower order polynomials Pl(x)∈Pr for l=1,2,··· ,r+1.

3) Thirdly, we get a polynomial P0(x) defined as

P0(x)=
1
d0

(
Popt(x)−

r+1

∑
l=1

dl Pl (x)

)
∈P2r.

4) By means of the above reconstruction polynomials, the point value Rj(x̂) is given by
the CWENO reconstruction operator in the below form

Rj(x̂)=R
(

x̂;{ūk}k∈sj

)
=

r+1

∑
l=0

ωl(x̂)·Pl(x̂)∈P2r, x̂∈ Ij. (2.2)

The nonlinear weights ωk in (2.2) are computed from the linear ones dk as

ωl =αk

(r+1

∑
i=0

αi

)−1
based on αl =

dl

(βl+ε)2 for l=0,1,··· ,r+1,

where βl denotes a suitable smoothness indicator, such as in [36], evaluated on the poly-
nomial Pl in the cell Ij. Here, the parameter ε is a small positive quantity used here to
avoid denominators being zero. In general, we take ε=10−6 as in [36]. For more details,
we refer to the reviews [37–39] for more details.

To determine the nonlinear weights ωl , we must obtain the linear weights dl in ad-
vance. First, we determine the temporary linear weights

d̃l = d̃r+1−l = l for 1≤ k≤ r+1
2

.

In addition, we choose the linear coefficient d0∈(0,1) for the high-order polynomial P0(x).
When d0 is fixed, the final nonlinear weights are given by

dl = d̃l

(r+1

∑
i=1

d̃i

)−1
(1−d0), l=1,2,··· ,r+1.
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Remark 2.1. In particular, the parameter d0 must satisfy 0<d0<1. In fact, when d0 is too
close to 0 the polynomial P0(x) becomes unbounded. On the other hand, when d0 is close
to 1, the final reconstruction polynomial Rj(x) will almost coincide with the polynomial
Popt(x), irrespectively of the oscillation indicators. In this article, we will take d0 =

1
2 as

in [40].

Remark 2.2. Note that the polynomial P0(x)∈P2r is part of the reconstruction. The re-
sulting CWENO reconstruction provides a polynomial Rj(x) that can be evaluated at
any point within the cell Ij. In addition, the linear weights dk are not needed to guarantee
the accuracy of the reconstruction in smooth regions and can be chosen rather arbitrarily.
Moreover, all the nonlinear weights ωk involved in the reconstruction do not depend on
particular points where the reconstruction is needed. The above observations are signif-
icant characteristics of the CWENO reconstruction different from the traditional WENO
reconstruction [37–39].

2.4 The decomposition algorithm

Herein, based on the cell averages {U}N
j=1 at hands, we try to obtain the numerical so-

lution in terms of the polynomial form denoted by U(x) by means of the CWENO re-
construction. In addition, we also propose a novel decomposition algorithm for the
reconstruction polynomial U(x), which decomposes U(x) into a reference equilibrium
steady state Ue(x) and a (possibly large) perturbation part Up(x) in terms of polynomi-
als, namely

U(x)=Ue(x)+Up(x).

This procedure is one of the key parts to construct the well-balanced scheme, and will be
applied not only to the initial condition but also to the numerical solution at each time
level. In the following, we will apply this algorithm in the process of construction of
well-balanced numerical fluxes as well as discretizations to the source term.

In fact, due to the still water steady state solutions (1.3), we have

ūj =0, (h+b)j =Constant for all j. (2.3)

Then, we define the equilibrium component of the water depth he(x) in the cell Ij as
follows

he
j (x)=(h+b)CWENO

j −b(x), x∈ Ij. (2.4)

Here, the notation (h+b)CWENO
j denotes the point value of the free surface level at the

cell center xj, which is obtained from the CWENO reconstruction. In this article, we
assume that the bottom topography can be evaluated anywhere, either because it is a
given function or obtained by a suitable interpolation.
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Once (h+b)CWENO
j has been fixed, we can obtain the following equilibrium part of

the numerical solution in cell Ij

Ue
j (x)=

(
he

j (x)
(hu)e

j (x)

)
, x∈ Ij, (2.5)

with (hu)e
j (x)≡0 due to u=0 at the steady state (1.3).

Next, the perturbation part Up
j (x) is obtained by applying the standard CWENO re-

construction R in terms of the cell averages of the equilibrium perturbation and the nu-
merical solution itself, namely

Up
j (x)=Rj

(
x;
{

Uk−Ue
k(x)

}
k∈sj

)
, x∈ Ij. (2.6)

Note that the perturbation in cell Ik is obtained by taking a difference between the actual
cell averages Uk and the ones of the equilibrium part Ue

k(x) in cells Ik neighbor to the
given cell Ij. Here, the notation Ue

k(x) denotes the cell average of Ue(x) using the (2m−1)-
th order accurate Gaussian quadrature rules in each cell Ik from the stencil of the cell Ij
with the below form

Ue
k(x)=Q(Ue

k(x)),
1

∆x

m

∑
l=1

ωl ·Ue
k (xk,l), k∈ sj, (2.7)

with ωl and xk,l being the weights and the nodes according to the cell Ik.
In the end, by means of adding the equilibrium part in (2.5) to the perturbation one

in (2.6), we get a complete equilibrium preserving reconstruction denoted byW , namely

Uj(x)=Ue
j (x)+Up

j (x),Wj

(
x;{Uk}k∈sj

)
, x∈ Ij. (2.8)

2.5 Construction of well-balanced numerical fluxes

The construction of numerical fluxes

F̂j+ 1
2
= f̂
(

U−
j+ 1

2
,U+

j+ 1
2

)
(2.9)

in (2.1) is the key element to achieve the final well-balanced scheme. Herein, we apply
the following simple and efficient Lax-Friedrichs flux function

f̂ (a1,a2)=
1
2
(

F(a1)+F(a2)−α(a2−a1)
)
, (2.10)

with α = max
∣∣u+√gh

∣∣ being the maximum wave propagation speed over the whole
spatial domain. In addition, the numerical flux function f̂ (·,·) in (2.10) satisfies the con-
sistency, namely f̂ (u,u)=F(u).
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Note that the inter-cells values U±
j+ 1

2
used in (2.9) are obtained using the equilibrium

preserving reconstruction (2.8) instead of the original reconstruction procedure (2.2).
To maintain the well-balanced property, our first priority is to ensure that for the still

water steady state (1.3), the reconstructed values U±
j+ 1

2
at inter-cells need to satisfy the

below equalities
U−

j+ 1
2
=U+

j+ 1
2
,Uj+ 1

2
. (2.11)

Consequently, in the case of the still water steady state (1.3), the numerical fluxes F̂j+ 1
2

reduce to the following form

F̂j+ 1
2
= f̂
(

U−
j+ 1

2
, U+

j+ 1
2

)
=F

(
Uj+ 1

2

)
(2.12)

due to the consistency of the Lax-Friedrichs flux function in (2.10). The realization of the
above formula (2.12) is an important step to achieve the well-balanced property. Espe-
cially, in the process of constructing the well-balanced numerical fluxes, we are free of
using the hydrostatic reconstruction as in [19,24,25,31]. Similar technique has been used
in [41].

2.6 The source term discretization

With the full equilibrium preserving reconstruction W in (2.8) at hand, we propose a
novel discretization for the source term by means of the decomposition algorithm in Sec-
tion 2.4. We first split the water depth hj(x) into the equilibrium part he

j (x) and the
perturbation part hp

j (x) as follows

hj(x)=he
j (x)+hp

j (x), x∈ Ij.

Therefore, the momentum source term in the second equation can be rewritten as

S[2]
j (x)=−ghj(x)

db(x)
dx

=−g
(

he
j (x)+hp

j (x)
) db(x)

dx

=−ghe
j (x)

db(x)
dx
−ghp

j (x)
db(x)

dx
, x∈ Ij. (2.13)

However, a straightforward numerical integration for the above formula will not result
in a well-balanced scheme. Herein, from the governing system (1.1), we observe the
following equality

d
(

1
2 g
(

he
j (x)

)2)
dx

=−ghe
j (x)

db(x)
dx

, x∈ Ij,

according to the equilibrium state (1.3).
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Consequently, the original momentum source term in the second equation (2.13) can
be written in the following formula equivalently

S[2]
j (x)=

d
(

1
2 g
(

he
j (x)

)2)
dx

−ghp
j (x)

db(x)
dx

, x∈ Ij. (2.14)

To integrate the two ends of the above formula at the same time in the cell Ij, we obtain
the following equality

1
∆x

∫
Ij

S[2]
j (x)dx=

1
2 g
(

he
(

xj+ 1
2

))2
− 1

2 g
(

he
(

xj− 1
2

))2

∆x

−Q
(

ghp
j (x)

db(x)
dx

)
, x∈ Ij. (2.15)

Here, we adopt the Gaussian quadrature rules for the second term in the right hand
side of (2.15). The point values at the quadrature nodes in (2.15) are obtained using the
CWENO reconstruction procedure.

2.7 The temporal discretization

On the premise of getting numerical fluxes as well as discretizations to the source term,
the semi-discrete scheme (2.1) can be written out as an ODE

d
dt

U j(t)=F
(
U
)

:=− 1
∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
+

1
∆x

∫
Ij

S(U,b)dx. (2.16)

For the temporal discretization to the above ODE (2.16), we apply the third-order Runge-
Kutta approach [42]

U(1)
=Un

+∆tF (Un
), (2.17a)

U(2)
=

3
4

Un
+

1
4

(
U(1)

+∆tF (U(1)
)
)

, (2.17b)

Un+1
=

1
3

Un
+

2
3

(
U(2)

+∆tF (U(2)
)
)

. (2.17c)

2.8 Summary of the current scheme

The specific steps of the proposed scheme for the one-dimensional system (1.1) can be
summarized as follows:

(1) Initially, we obtain cell averages {U j}N
j=1.

(2) Split the numerical solution Uj(x) into Ue
j (x) and Up

j (x) using the full equilibrium
preserving reconstructionW in each cell Ij at each time level.
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(3) Construct well-balanced numerical fluxes F̂j+ 1
2

through the formula (2.10).

(4) Discretize the source term via the formula (2.15).

(5) Get the semi-discrete scheme (2.16).

(6) Update to the next time level by means of the Runge-Kutta approach (2.17).

(7) Repeat the Steps (2)–(6).

2.9 Analysis of the well-balanced property

Here, we briefly summarize the well-balanced property and draw the below proposition.

Proposition 2.1. The finite volume CWENO scheme (2.1), which is coupled with well-balanced
numerical fluxes in (2.10), and a novel source term discretization in (2.15) using a Gaussian
quadrature rule Q as well as the full equilibrium preserving reconstruction W in (2.8), is well-
balanced for the still water steady state (1.3).

Proof. The consistency and formal order of accuracy of the scheme is straightforward. In
addition, at the still water steady state (1.3), in each cell Ik∈ Ij, we have

Uk =Ue
k(x)=Q(Ue

k(x)) for k∈ sj,

which leads to the following perturbation part

Up
j (x)=W

(
x;
{

Uk−Ue
k(x)

}
k∈sj

)
≡0, x∈ Ij,

from (2.6).
Moreover, with the aid of the full equilibrium preserving reconstruction W in (2.8),

we get the water depth at inter-cells as follows

h
(

x−
j+ 1

2

)
=he

j

(
x−

j+ 1
2

)
+hp

j

(
x−

j+ 1
2

)
=(h+b)CWENO

j −b
(

xj+ 1
2

)
, (2.18a)

h
(

x+
j+ 1

2

)
=he

j+1

(
x+

j+ 1
2

)
+hp

j+1

(
x+

j+ 1
2

)
=(h+b)CWENO

j+1 −b
(

xj+ 1
2

)
. (2.18b)

In addition, we observe the following fact that

(h+b)CWENO
j =(h+b)CWENO

j+1 =Constant,

by means of the reconstruction procedure. Then, we draw the below conclusion that

h
(

x−
j+ 1

2

)
=h
(

x+
j+ 1

2

)
,he

(
xj+ 1

2

)
,
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due to the related operations in (2.18). Further, we also observe that

(hu)
(

x−
j+ 1

2

)
=(hu)

(
x+

j+ 1
2

)
=0, (2.19)

due to (hu)e(x)≡0.
In summary, we obtain the below equality

U−
j+ 1

2
=U+

j+ 1
2
=

 he
(

xj+ 1
2

)
(hu)e

(
xj+ 1

2

)
,

(
he
(

xj+ 1
2

)
0

)
.

Hence, according to the consistency of the numerical flux function (2.10), we get

F̂j− 1
2
= f̂
(

U−
j− 1

2
,U+

j− 1
2

)
=F

(
U+

j− 1
2

)
=

(
0,

1
2

g
(

he
(

xj− 1
2

))2
)>

,

F̂j+ 1
2
= f̂
(

U−
j+ 1

2
,U+

j+ 1
2

)
=F

(
U−

j+ 1
2

)
=

(
0,

1
2

g
(

he
(

xj+ 1
2

))2
)>

.

Then, the discretization to the flux gradient reduces to the below equality

1
∆x

(
F̂[2]

j+ 1
2
− F̂[2]

j− 1
2

)
=

1
2 g(he(xj+ 1

2
))2− 1

2 g(he(xj− 1
2
))2

∆x
. (2.20)

Furthermore, at the steady state (1.3), the original discretization to the source term (2.15)
reduces to the below form

S[2]
j =

1
2 g(he(xj+ 1

2
))2− 1

2 g(he(xj− 1
2
))2

∆x
, (2.21)

due to Up(x)≡0.
By plugging the above discretizations to the flux gradient (2.20) and to the source

term (2.21) into the semi-discrete finite volume scheme (2.1), we get

dU j

dt
=F (U),− 1

∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
+Sj≡0.

Thus the scheme is well-balanced as claimed correspondingly.

3 Extension to two-dimensional system

In this section, we extend the one-dimensional CWENO scheme to the following two-
dimensional SWEs

ht+(hu)x+(hv)y =0, (3.1a)

(hu)t+

(
hu2+

1
2

gh2
)

x
+(huv)y =−ghbx, (3.1b)

(hv)t+(huv)x+

(
hv2+

1
2

gh2
)

y
=−ghby, (3.1c)
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where v denotes the velocity in y-direction. In particular, the two-dimensional system
maintains the below still water steady state solutions

u=v=0, h+b=Constant. (3.2)

In a similar way, we rewrite this system (3.1) into the following compact form

Ut+F(U)x+G(U)y =S(U,b) (3.3)

with

U=

 h
hu
hv

, F(U)=

 hu

hu2+
1
2

gh2

huv

,

G(U)=

 hv
huv

hv2+
1
2

gh2

, S(U,b)=

 0
−ghbx
−ghby

.

We deal with a rectangle computational domain Ω=[a,b]×[c,d] discretized uniformly
by Nx and Ny cells in x− and y−direction, respectively. The cells are labeled by Ii,j =
[xi− 1

2
,xi+ 1

2
]×[yj− 1

2
,yj+ 1

2
] with ∆x= xi+ 1

2
−xi− 1

2
and ∆y= yj+ 1

2
−yj− 1

2
as cell sizes. A semi-

discrete finite volume scheme for (3.3) enjoys the following form

d
dt

Ui,j(t)+
1

∆x

(
F̂i+ 1

2 ,j− F̂i− 1
2 ,j

)
+

1
∆y

(
Ĝi,j+ 1

2
−Ĝi,j− 1

2

)
=

1
∆x∆y

∫∫
Ii,j

S(U,b)dxdy. (3.4)

Here, the notation Ui,j(t) represents the cell averages of the conservative variables. In ad-
dition, F̂i+ 1

2 ,j and Ĝi,j+ 1
2

denote numerical fluxes at inter-cells in the x− and y−direction,
respectively. For the two-dimensional case, we also apply the Lax-Friedrichs numerical
flux function (2.10) and the numerical fluxes F̂i+ 1

2 ,j and Ĝi,j+ 1
2

enjoys the following forms

F̂i+ 1
2 ,j =

1
2

(
F
(

U−
i+ 1

2 ,j

)
+F
(

U+
i+ 1

2 ,j

)
−α
(

U+
i+ 1

2 ,j
−U−

i+ 1
2 ,j

))
, (3.5a)

Ĝi,j+ 1
2
=

1
2

(
G
(

U−
i,j+ 1

2

)
+G

(
U+

i,j+ 1
2

)
−α
(

U+
i,j+ 1

2
−U−

i,j+ 1
2

))
, (3.5b)

with α =max(|u+
√

gh|,|v+
√

gh|) as the maximum wave propagation speed over the
whole computational domain.

To construct the above numerical fluxes and to achieve the source term approxima-
tion, we need to get Ui,j(x,y) using reconstruction based on the cell averages. Herein, we
apply the equilibrium preserving reconstruction similar to the one-dimensional case (2.8)
with the below form

Ui,j(x,y)=Ue
i,j(x,y)+Up

i,j(x,y),Wi,j

(
x,y;{Uk,l}k,l∈si,j

)
, (x,y)∈ Ii,j. (3.6)
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Therefore, we can obtain the values at inter-cells, i.e., U±
i+ 1

2 ,j
and U±

i,j+ 1
2
. The equilibrium

steady state part has the following form

Ue
i,j(x,y)=


he

i,j(x,y)

(hu)e
i,j(x,y)

(hv)e
i,j(x,y)

, (x,y)∈ Ii,j, (3.7)

with
(hu)e

i,j(x,y)=(hv)e
i,j(x,y)≡0

due to u= v=0 at the steady state (3.2). In particular, the equilibrium component of the
water depth enjoys the below form

he
i,j(x,y)=(h+b)CWENO

i,j −b(x,y), (x,y)∈ Ii,j. (3.8)

Here, the notation (h+b)CWENO
i,j denotes the point value of the free surface level at the cell

center, which is obtained from the CWENO reconstruction. Moreover, in analogy to the
one-dimensional case, we can also get the perturbation part of the conservative variables
with the below forms

Up
i,j(x,y)=Ri,j

(
x,y;

{
Uk,l−Ue

k,l(x,y)
}
(k,l)∈si,j

)
, (x,y)∈ Ii,j.

In addition, the source term can be equivalently rewritten as follow

S[2]
i,j (x,y)=−ghi,j(x,y)

db(x,y)
dx

=−ghe
i,j(x,y)

db(x,y)
dx

−ghp
i,j(x,y)

db(x,y)
dx

, (x,y)∈ Ii,j. (3.9a)

S[3]
i,j (x,y)=−ghi,j(x,y)

db(x,y)
dy

=−ghe
i,j(x,y)

db(x,y)
dy

−ghp
i,j(x,y)

db(x,y)
dy

, (x,y)∈ Ii,j. (3.9b)

Subsequently, we approximate the source terms as follows

1
∆x∆y

∫∫
Ii,j

S[2]
i,j (x,y)dxdy

=
1

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

(
1
2

g
(

he
(

xj+ 1
2
,y
))2
− 1

2
g
(

he
(

xj− 1
2
,y
))2

)
dy−Q

(
ghp

i,j(x,y)
db(x,y)

dx

)
, (3.10a)

1
∆x∆y

∫∫
Ii,j

S[3]
i,j (x,y)dxdy

=
1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

(
1
2

g
(

he
(

x,yj+ 1
2

))2
− 1

2
g
(

he
(

x,yj− 1
2

))2
)

dx−Q
(

ghp
i,j(x,y)

db(x,y)
dy

)
. (3.10b)
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Herein, we employ the following Gaussian quadrature rules

Q(c(x,y)),
m

∑
k=1

m

∑
l=1

ωkωlc
(
xi,k,yj,l

)
≈ 1

∆x∆y

∫∫
Ii,j

c(x,y)dxdy.

4 Numerical results

In this section, we carry out extensive numerical examples to validate performance of the
current scheme. To ensure the numerical stability for the one-dimensional problems, we
adopt an adaptive time step ∆t satisfying the following condition

∆t
∆x

max
i

(∣∣ūn
i
∣∣+√gh̄n

i

)
=CFL

with CFL being the Courant-Friedrichs-Levy constant and set the CFL number as 0.6 ex-
cept for special examples. With respect to the two-dimensional case, we adopt a similar
CFL time restriction. In addition, we apply (2r+1)−th order accurate CWENO recon-
struction with r= 2, and use (2m−1)−th order accurate Gaussian quadrature rule with
m= 3. Therefore, the resulting scheme can achieve 5−th order accuracy for smooth so-
lutions. In addition, for the two-dimensional problems, the time step should satisfy the
following condition

∆t

max
i,j

(∣∣ūn
ij

∣∣+√gh̄n
ij

)
∆x

+

max
i,j

(∣∣v̄n
ij

∣∣+√gh̄n
ij

)
∆y

=CFL.

4.1 One-dimensional system

4.1.1 Testing the well-balanced property

To testify the well-balanced property, we handle an example from [12] with the following
initial conditions

u=0m/s and h+b=10m

on [0,10]m. Here, we consider two different bottom topographies, the first one is smooth

b(x)=5exp
(
−2

5
(x−5)2

)
m,

and the second one is discontinuous

b(x)=
{

4m, if 4≤ x≤8m,
0m, otherwise.

Then, we calculate the numerical errors of the solutions between at t = 0s and at t =
0.5s and present them in Tables 1 and 2, respectively. The errors are all at the level of
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Table 1: Numerical errors of the example over a smooth bottom.

Precision L1 error L2 error L∞ error
h hu h hu h hu

Single 3.6571E-07 3.6190E-07 4.1269E-07 4.2761E-07 3.3329E-07 3.5081E-07
Double 4.4182E-14 4.2908E-14 4.0293E-14 4.0932E-14 4.2908E-14 3.0286E-14

Table 2: Numerical errors of the example over a discontinuous bottom.

Precision L1 error L2 error L∞ error
h hu h hu h hu

Single 2.6042E-07 4.2094E-07 5.3096E-07 3.5096E-07 3.0736E-07 3.2908E-07
Double 4.5309E-14 5.0285E-13 5.3301E-14 4.4903E-13 5.2493E-13 4.0096E-13

the machine accuracy; the expected well-balanced property is achieved correspondingly.
Therefore, from the numerical point of view, the one-dimensional CWENO scheme is a
well-balanced one.

4.1.2 Testing the orders of accuracy

To testify the orders of accuracy, we adopt an example from [12] with the following bot-
tom as well as initial data

b(x)=sin2(πx)m,
h(x,0)=(5+exp(cos(2πx)))m,

(hu)(x,0)=sin(cos(2πx))m2/s,

on a unit spatial domain [0,1]m.
Because the exact solutions are not available, we firstly compute this example up to

t= 0.1s on a very refined mesh with 12,800 cells and take the obtained solutions as the
reference ones. Subsequently, by means of the obtained reference solutions, we calculate
the L1 errors at t=0.1s and the accuracy orders based on different meshes, then illustrate
them in Table 3. The expected fifth-order accuracy is clearly achieved.

4.1.3 Perturbations of a steady state water flow

This example is used here to testify the ability of the current scheme to capture small
perturbations to the steady state [43]. We consider a bottom of a bump shape

b(x)=
{

0.25(cos(10π(x−1.5))+1)m, if1.4≤ x≤1.6m,
0m, otherwise,

on a spatial [0,2]m. The initial conditions are regarded as a small perturbation to the
steady state solutions with the below form

h(x,0)=
{

(1−b(x)+ε)m, if 1.1≤ x≤1.2m,
(1−b(x))m, otherwise,

and u(x,0)=0m/s,
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Table 3: L1 errors and orders of accuracy for the example in Section 4.1.2.

Cells h hu
L1 error Order L1 error Order

10 4.3958E-02 5.2307E-02
20 8.0448E-03 2.45 9.6393E-03 2.44
40 8.7542E-04 3.20 1.0417E-03 3.21
80 6.3287E-05 3.79 7.4787E-05 3.80

160 2.5207E-06 4.65 3.0204E-06 4.63
320 8.9240E-08 4.82 1.0842E-07 4.80
640 2.7692E-09 5.01 3.3882E-09 5.00

with ε> 0 a parameter. Herein, we handle two different cases: ε= 0.2m for a big pulse
and ε=0.001m for a small pulse, separately.

As time develops, the initial perturbation breaks up into two pulses moving in differ-
ent directions, which are shown in Fig. 1 and Fig. 2 at t= 0.2s on a mesh with 200 cells.
Although on a relative coarse mesh, the two pulses are all well resolved and are in perfect
agreement with those in the literature [12, 43, 44].
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Figure 1: Free surface level h+b (a) and water discharge hu (b) of the big pulse example in Section 4.1.3 at
t=0.2s.

4.1.4 The dam break problem over a rectangular bump

Then, we numerically simulate a dam break problem from [10,12,17,44], and employ the
below initial data

h(x,0)=
{

(20−b(x))m, if x≤750m,
(15−b(x))m, otherwise,

and u(x,0)=0m/s,
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Figure 2: Free surface level h+b (a) and water discharge hu (b) of the small pulse example in Section 4.1.3 at
t=0.2s.
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Figure 3: Free surface level h+b of the example in Section 4.1.4 at t=15s (a) and t=60s (b).

over a rectangular like bottom topography

b(x)=
{

8m, if
∣∣x−750

∣∣≤1500/8m,
0m, otherwise,

on a spatial domain [0,1500]m.
We present the numerical results at t= 15s and at t= 60s in Fig. 3. From Fig. 3, we

can observe that the current scheme performs well and produces well resolved, non-
oscillatory numerical results, which are in good agreement with the reference ones. More-
over, the numerical results here are comparable with those in the literature [10,12,17,44].
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4.1.5 Steady flow over a hump

Further, we implement a classical example from [45] to validate the proposed scheme.
This example includes transcritical and subcritical flows and is widely used to testify
well-balanced schemes. The initial data are given by

h(x,0)=0.33m and u(x,0)=0m/s

over a hump

b(x)=
{ (

0.2−0.05(x−10)2)m, if 8≤ x≤12m,
0m, otherwise,

on a spatial domain [0,25]m. Then, we solve this example on a mesh with 200 cells until
t=200s and impose different boundary conditions. To have a better comparison, we also
present the exact solutions obtained from [46].

Case A: the transcritical flow without a shock. A discharge hu=1.53m2/s and a water
depth h = 0.66m are imposed at the upstream boundary and on the downstream one,
respectively. The numerical results are in good agreement with the exact ones, see Fig. 4.
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Figure 4: Free surface level h+b (a) and water discharge hu (b) of the Case A in Section 4.1.5 at t=200s.

Case B: the transcritical flow with a shock. A water discharge hu = 0.18m2/s and a
water depth h= 0.33m are imposed on the upstream boundary and on the downstream
one, respectively. The numerical results in Fig. 5 are in good agreement with the exact
ones and are free of spurious oscillations.

Case C: the subcritical flow. Here, we exert a water discharge hu = 4.42m2/s and a
water depth h=2m on the upstream boundary and on the downstream one, respectively.
Numerical solutions together with the exact solutions are shown in Fig. 6; the numerical
solutions and the exact ones fit very well.
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Figure 5: Free surface level h+b (a) and water discharge hu (b) of the Case B in Section 4.1.5 at t=200s.
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Figure 6: Free surface level h+b (a) and water discharge hu (b) of the Case C in Section 4.1.5 at t=200s.

4.1.6 The tidal wave flow

Subsequently, we deal with an example from [47] with the following initial data

h(x,0)=(60.5−b(x))m,

hu(x,0)=0m2/s,

on the below bottom topography

b(x)=
(

10+
40x

L
+10sin

(
π

(
4x
L
− 1

2

)))
m,

with L=14000m being the length of the spatial domain.
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Figure 7: Water depth h (a) and flow velocity u (b) of the example in Section 4.1.6 at t=7552.13s.

We impose the below boundary conditions

h(0,t)=
(

64.5−4sin
(

π

(
4t

86400
+

1
2

)))
m,

hu(L,t)=0m2/s,

at both ends of the spatial domain. Moreover, we also employ the exact solutions

h(x,t)=
(

64.5−b(x)−4sin
(

π

(
4t

86400
+

1
2

)))
m,

(hu)(x,t)=
(x−L)π

5400
cos
(

π

(
4t

86400
+

1
2

))
m2/s,

from [47] for the sake of comparison.
We present the water depth h and the flow velocity u on a mesh with 200 cells at

t=7552.13s in Fig. 7. The numerical results are obviously consistent with the exact ones
even for a long time simulation. This observation strongly suggests that the proposed
scheme is very suitable for numerical simulation with long time.

4.2 Two-dimensional system

In the following, we deal with the two-dimensional numerical examples.
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4.2.1 Testing the well-balanced property

Here, we implement an example from [12] along with the following initial data as well
as the bottom

h(x,y,0)=(1−b(x,y))m,
u(x,y,0)=v(x,y,0)=0m/s,

b(x,y)=0.8exp
(
−50

(
(x−0.5)2+(y−0.5)2))m,

on a unit spatial domain [0,1]m×[0,1]m.
Then, we calculate L1 errors between the initial solutions at t=0s and the numerical

ones at t= 0.1s on a mesh with 100×100 cells, and then present the L1 errors in Table 4.
It is clear that the numerical errors are all at the level of the machine accuracy even for
different precisions; this observation strongly suggests that the current scheme maintains
the well-balanced property even for the two-dimensional system.

Table 4: L1 errors with different precisions for the still water steady state solutions.

Precision L1 error
h hu hv

Single 2.85×10−7 4.91×10−7 3.34×10−7

Double 5.37×10−14 4.49×10−14 4.07×10−14

4.2.2 A small perturbation of a two-dimensional steady state water flow

This test case is originally developed by LeVeque [43] and has been widely used to vali-
date well-balanced schemes near the vicinity of a steady state, see [12, 16, 17, 20, 44]. The
initial data can be taken as a small perturbation of a steady state with the following form

h(x,y,0)=
{

(1−b(x,y)+0.01)m, if 0.05≤ x≤0.15m,
(1−b(x,y))m, otherwise,

u(x,y,0)=v(x,y,0)=0m/s,

over an elliptical like bottom

b(x,y)=0.8exp
(
−5(x−0.9)2−50(y−0.5)2)m

on a spatial domain [0,2]m×[0,1]m.
We implement this example on two different meshes with rectangular cells for the

sake of comparison and illustrate the contours of the free surface level h+b in Fig. 8.
The proposed scheme obviously resolves complex features of the flow very well even on
relatively coarse meshes. Furthermore, the numerical results here can be compared with
those in the literature [12, 16, 17, 20, 44].
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Figure 8: Thirty contours of free surface level h+b of the example in Section 4.2.2. From top to bottom: at
t=0.12 s from 0.99942 m to 1.00656 m; at t=0.24 s from 0.99318 m to 1.01659 m; at t=0.36 s from 0.98814
m to 1.01161 m; at t= 0.48 s from 0.99023 m to 1.00508 m; and at t= 0.6 s from 0.99514 m to 1.00629 m.
Left: 200×100 cells. Right: 600×300 cells.

5 Conclusions

In this article, we develop a new well-balanced finite volume CWENO scheme for one-
and two-dimensional shallow water equations with the geometrical source term. With
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the help of the CWENO reconstruction, we achieve a novel equilibrium preserving re-
construction, which leads to a decomposition algorithm. By means of the decomposition
algorithm, we can easily construct well-balanced numerical fluxes and avoid applying
the traditional hydrostatic reconstruction technique. Moreover, this decomposition algo-
rithm also helps us realize a simple source term discretization, which is consistent with
the discretization to the flux gradient. Therefore, we finally realize a well-balanced finite
volume scheme. Rigorous theoretical analysis and extensive numerical examples all ver-
ify the resulting well-balanced property. Furthermore, numerical results strongly imply
that the proposed scheme keeps high-order accuracy for smooth solutions, and enjoys
good resolutions for discontinuous solutions at the same time.
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