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Abstract. This paper proposes a high order deep domain decomposition method
(HOrderDeepDDM) for solving high-frequency interface problems, which combines
high order deep neural network (HOrderDNN) with domain decomposition method
(DDM). The main idea of HOrderDeepDDM is to divide the computational domain
into some sub-domains by DDM, and apply HOrderDNNs to solve the high-frequency
problem on each sub-domain. Besides, we consider an adaptive learning rate anneal-
ing method to balance the errors inside the sub-domains, on the interface and the
boundary during the optimization process. The performance of HOrderDeepDDM is
evaluated on high-frequency elliptic and Helmholtz interface problems. The results in-
dicate that: HOrderDeepDDM inherits the ability of DeepDDM to handle discontinu-
ous interface problems and the power of HOrderDNN to approximate high-frequency
problems. In detail, HOrderDeepDDMs (p>1) could capture the high-frequency infor-
mation very well. When compared to the deep domain decomposition method (Deep-
DDM), HOrderDeepDDMs (p> 1) converge faster and achieve much smaller relative
errors with the same number of trainable parameters. For example, when solving the
high-frequency interface elliptic problems in Section 3.3.1, the minimum relative er-
rors obtained by HOrderDeepDDMs (p= 9) are one order of magnitude smaller than
that obtained by DeepDDMs when the number of the parameters keeps the same, as
shown in Fig. 4.
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1 Introduction

High-frequency interface problems commonly appear in various scientific and engi-
neering applications, such as the high-frequency scalar wave equation and Schrödinger
equation with a sharp interface [15]. The traditional numerical methods, such as fi-
nite element methods (FEMs) and finite difference methods (FDMs), cannot effectively
predict the behavior of the high-frequency waves due to the discontinuities caused by
the interface. To solve the interface problems, [17] proposes a domain decomposition
method (DDM), named “Schwarz alternating method”, which transforms a discontinu-
ous interface problem into some continuous sub-problems and then solves them sepa-
rately. After the parallel computing capability becomes available, the Schwarz alternat-
ing method is further developed, and many efficient methods are proposed, such as the
parallel Schwarz method [14], the multiplicative Schwarz method [1,18], and the additive
Schwarz method [4]. Traditional numerical methods such as FEMs and FDMs are usually
applied for sub-problems in these domain decomposition methods. However, they are
mesh dependent, and mesh generation is expensive, especially for complex PDEs, e.g.,
those with complex interfaces or boundaries. In addition, the highly oscillatory nature
of the high-frequency problems also brings significant challenges for finding numerical
solutions of high accuracy.

Recently, deep-learning-based numerical methods for solving partial differential
equations(PDEs) have received much attention due to their meshless advantage. They
are also used in combination with DDM to solve PDEs on complex domains to pursuit
greater accuracy and efficiency. One popular way is to replace the sub-domain solvers
with deep-learning-based solvers such as physics-informed neural network(PINN) [16]
and deep ritz method [22] in the classical overlapping Schwarz approach. Under this
framework, [13] proposes a DeepDDM, which leverages PINN to discretize the sub-
problems divided by DDM and exchanges the sub-problem information across the inter-
face by adjusting the boundary term in the solution of each sub-problem. [10] proposes
a cPINN, where the computational domain is also divided and the flux continuity in
the strong form is enforced along the sub-domain interfaces. [9] further proposes a more
generalized space-time domain decomposition approach. In fact, the idea of domain de-
composition is also used to solve interface problems, where different neural networks are
often employed for different sub-domains divided by the interface to deal with the dra-
matical change across the interface of the solution, and these neural networks are weakly
coupled by the interface conditions [6, 7]. Besides, other ways of dealing with discon-
tinuous interfaces also exist. For example, the d-dimensional piecewise continuous solu-
tion of the interface problem can be continuously extended in (d+1)-dimensional space
by augmenting a variable, so that the continuous augmented function can be approxi-
mated by a shallow neural network efficiently [8,12]. Although these methods have been
successful for solving interface problems to a certain extent, challenges still exist when
they are applied to high-frequency interface problems. For example, these conventional
neural networks preferentially approximate the low-frequency components of the target
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function but fail to approximate the high-frequency components [21], which causes bad
performances in solving high-frequency interface problems. In order to provide conven-
tional neural networks with stronger abilities to represent high-frequency components,
we propose a high order deep neural network in [2], termed HOrderDNN, which in-
corporate high order idea from FEMs into conventional neural networks. Compared to
conventional neural networks, HOrderDNN could characterize high-frequency informa-
tion very well and converge to smaller errors with faster speed.

In this paper, we combine HOrderDNN with the deep-learning-based DDMs
(DeepDDMs) and propose a high order deep domain decomposition method, named
“HOrderDeepDDM”, to solve high-frequency interface problems, where the computa-
tional domain is divided into some sub-domains by DDM and HOrderDNNs are ap-
plied to solve the high-frequency PDEs on sub-domains. HOrderDeepDDM inherits the
advantages of DeepDDM to handle discontinuous interface problems and the power
of HOrderDNN to approximate high-frequency problems. The adaptive learning rate
annealing method in [19] is also considered to balance the errors inside the region,
on the interface and the boundary during the optimization process, shown in Section
2.3. To test the performance of HOrderDeepDDM, we conduct a series of experiments.
HOrderDeepDDM is first applied to solve the low-frequency and high-frequency elliptic
interface problems, including the cases of high contrast coefficients and irregular inter-
faces. Then the high-frequency Helmholtz interface problem is also taken into account.
We empirically found that the proposed HOrderDeepDDM has the following advan-
tages:

1. HOrderDeepDDMs (p>1) maintain the advantages of DeepDDM and outperform
DeepDDM in high-frequency elliptic and Helmholtz interface problems. This is
two-fold. On the one hand, HOrderDeepDDMs (p>1) converge faster than Deep-
DDM, and the larger the order p, the faster the relative error decreases. In detail,
with the same stop condition, HOrderDeepDDMs (p>1) require far fewer iterations
than DeepDDM for both the outer and inner iteration of DDM, which can be seen in
Fig. 5 and Fig. 6. On the other hand, HOrderDeepDDMs (p>1) can achieve minor
relative errors with the same parameters of the network, and the error decreases as
the order increases. Note that in Fig. 4, the minimum relative errors obtained by
HOrderDeepDDM (p= 9) are at least one order of magnitude smaller than that of
DeepDDM.

2. HOrderDeepDDMs (p>1) could capture the high-frequency information very well.
As we can see in Fig. 7, when solving the high-frequency elliptic interface problem
in [0,2]×[0,2], HOrderDeepDDM (p=9) is able to approximate the two-dimensional
target function with frequencies up to 40 very well and obtain a relative error of
about 1%. This advantage of HOrderDeepDDM is clearly reflected in Fig. 12 and
Fig. 17, where HOrderDeepDDMs (p > 1) can capture the local oscillations in the
target function, while DeepDDM cannot.

The layout of this paper is as follows. A detailed description of HOrderDeepDDM is
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presented in Section 2. In Section 3, several examples, including high-frequency elliptic
and Helmholtz interface problems, are presented to demonstrate the effectiveness of the
proposed method. The paper ends with a summary and discussion in Section 4.

2 Method

In this paper, we consider the numerical solution of the high-frequency interface problem
with the general form expressed as follows:

L(u)= f in Ω, (2.1a)
B(u)= g on ∂Ω, (2.1b)
[[u]]= p on Γ, (2.1c)
[[∂nu]]=q on Γ, (2.1d)

where Ω, as shown in Fig. 1, can be divided into two sub-domains Ω1 and Ω2 by the inter-
face Γ. L represents the differential operator, B denotes the boundary conditions, and f ,
g, p, q are given functions (possilby high-frequency). The notation [[·]] denotes the jump
across the interface Γ and is defined as [[u]]=u1|Γ−u2|Γ, [[∂nu]]= ∂nu1|Γ−∂nu2|Γ, with n
represents the unit outward normal vector of the interface Γ. We always assume that the
problem (2.1a)-(2.1d) is well-posed. To solve this high-frequency interface problem, we
combine HOrderDNN with the traditional DDM and propose the HOrderDeepDDM.

Figure 1: The diagram of domain Ω.

In this section, we will introduce the traditional DDM and the structure of HOrder-
DNN separately. Besides, we also present the minimization problems utilized to solve
interface problems in the least square formulation and show the method of setting the
penalty coefficients in the loss function for the interface problems.
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2.1 Domain decomposition method for PDEs

We first introduce the traditional DDM for solving problem (2.1a)-(2.1d). As shown in
Fig. 1, Ω is naturally decomposed into two non-overlapping subdomains Ω1 and Ω2 by
the interface Γ. The DDM starts with initial guesses ω0

1, ω0
2 along Γ and then computes

ωi
1 and ωi

2, i=1,2,··· in parallel, as follows,{
L(ui

1)= f in Ω1,

ui
1=ωi−1

1 +p on Γ,
(2.2a)

L(ui
2)= f in Ω2,

B(ui
2)= g on ∂Ω,

∂nui
2=ωi−1

2 −q on Γ,

(2.2b)

where ωi
1 = ui

2 and ωi
2 = ∂nui

1 on Γ. Note that, we show only a common way of dealing
with interface conditions in the traditional DDM, which is usually different for different
problems and different DDMs, see Sections 3.3 and 3.5 for more details.

One of the most popular stopping strategies is the relative error of the current solution
with respect to the previous one on the artificial interface or inside the sub-domain less
than a given tolerance tolΓ or tolΩ, in formulas

‖ωi
1−ωi−1

1 ‖
‖ωi

1‖
< tolΓ,

‖ωi
2−ωi−1

2 ‖
‖ωi

2‖
< tolΓ, (2.3a)

‖ui
1−ui−1

1 ‖
‖ui

1‖
< tolΩ,

‖ui
2−ui−1

2 ‖
‖ui

2‖
< tolΩ. (2.3b)

The parallelizable nature of DDM allows it to efficiently solve complex PDEs, especially
those with irregular interfaces, and it is playing an increasingly important role in the field
of engineering and scientific computing.

2.2 High order deep neural network

In a recent work [2], HOrderDNN is proposed, which adds a nonlinear transformation
layer to the traditional fully connected neural network to improve the approximation
ability of the network. The architecture of HOrderDNN can be expressed as

hp(x;θ)=FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1◦Tp(x),

where p is the order of HOrderDNN, σ is the activation function, Fl , 1≤ l≤ L are the L
hidden layers taking the form of

Fl(x)=Wlx+bl ,
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Figure 2: Illustration of the architecture of HOrderDNN (p=2) with d=2. The Only difference to commonly-
used DNNs is the nonlinear transformation layer followed the input layer.

with Wl ∈Rnl×nl−1 , b ∈Rnl , nl being the number of neurons in the l-th layer, and θ :=
{Wl ,bl} is the collection of all parameters. The nonlinear layer Tp converts the input x
into Lagrangian interpolation basis functions {Φi} from the polynomial space Qp(Rd),
which consists of all polynomials on Rd with degrees not exceeding p. In detail, the basis
functions are shown as follows:

φi(x)=
p+1

∏
j=1,j 6=i

(x−xj)

/ p+1

∏
j=1,j 6=i

(xi−xj), i=1,2,··· ,p+1,

where the interpolating nodes xi, i=1,2,··· ,p+1 are chosen as Gauss-Lobatto-Legendre
(GLL) points in the integration interval or calculation area. Fig. 2 illustrates the network
architecture and the nonlinear transformation layer Tp when the order p=2 and the num-
ber of input neurons n0=2.

The high order information introduced by the nonlinear layer makes it possible for
HOrderDNN to approximate high-frequency information, which enables HOrderDNN
to be used for various high-frequency problems. Besides, HOrderDNN also has the ad-
vantages of faster convergence and higher accuracy than conventional neural networks
with the same number of trainable parameters [2].

2.3 HOrderDeepDDM for PDEs

In order to deal with high-frequency interface problems, we combine DDM with
HOrderDNN and propose HOrderDeepDDM, where DDM is adopted to mainly deal
with the complex interface and HOrderDNN is introduced to help characterize high-
frequency information. In the case of the problem (2.1a)-(2.1d), it is natural to decompose
Ω into Ω1 and Ω2, and subproblems will be solved by HOrderDNNs on Ω1 and Ω2, sep-
arately. To be specific, problem (2.2a) and (2.2b) will be reformulated as minimization
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problems

θ∗=argmin
θ

MΩ1(θ)+βΓ∗MΓ1(θ), (2.4a)

θ∗=argmin
θ

MΩ2(θ)+β∂Ω∗M∂Ω(θ)+βΓ∗MΓ2(θ), (2.4b)

where the discrete least squared residuals are defined as

MΩi(θ) :=
1

Nr

Nr

∑
j=1
|L(hi

p(xj
r;θ))− f (xj

r)|2, i=1,2, (2.5a)

M∂Ω(θ) :=
1

Nb

Nb

∑
j=1
|B(h2

p(xj
b;θ))−g(xj

b)|
2, (2.5b)

MΓ1(θ) :=
1

Ni f

Ni f

∑
j=1
|(h1

p(xj
i f ;θ))−ωi−1

1 (xj
i f )−p(xj

i f )|
2, (2.5c)

MΓ2(θ) :=
1

Ni f

Ni f

∑
j=1
|(∂nh2

p(xj
i f ;θ))−ωi−1

2 (xj
i f )+q(xj

i f )|
2, (2.5d)

with
{

xj
r
}Nr

j=1,
{

xj
b

}Nb

j=1 and
{

xj
i f

}Ni f

j=1 being the collocation points inside Ωi, on ∂Ω and

Γ, respectively. hi
p(x;θ) represents the approximate solution of HOrderDNN to ui, i =

1,2. The above optimization problems can be solved by the stochastic gradient descent
method, such as Adam [11].

We remark that the weighting coefficients β∂Ω, βΓ in the loss function play a very
important role in balancing the errors in the domain, on the boundary and the interface
during the training process. In order to adjust these parameters properly, we adopt a
strategy similar to the learning rate annealing method proposed by [19]. In the case of
Eq. (2.4b), for general stochastic gradient descent methods, the update of the network
parameters θ can be expressed as:

θk+1= θk−τ ·∇θMΩ2−τ ·β∂Ω∇θM∂Ω−τ ·βΓ∇θMΓ2 , (2.6)

where τ denotes the learning rate, and k is the iteration step. In [19], the estimates of β∂Ω
and βΓ can be computed by:

β̂k+1
∂Ω =

maxθ{|∇θMΩ2 |}
meanθ

{
|∇θ βk

∂ΩM∂Ω|
} , β̂k+1

Γ =
maxθ{|∇θMΩ2 |}

meanθ

{
|∇θ βk

ΓMΓ2 |
} . (2.7)

The above method is named as “M1” and as an alternative, we propose the following
method named “M2” to compute β∂Ω and βΓ:

β̂k+1
∂Ω =

maxθ{|∇θMΩ2 |}
meanθ

{
|∇θ βk

∂ΩM∂Ω|
} , β̂k+1

Γ =
maxθ{|∇θMΩ2 |}

maxθ

{
|∇θ βk

ΓMΓ2 |
} . (2.8)
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Then, the weighting coefficients for the next iteration are updated using the following
form:

βk+1
∂Ω =(1−λ)βk

∂Ω+λβ̂k+1
∂Ω , βk+1

Γ =(1−λ)βk
Γ+λβ̂k+1

Γ , (2.9)

with λ= 0.1. A comparison of “M1” and “M2” is shown in Section 3.3.1, and the better
performing strategy “M2” will be applied in the following experiment.

3 Numerical experiments

In this section, a series of numerical examples are presented, including the high-
frequency elliptic and Helmholtz interface problem, to demonstrate the properties of
HOrderDeepDDM. In Section 3.2, we first consider the low-frequency elliptic interface
problem to illustrate the greater approximation ability of HOrderDeepDDM than Deep-
DDM. We then consider the high-frequency elliptic interface problem to illustrate the
ability of HOrderDeepDDM to approximate high-frequency functions with strong dis-
continuities across the complex interface in Section 3.3. Further, the cases of high contrast
coefficients, complex interfaces and high-dimensional interface problems are shown in
Section 3.3.2, Section 3.4 and Section 3.6. The high-frequency Helmholtz interface prob-
lem is also taken into account, which is shown in Section 3.5. In all numerical experi-
ments, DeepDDM [13] is chosen as the benchmark for comparison.

3.1 Settings

We summarize the standard setups in our experiments as follows. The stop condition
of the outer iteration is that the relative L2 error of two adjacent transmission conditions
at the interface is less than the given threshold, see Eqs. (2.3a)-(2.3b) for details. Here,
we set tolΓ = tolΩ =0.01. For each sub-problem, the hidden layers of the neural network
are chosen as fully connected layers with an equal number of neurons. The number of
hidden layers is defined as the depth, and the number of neurons in the hidden layers
is defined as the width. MSE is chosen as the loss function to train the neural network,
and the Xavier initialization method is used to initialize the network parameters. The
activation function is chosen as Tanh, and the optimizer is chosen as Adam [11]. For the
learning rate τ, it starts with a best initial value between 10−2∼ 10−3 and decays every
100 steps with a base of 0.99. At the same time, we calculate the standard deviation of
the loss every 100 epochs, and the inner iteration stops when the standard deviation is
less than 5×10−3 or epoch=10000. To demonstrate the advantages of our algorithm, we
define the relative L2 error

err=
‖u(x;θ)−u∗‖2
‖u∗‖2

, (3.1)

where u∗ represents the target function and u(x;θ) represents the approximate solution
of the neural network, and

‖u∗‖2
2=

∫
Ω
|u∗|2dx.



1610 Z. Chang, K. Li, X. Zou and X. Xiang / Adv. Appl. Math. Mech., 15 (2023), pp. 1602-1630

Table 1: Summary of parameters for HOrderDeepDDM.

Notation Stands for ···
τ The learning rate
L The depth of the network
W The width of the network
p The order of HOrderDeepDDM
Nr Number of training sampling points in the region
Ni f Number of training sampling points on the interface
Nb Number of training sampling points on the boundary
β∂Ω The penalty coefficient for the boundary term in Eq. (2.4b)
βΓ The penalty coefficient for the interface term in Eq. (2.4b)

The relative L2 error is calculated over equidistant grid points selected for the test data.
Notations of parameters are summarized in Table 1, and the value of these parameters
are given in the following experiments.

3.2 Low-frequency elliptic interface problem

To verify the effectiveness of our proposed method, we perform a simple test on the
following low-frequency elliptic interface problem in Section 4.4.2 in [7]:

−∇(α(x)∇u)= f in Ω1∪Ω2, (3.2a)
u= g on ∂Ω, (3.2b)
[[u]]=0 on Γ, (3.2c)
[[α∂nu]]=0 on Γ, (3.2d)

where Ω :=[−1,1]×[−1,1], Γ :=
{
(x,y)|x2+y2=0.25

}
,

α(x)=

{
α1, (x,y)∈Ω1 :=

{
(x,y)|x2+y2<0.25

}
,

α2, (x,y)∈Ω2 :=Ω\Ω1.

The exact solution is

u∗(x,y)=


r3

α1
, (x,y)∈Ω1,

r3

α2
+
( 1

α1
− 1

α2

)
r3

0, (x,y)∈Ω2,

where r=
√

x2
1+x2

2, r0=0.5 α1=1, α2=1000. The functions f , g can be directly computed
from u∗(x,y).

DeepDDM and HOrderDeepDDMs with L = 1, W = 10, p = 1,2,3 are utilized to fit
the numerical solution and the hyper-parameters are set as follows: Nr =Ni f =Nb =128.
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Table 2: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.2a)-(3.2d). The figures in parentheses are the numbers of outer iterations. Here, L=1,
W=10, Nr =Nb =Ni f =128.

DeepDDM p=1 p=2 p=3
err 4.36E-1(5) 8.03E-2(5) 7.50E-3(4) 1.02E-2(4)

The results are shown in Table 2. As we can see, although the proposed method aims
at solving high-frequency interface problems, it still outperforms DeepDDM for low-
frequency problems when the architecture keeps the same. In addition, we show the
convergence process of the relative L2 error with the outer and inner iterations in Fig. 3,
and it is clear that the convergence speed of HOrderDeepDDMs is much faster than that
of DeepDDM.

(a) the outer iteration (b) the inner iteration

Figure 3: The change in relative L2 error along with outer and inner iterations for DeepDDM and HOrderDeep-
DDM on problem (3.2a)-(3.2d). Here, L=1, W=10, Nr =Nb =Ni f =128.

3.3 High-frequency elliptic interface problem

To test the performance of HOrderDeepDDM on high-frequency interface problems, we
first consider the following two-dimensional high-frequency elliptic interface problem:

−∇(α(x)∇u)= f in Ω1∪Ω2, (3.3a)
u= g on ∂Ω, (3.3b)
[[u]]= p on Γ, (3.3c)
[[α∂nu]]=q on Γ, (3.3d)
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where Ω :=[0,2]×[0,2], Γ :=
{
(x,y)|(x−1)2+(y−1)2=0.25

}
,

α(x)=

{
α1, (x,y)∈Ω1 :=

{
(x,y)|(x−1)2+(y−1)2<0.25

}
,

α2, (x,y)∈Ω2 :=Ω\Ω1.

We consider the following high-frequency exact solution with discontinuities at the in-
terface:

u∗(x,y)=

{
sin(20x)·cos(20y), (x,y)∈Ω1,

sin(40x)·cos(40y), (x,y)∈Ω2.

The boundary condition g and the interface conditions p, q can be directly computed
from u∗(x,y). For the high-frequency elliptic equation, we consider the parallel DDM,
the details of which can be seen in Algorithm 1 of [13]. Therefore, Eqs. (3.3a)-(3.3d) can
be written as a multidomain formulation:{

−α1 ·∆u1= f1 in Ω1,
u1=u2+p on Γ,


−α2 ·∆u2= f2 in Ω2,
u= g on ∂Ω2\Γ,
α2∂nu2=α1∂nu1−q on Γ.

(3.4)

3.3.1 Case with α1=1, α2=2

As a benchmark test, we apply HOrderDeepDDM to solve problem (3.3a)-(3.3d) with
the interface coefficients α1=1, α2=2. DeepDDM and HOrderDeepDDMs with network
architectures defined by L=3, W=200, p=[1,3,5,7,9] are examined, and the numbers of
training points are chosen as Nr =Nb =Ni f =4096.

In this experiment, we compare the two adaptive learning rate annealing methods
given in Section 2.3. The number of outer iterations when the training process stops
and the corresponding relative L2 errors for different methods are shown in Table 3.
As expected, HOrderDeepDDMs (p > 1) always outperform DeepDDM with the same
architecture, and when p increases, more accurate numerical solutions are obtained by
HOrderDeepDDMs, regardless of which adaptive learning rate annealing method is
used. In addition, compared to the “M1” method, HOrderDeepDDMs (p = 7,9) with
the “M2” method require fewer outer iterations to achieve the same error, which means
that choosing the “M2” method can save about 1/8 of the training time. Therefore, the
method “M2” is selected as the adaptive learning rate annealing method in the following
experiments.

In fact, since HOrderDNNs use a fully connected network architecture, the increase
of p leads to the increase of the number of network parameters [2]. So, we show the
change of the relative L2 errors along with the number of parameters for different p in
Fig. 4, where DeepDDMs and HOrderDeepDDMs with L=1,3, W=50,100,150,200,250,
p=1,3,5,7,9 are considered. It can be observed that if the parameters are fixed, increasing
the value of p yields a smaller relative error in almost all cases; and to achieve the same
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(a) L=1 (b) L=3

Figure 4: The change of the relative L2 errors along with the number of parameters for HOrderDeepDDMs
on problem (3.3a)-(3.3d) with α1 = 1, α2 = 2. Here, the hyper-parameters are set as follows: L = 1,3, W =
50,100,150,200,250, Nr =Nb =Ni f =4096.

error, HOrderDeepDDMs with larger p obviously require fewer parameters. It is easy
to find that HOrderDeepDDM (p= 9) achieves the smallest relative L2 error 1.28×10−2

when the network architecture is L= 3, W = 200. Therefore, the network architecture is
fixed to L=3, W=200 in the subsequent experiments.

The change in relative L2 error along with outer iterations for DeepDDM and
HOrderDeepDDM is shown in Fig. 5. Note that the relative L2 errors of DeepDDM and
HOrderDeepDDM (p=1) are always larger than 1 as the outer iteration proceeds, which
indicates that the performance of DeepDDM is very poor in solving high-frequency in-
terface problems, while the errors of HOrderDeepDDMs (p=7,9) rapidly decrease to 1%.
The convergence processes of losses and relative L2 errors are shown in Fig. 6. It is easy
to see that the convergence rate of HOrderDeepDDMs significantly improves with in-
creasing p, while the errors of DeepDDM remain almost undiminished, and the number
of training iterations required for error convergence is also decreasing as p increases. In
addition, it is observed that there is a temporary rise in the error on Ω2 after the interface
information is exchanged, while as the outer iteration proceeds, the error rise gradually
decreases, which implies the increasing accuracy of the interface predictions provided by
Ω1 to Ω2.

Table 3: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.3a)-(3.3d) when α1 =1, α2 =2. The figures in parentheses are the numbers of outer
iterations. Here, L=3, W=200, Nr =Nb =Ni f =4096.

DeepDDM p=1 p=3 p=5 p=7 p=9
errM1 2.16E+0(8) 2.80E+0(10) 1.21E-1(9) 2.40E-2(8) 1.31E-2(8) 1.22E-2(8)
errM2 1.18E+0(9) 3.15E+0(9) 1.87E-1(9) 1.75E-2(8) 1.25E-2(7) 1.28E-2(7)
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Figure 5: The change in relative L2 error along with outer iterations for DeepDDM and HOrderDeepDDM
on problem (3.3a)-(3.3d). Here, the hyper-parameters are set as follows: α1 = 1, α2 = 2, L = 3, W = 200,
Nr =Nb =Ni f =4096.

(a) Ω1 loss (b) Ω1 error

(c) Ω2 loss (d) Ω2 error

Figure 6: The convergence processes of losses and relative L2 errors in inner iterations on problem (3.3a)-(3.3d)
with α1 =1, α2 =2. Here, the hyper-parameters are set as follows: L=3, W=200, Nr =Nb =Ni f =4096.
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(a) Exact (b) DeepDDM (c) p=3 (d) p=9

Figure 7: Exact and numerical solutions of DeepDDM and HOrderDeepDDMs with different p on problem
(3.3a)-(3.3d). (a) illustrates the target function and (b)-(d) are fitting functions given by DeepDDM and
HOrderDeepDDMs with p= 3,9, respectively. Here, the hyper-parameters are set as follows: α1 = 1, α2 = 2,
L=3, W=200, Nr =Nb =Ni f =4096.

(a) DeepDDM (b) p=3 (c) p=7 (d) p=9

Figure 8: Fitting errors given by DeepDDM and HOrderDeepDDMs with different p on problem (3.3a)-(3.3d).
The hyper-parameters are set as follows: α1 =1, α2 =2, L=3, W=200, Nr =Nb =Ni f =4096.

We also compare the fitting effects of DeepDDM and HOrderDeepDDMs with differ-
ent values of p. The exact solution and the approximate solutions are shown in Fig. 7,
and the point-by-point errors are shown in Fig. 8. The numerical solution obtained by
DeepDDM in Fig. 7(b) fails to capture the local oscillations, while the numerical solu-
tions obtained by HOrderDeepDDMs (p> 1) in Figs. 7(c)-(d) capture the oscillations of
different scales well. This advantage of HOrderDeepDDMs can also be seen in Fig. 8, that
the errors on Ω1 and Ω2 both decrease significantly as p increases. These phenomena in-
dicate that HOrderDeepDDMs (p> 1) can approximate the high-frequency information
of the target function, and this approximation ability increases as p increases. In addition,
we show the point-by-point errors of HOrderDeepDDM (p=9) at each outer iteration in
Fig. 9. As expected, in the beginning, the errors on Ω1 are very large, which is due to
the wrong transmission conditions at the interface, while it decreases rapidly after ex-
changing information with Ω2. The errors at the interface also decrease significantly as
the outer iteration increases. After seven outer iterations, the algorithm reaches the stop
criterion, and the errors reach the order of 10−3.
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(a) Item=1 (b) Item=2 (c) Item=3 (d) Item=4

(e) Item=5 (f) Item=6 (g) Item=7

Figure 9: Fitting errors in the whole domains for outer iterations given by HOrderDeepDDM (p=9) on problem
(3.3a)-(3.3d). The hyper-parameters are set as follows: α1 =1, α2 =2, L=3, W=200, Nr =Nb =Ni f =4096.

3.3.2 Case with α1=1, α2=200

High contrast interface coefficients often lead to strong discontinuities at the interface,
which can cause additional difficulties in the numerical solution. In this section, we test
the performance of HOrderDeepDDM on high-frequency elliptic equations with high
contrast coefficients. We apply HOrderDeepDDMs to solve problem (3.3a)-(3.3d) with
α1 = 1, α2 = 200. DeepDDM and HOrderDeepDDMs with p= [1,3,5,7,9], L= 3, W = 200
are utilized to fit the numerical solution. The numbers of training data are fixed as Nr =
Nb =Ni f =4096.

Based on the experimental results in Section 3.3.1, we use the adaptive learning rate
annealing method ’M2’, and the relative L2 errors for DeepDDM and HOrderDeepDDMs
are shown in Table 4. As we can see, for problem (3.3a)-(3.3d) with high contrast coeffi-
cients, HOrderDeepDDMs(p≥7) also outperform DeepDDM with the same network ar-
chitecture, and the errors of HOrderDeepDDM (p=9) reach the order of 10−2 after seven
outer iterations, while the errors of DeepDDM always remain larger than 1. The pro-
cesses of error convergence of DeepDDM and HOrderDeepDDMs along with the outer

Table 4: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.3a)-(3.3d) when α1=1, α2=200. The figures in parentheses are the numbers of outer
iterations. Here, L=3, W=200, Nr =Nb =Ni f =4096.

DeepDDM p=1 p=3 p=5 p=7 p=9
err 2.67E+0(8) 6.14E+0(9) 2.67E+0(9) 2.83E+0(9) 2.69E-1(9) 7.33E-2(7)
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Figure 10: The change in relative L2 error along with outer iterations for DeepDDM and HOrderDeepDDM
on problem (3.3a)-(3.3d). Here, the hyper-parameters are set as follows: α1 = 1, α2 = 200, L = 3, W = 200,
Nr =Nb =Ni f =4096.

(a) Ω1 loss (b) Ω1 error

(c) Ω2 loss (d) Ω2 error

Figure 11: The convergence processes of losses and relative L2 errors in inner iterations on problem (3.3a)-(3.3d)
with α1 =1, α2 =200. Here, the hyper-parameters are set as follows: L=3, W=200, Nr =Nb =Ni f =4096.

and inner iterations are shown in Fig. 10 and Fig. 11. As before, HOrderDeepDDMs with
larger p converge faster to lower errors, while the errors of DeepDDM remain almost
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(a) Exact (b) DeepDDM (c) p=3 (d) p=9

Figure 12: Exact and numerical solutions of DeepDDM and HOrderDeepDDMs with different p on problem
(3.3a)-(3.3d). (a) illustrates the target function and (b)-(d) are fitting functions given by DeepDDM and
HOrderDeepDDMs with p=3,9, respectively. Here, the hyper-parameters are set as follows: α1 =1, α2 =200,
L=3, W=200, Nr =Nb =Ni f =4096.

(a) DeepDDM (b) p=3 (c) p=7 (d) p=9

Figure 13: Fitting errors given by DeepDDM and HOrderDeepDDMs with different p on problem (3.3a)-(3.3d).
The hyper-parameters are set as follows: α1 =1, α2 =200, L=3, W=200, Nr =Nb =Ni f =4096.

unchanged.

The fitting effects of DeepDDM and HOrderDeepDDMs with different p are shown
in Fig. 12, and the point-by-point errors are shown in Fig. 13. Same with Section 3.3.1,
as p increases, the fit of HOrderDeepDDMs to the high-frequency part of the target
function becomes better, which indicates that the performance of HOrderDeepDDMs in
high contrast coefficients case is still promising. In the end, the point-by-point errors
of HOrderDeepDDM (p= 9) at each outer iteration are shown in Fig. 14, and the entire
convergence process along with outer iterations can be clearly observed.

3.4 Flower shape interface problem

Problems with complex interfaces have always been challenging for traditional mesh-
based methods such as FEM and FDM, while DNN-based methods are more flexible
in handling complex interfaces. To test the effectiveness of HOrderDeepDDM for com-
plex interface problems, we consider the high-frequency elliptic interface problem (3.3a)-
(3.3d) with α1=1, α2=200 in domain Ω=[−1,1]×[−1,1]. The interface Γ is given by the
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(a) Item=1 (b) Item=2 (c) Item=3 (d) Item=4

(e) Item=5 (f) Item=6 (g) Item=7

Figure 14: Fitting errors in the whole domains for outer iterations given by HOrderDeepDDM (p=9) on problem
(3.3a)-(3.3d). The hyper-parameters are set as follows: α1=1, α2=200, L=3, W=200, Nr =Nb =Ni f =4096.

following polar coordinate: {
x= r(θ)·cos(θ),

y= r(θ)·sin(θ),
(3.5)

where

r(θ)=
1
2
+

sin(5θ)

7
.

DeepDDM and HOrderDeepDDMs with L=3, W=200, p=1,3,5,7,9 are utilized to fit the
numerical solution. The numbers of training points are set as Nr =Nb =Ni f =4096.

The relative L2 errors and the number of outer iterations obtained by DeepDDM and
HOrderDeepDDMs (p) are shown in Table 5, and the change in relative L2 errors along
with outer and inner iterations for DeepDDM and HOrderDeepDDMs is shown in Fig. 15
and Fig. 16. As before, HOrderDeepDDMs (p>1) perform much better than DeepDDM
with the same architecture. The error of HOrderDeepDDM (p= 9) reaches the order of
10−1 after three outer iterations and stays at 7.52×10−2 when the iterations stop. More

Table 5: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.5) when α1=1, α2=200. The figures in parentheses are the numbers of outer iterations.
Here, L=3, W=200, Nr =Nb =Ni f =4096.

DeepDDM p=1 p=3 p=5 p=7 p=9
err 9.36E+0(9) 4.07E+0(9) 3.31E-1(9) 3.38E-1(10) 1.18E-1(9) 7.50E-2(6)
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Figure 15: The change in relative L2 error along with outer iterations for DeepDDM and HOrderDeepDDM on
problem (3.5). Here, the hyper-parameters are set as follows: α1=1, α2=200, L=3, W=200, Nr =Nb=Ni f =
4096.

(a) Ω1 loss (b) Ω1 error

(c) Ω2 loss (d) Ω2 error

Figure 16: The convergence processes of losses and relative L2 errors in inner iterations on problem (3.5) with
α1 =1, α2 =200. Here, the hyper-parameters are set as follows: L=3, W=200, Nr =Nb =Ni f =4096.

importantly, the total number of training iterations required for HOrderDeepDDM (p=9)
to converge is much smaller than DeepDDM, which indicates that the incorporation of
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(a) Exact (b) DeepDDM (c) p=3 (d) p=9

Figure 17: Exact and numerical solutions of DeepDDM and HOrderDeepDDMs with different p on problem (3.5).
(a) illustrates the target function and (b)-(d) are fitting functions given by DeepDDM and HOrderDeepDDMs
with p= 3,9, respectively. Here, the hyper-parameters are set as follows: α1 = 1, α2 = 200, L= 3, W = 200,
Nr =Nb =Ni f =4096.

(a) DeepDDM (b) p=3 (c) p=7 (d) p=9

Figure 18: Fitting errors given by DeepDDM and HOrderDeepDDMs with different p on problem (3.5). The
hyper-parameters are set as follows: α1 =1, α2 =200, L=3, W=200, Nr =Nb =Ni f =4096.

higher order ideas greatly improves the convergence speed of DeepDDM.
The comparison of the exact solution and numerical solutions of DeepDDM and

HOrderDeepDDMs is shown in Fig. 17, and the corresponding point-by-point errors are
shown in Fig. 18. The fitting effects of HOrderDeepDDMs (p> 1) are much better than
DeepDDM, which cannot fit any local oscillations in the exact solution, and the effects im-
prove with increasing p. The point-by-point errors of HOrderDeepDDM (p= 9) at each
outer iteration are shown in Fig. 19, and we can see the process of error convergence.
These phenomena show that the performance of HOrderDeepDDM is also guaranteed
when solving high-frequency elliptic equations with complex interfaces, which is a sig-
nificant advantage of HOrderDeepDDM over traditional DDMs.

3.5 High-frequency Helmholtz interface problem

To demonstrate the effectiveness of HOrderDeepDDM for high-frequency Helmholtz in-
terface problems, we consider the following problem:

−∆u−k2u=0 Ω1∪Ω2, (3.6a)
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∂u
∂n

+iku= g on ∂Ω, (3.6b)

[[u]]=0 on Γ, (3.6c)
[[∂nu]]=0 on Γ, (3.6d)

where Ω:=[−0.5,0.5]×[−0.5,0.5], Ω1 :=[−0.5,0]×[−0.5,0.5], Ω2 :=[0,0.5]×[−0.5,0.5], Γ:=
{(x,y)|x=0,y∈ [−0.5,0.5]}, and

k=

{
k1, (x,y)∈Ω1,

k2, (x,y)∈Ω2.

We consider the following exact solution proposed in [20]:

u∗=


d

∑
i=1

(eik1 IT
i x−aieik1RT

i x) in Ω1,

d

∑
i=1

(1−ai)eik2TT
i x in Ω2,

(3.7)

where Ii = (cosθI,i,sinθI,i)
T, Ri = (−cosθI,i,sinθI,i)

T and Ti = (cosθT,i,sinθT,i)
T represent

the directions of the incident, reflected and transmitted waves respectively. We have
k2\k1 = sinθI,i\sinθT,i for each 0< i<d and ai = sin(θI,i−θT,i)\sin(θI,i+θT,i). Here we set
d=10 and randomly generate {Ii}, {Ri} and {Ti}.The boundary value g1, g2 is naturally
computed by the exact solution 3.7. For the Helmholtz interface problem, we consider

(a) Item=1 (b) Item=2 (c) Item=3 (d) Item=4

(e) Item=5 (f) Item=6 (g) Item=7

Figure 19: Fitting errors in the whole domains for outer iterations given by HOrderDeepDDM (p=9) on problem
(3.5). Here, the hyper-parameters are set as follows: α=1, α2 =200, L=3, W=200, Nr =Nb =Ni f =4096.
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the robust Robin-Robin DDM proposed in [3,5], which is more efficient than the Schwarz
method. Thus, problem (3.6a)-(3.6d) can be written as follows:

−∆u−k2
1u=0 in Ω1,

∂u
∂n

+ik1u= g1 on ∂Ω1\Γ,

∂u
∂n

+γ1u=h1 on Γ,


−∆u−k2

2u=0 in Ω2,
∂u
∂n

+ik2u= g2 on ∂Ω2\Γ,

∂u
∂n

+γ2u=h2 on Γ,

(3.8)

where we naively set γ1 = γ2 = 10(1+i), and a more appropriate choice of parameters
would yield a lower error [3]. In addition, the interface terms in the loss functions (2.4a)
and (2.4b) can be written in the following form:

MΓ1(θ) :=
1

Ni f

Ni f

∑
j=1

∣∣∣∂h1
p(xj

i f ;θ)

∂n
+γ1ui−1

2 (xj
i f )−h1(xj

i f )
∣∣∣2, (3.9a)

MΓ2(θ) :=
1

Ni f

Ni f

∑
j=1

∣∣∣∂h2
p(xj

i f ;θ)

∂n
+γ2ui−1

1 (xj
i f )−h2(xj

i f )
∣∣∣2, (3.9b)

with
{

xj
i f

}Ni f

j=1 being the collocation points on Γ and hi
p(x;θ) represents the approximate

solution of HOrderDNN to ui, i=1,2.
In this example, we set U to denote the real part of the solution and V to denote the

imaginary part. DeepDDM and HOrderDeepDDMs (p) with p=[1,3,5,7,9], L=3, W=200
are used to solve problem (3.6a)-(3.6d) and the total numbers of training points are chosen
as Nr=Nb=3072, Ni f =1024. The relative L2 errors of DeepDDM and HOrderDeepDDMs
for k1 = 20, k2 = 60 and k1 = 60, k2 = 100 are shown in Table 6 and Table 7. Easy to see,

Table 6: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.6a)-(3.6d) with k1 =20, k2 =60. Here, L=3, W =200, Nr =Nb =3072, Ni f =1024,

errU and errorV represents the relative L2 error of U and V, see Eq. (3.1) for more details.

DeepDDM p=1 p=3 p=5 p=7 p=9
errU 7.41E-1(8) 5.24E-1(9) 5.96E-2(7) 1.38E-2(7) 8.94E-3(6) 5.82E-3(6)
errV 3.89E-1(8) 2.47E-1(9) 2.89E-2(7) 5.36E-3(7) 4.00E-3(6) 2.87E-3(6)

Table 7: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.6a)-(3.6d) with k1 = 60, k2 = 100. Here, high-frequency initial interface conditions
are given for the outer iteration and the hyper-parameters are set as follows: L=4, W =300, Nr =Nb =3072,
Ni f =1024.

DeepDDM p=1 p=5 p=7 p=9 p=11
errU 7.41E-1(8) 9.34E-1(8) 4.76E-1(8) 2.93E-1(8) 1.15E-1(8) 5.11E-2(8)
errV 3.89E-1(8) 9.25E-1(8) 4.17E-1(8) 2.62E-1(8) 1.03E-1(8) 4.86E-2(8)



1624 Z. Chang, K. Li, X. Zou and X. Xiang / Adv. Appl. Math. Mech., 15 (2023), pp. 1602-1630

(a) U (b) V

Figure 20: The change in relative L2 error along with outer iterations for DeepDDM and HOrderDeepDDM
on problem (3.6a)-(3.6d) with k1 =20, k2 =60. Here, the hyper-parameters are set as follows: L=3, W =200,
Nr =Nb =3072, Ni f =1024.

(a) Ω1 loss (b) Ω1 errorU (c) Ω1 errorV

(d) Ω2 loss (e) Ω2 errorU (f) Ω2 errorV

Figure 21: The convergence processes of losses and relative L2 errors in inner iterations on problem (3.6a)-(3.6d)
with k1=20, k2=60. Here, the hyper-parameters are set as follows: L=3, W=200, Nr=Nb=3072, Ni f =1024.

the errors of HOrderDeepDDMs (p>1) are much smaller than DeepDDM, and the error
can be reduced from the order of 10−1 to 10−2 as p increases. What’s more, the number
of outer iterations decreases with increasing p, which demonstrates that the application
of HOrderDNN has greatly accelerated the convergence speed of DDM. To more clearly
reflect the acceleration effect brought by the high order, we show the process of error con-
vergence along with the outer and inner iterations for k1=20, k2=60 in Fig. 20 and Fig. 21.
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(a) Exact (b) DeepDDM (c) p=3 (d) p=9

(e) Exact (f) DeepDDM (g) p=3 (h) p=9

Figure 22: Exact and numerical solutions of DeepDDM and HOrderDeepDDMs with different p on problem
(3.6a)-(3.6d) with k1=20, k2=60. The top row illustrates the fitting effect of the real part U, and the bottom
row represents the fitting effect of the imaginary part V, respectively. Here, the hyper-parameters are set as
follows: L=3, W=200, Nr =Nb =3072, Ni f =1024.

(a) DeepDDM (b) p=3 (c) p=7 (d) p=9

(e) DeepDDM (f) p=3 (g) p=7 (h) p=9

Figure 23: Fitting errors given by DeepDDM and HOrderDeepDDMs with different p on problem (3.6a)-(3.6d)
with k1=20, k2=60. The top row (a)-(d) indicates the results of the real part U, and the bottom row (e)-(h)
represents the results of the imaginary part V. The hyper-parameters are set as follows: L = 3, W = 200,
Nr =Nb =3072, Ni f =1024.

As expected, HOrderDeepDDMs (p>1) achieve smaller errors after fewer iterations than
DeepDDM.
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(a) Item=1 (b) Item=2 (c) Item=3 (d) Item=4 (e) Item=5 (f) Item=6

(g) Item=1 (h) Item=2 (i) Item=3 (j) Item=4 (k) Item=5 (l) Item=6

Figure 24: Fitting errors in the whole domains for outer iterations given by HOrderDeepDDM (p=9) on problem
(3.6a)-(3.6d) with k1=20, k2=60. The top row (a)-(f) indicates the results of the real part U, and the bottom
row (g)-(l) represents the results of the imaginary part V. Here, the hyper-parameters are set as follows: L=3,
W=200, Nr =Nb =3072, Ni f =1024.

In addition, the fitting effects of DeepDDM and HOrderDeepDDMs (p), as well as the
point-by-points errors, are shown in Fig. 22 and Fig. 23. Same with the high-frequency
elliptic problem (3.3a)-(3.3d), HOrderDeepDDMs (p > 1) can easily capture the high-
frequency information of the target function, and this ability increases as p increases.
In the end, we show the point-by-point errors of HOrderDeepDDM (p=9) at each outer
iteration in Fig. 24 to observe the convergence process of the error in the domain decom-
position process. These phenomena show that the performance of HOrderDeepDDM is
still much better than DeepDDM when dealing with high-frequency Helmholtz interface
problems.

3.6 High-dimensional interface problem

Finally, to illustrate the capability of our method to handle high-frequency interface prob-
lems in high-dimensional space, we consider the high-frequency elliptic interface prob-
lem (3.3a)-(3.3d) in 3- and 5-dimensional spaces, where,

Ω :=

{
X∈Rd

∣∣∣∣ d

∑
i=1

x2
i <1

}
, Γ :=

{
X∈Rd

∣∣∣∣ d

∑
i=1

x2
i =0.25

}
,

α(x)=


α1, (x,y)∈Ω1 :=

{
X∈Rd

∣∣∣∣ d

∑
i=1

x2
i <0.25

}
,

α2, (x,y)∈Ω2 :=Ω\Ω1.
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Table 8: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.10) with d=3. The figures in parentheses are the numbers of outer iterations. Here,
L=1, W=300, Nr =Nb =Ni f =1024.

DeepDDM p=1 p=3 p=5 p=7
err 1.30E+0(6) 1.13E+0(8) 9.37E-2(7) 6.51E-2(6) 3.95E-2(6)

Table 9: The relative L2 errors and the number of outer iterations obtained by DeepDDM and HOrderDeep-
DDMs (p) on problem (3.10) with d=5. The figures in parentheses are the numbers of outer iterations. Here,
L=1, W=300, Nr =Nb =Ni f =3125.

DeepDDM p=1 p=2 p=3
err 9.89E-1(6) 7.75E-1(7) 6.91E-1(6) 1.06E-1(7)

We consider the following high-frequency exact solution with discontinuities at the in-
terface:

u∗(X)=


d

∑
i=1

sin(k·xi), X∈Ω1,

d

∑
i=1

cos(k·xi), X∈Ω2.

(3.10)

The boundary condition g and the interface conditions p,q can be directly computed from
u∗.

DeepDDM and HOrderDeepDDMs with L=1, W=300, p=1,2,3,5,7 are utilized to fit
the numerical solution. The numbers of training points are set as Nr=Nb=Ni f =1024 for
3-dimensional problem and Nr=Nb=Ni f =3125 for 5-dimensional problem. Other hyper-
parameters are set as follows: α1=1, α2=2, k=15. The results are shown in Tables 8 and
9. Easy to see, HOrderDeepDDMs (p> 1) outperform DeepDDM with the same archi-
tecture and the relative L2 errors decrease significantly as the order p increases, both for
3-dimensional problems and for more complex 5-dimensional problems. To demonstrate
the accelerated convergence effect brought by the higher order, we show the convergence
of the relative L2 error with the outer and inner iterations in Figs. 25 and 26. Obviously,
the convergence speed of HOrderDeepDDM (p≥ 3) is much greater than that of Deep-
DDM in both 3-dimensional and 5-dimensional high-frequency interface problems, and
the convergence speed is further accelerated as the order p increases.

We finally remark that HOrderDeepDDM, as an extension of HOrderDNN, may suf-
fer the same curse of dimensionality as HOrderDNN. Indeed, the proposed HOrder-
DeepDDM aims at high-frequency interface problems such as wave problems, which
usually reside in two or three dimensions in nature. For these problems, the pro-
posed method is more flexible in handling complex interfaces when compared to mesh-
dependent methods and has stronger approximation capability to characterize high-
frequency components in the solution when compared to conventional DNNs.
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(a) d=3 (b) d=5

Figure 25: The change in relative L2 error along with outer iterations for DeepDDM and HOrderDeepDDM
on problem (3.10) with d= 3 and d= 5. Here, the hyper-parameters are set as follows: α1 = 1, α2 = 2, L= 1,
W=300, Nr =Nb =Ni f =1024,3125 for d=3,5.

(a) d=3 (b) d=5

Figure 26: The convergence processes of relative L2 errors in inner iterations on problem (3.10) with d=3 and
d=5. Here, the hyper-parameters are set as follows: α1=1, α2=2, L=1, W=300, Nr =Nb =Ni f =1024,3125
for d=3,5.

4 Summary

We have introduced HOrderDeepDDM, which combines traditional DDM and HOrder-
DNN to solve high-frequency interface problems. Using DDM, we overcome the diffi-
culties caused by discontinuities at the interface, and by introducing HOrderDNN, we
improve the ability of the neural network to approximate high-frequency information.
We have demonstrated the effectiveness and superiority of HOrderDeepDDM in solv-
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ing high-frequency interface problems through a series of numerical experiments for the
solution of high-frequency interface PDEs. HOrderDeepDDMs with relatively large p
far outperform DeepDDMs in terms of accuracy and efficiency. In particular, the mini-
mum relative errors obtained by HOrderDeepDDMs (p=9) are one order of magnitude
smaller than that obtained by DeepDDMs when the number of the parameters keeps
the same. These results suggest that HOrderDeepDDM is an efficient and easily imple-
mented method for solving high-frequency interface problems. Future work includes
extending HOrderDeepDDM to more complex practical interface problems, giving theo-
retical guidance for determining p, and designing more efficient optimization algorithms.
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