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Abstract. We consider the non-cutoff Vlasov-Poisson-Boltzmann (VPB) system
of two species with soft potential in the whole space R* when an initial data is
near Maxwellian. Continuing the work Deng [Comm. Math. Phys. 387 (2021)]
for hard potential case, we prove the global regularity of the Cauchy problem to
VPB system for the case of soft potential in the whole space for the whole range
0<s<1. This completes the smoothing effect of the Vlasov-Poisson-Boltzmann
system, which shows that any classical solutions are smooth with respect to
(t,x,v) for any positive time t > 0. The proof is based on the time-weighted
energy method building upon the pseudo-differential calculus.
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1 Introduction
The Vlasov-Poisson-Boltzmann system is an important physical model to de-
scribe the time evolution of plasma particles of two species (e.g. ions and elec-

trons). In this work, we study the smoothing effect of solutions to non-cutoff
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Vlasov-Poisson-Boltzmann system with —3/2—-2s <y < —-2sand 0 <s<1. We
find that the solutions enjoy the same smoothing phenomenon as the Boltzmann
equation, which gives the regularity of the Vlasov-Poisson-Boltzmann system.
Since Duan and Liu [17] found the global solution for non-cutoff soft potential
with 1/2 <s <1, the smoothing effect for the VPB system is an open interesting
problem. In [14], the author finds out the smoothing effect for hard potential. In
this work, we finally recover the smoothing effect for non-cutoff soft potential
with the whole range 0 <s <1.

1.1 Equations

We consider the Vlasov-Poisson-Boltzmann system of two species in the whole
space R3, cf. [22,26]

atF+ +U'VXF++E'VUF+ = Q(F+,F+)+Q(F_,F+),

1.1
otF_+0v-VyF_—E-V,F_=Q(F_,F-)+Q(F+, F_). (1.1)
The self-consistent electrostatic field is taken as E(t,x) = — V¢, with the electric
potential ¢ given by
—Ax¢=/3(F+—F_)dv, ¢ — 0 as |x|— oo, (1.2)
R

The initial data of the system is
Fi(0,x,0)=Fy o(x,0). (1.3)

The unknown function F4 (t,x,v) > 0 represents the velocity distribution for the
particle with position x €R® and velocity v€IR? at time ¢ >0. The bilinear collision
term Q(F,G) on the right-hand side of (1.1) is given by

. . e
Q(F,G)(v)_/w/szB(v v.,0)(F.G' —F.G)dodo,,
where
F'=F(x,o't), G,=G(x,9,,t), F=F(x,0,t), G.=G(x,0,t).

Velocity pairs (v,v,) and (v/,v),) are velocities before and after binary elastic col-
lision respectively. They are defined by
, U4v. |v—04 , U+0. |v—0
—= 0', U* —= —
2 2 2 2
These two pairs of velocities satisfy the conservation law of momentum and
energy

v+0. =040, [o]*+]o. =0 P+]0,[%
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1.2 Collision kernel

The Boltzmann collision kernel B is defined as
B(v—0,,0)=|v—0v.|7b(cosh)

for some function b and <y determined by the intermolecular interactive mecha-
nism with cosf = ((v—2v4)/|v—0v.|)-0. Without loss of generality, we can assume
B(v—uy,0) is supported on (v—v,)-0 >0, which corresponds to 6 € (0,71/2], since
B can be replaced by its symmetrized form

B(v—0,,0)=B(v—0.,0)+B(v—0,,—0)
in Q(f,f). The angular function ¢+ b(cosf) is not integrable on S?>. Moreover,

there exists 0 <s <1 such that
1

69_1_25Ssin@b(COSG)SCQ_l_ZS on 6€(0,7/2]

tor some C > 0. It is convenient to call soft potential when y+2s <0, and hard
potential when 7y +2s> 0. In this work, we always assume

0<s<1, —-3/2<y<—2s.

In this paper, we are going to establish the smoothing effect of the solutions
to the Cauchy problem (1.1)-(1.3) of the Vlasov-Poisson-Boltzmann system near
the global Maxwellian equilibrium. For global existence, Guo [22] firstly in-
vestigates the hard-sphere model of the Vlasov-Poisson-Boltzmann system in
a periodic box. Since then, the energy method was largely developed for the
Boltzmann equation with the self-consistent electric and magnetic fields. Duan
and Strain [19] analyzes the optimal time decay rate for the Vlasov-Maxwell-
Boltzmann system with cutoff hard potential. Guo [24] gives the global existence
of the Vlasov-Poisson-Landau system by using an elegant weight e*?. Duan
and Liu [17] investigated the Vlasov-Poisson-Boltzmann system without angu-
lar cutoff for the case of soft potential when 1/2 <s < 1. For the smoothing effect
of the Boltzmann equation, since the work [1] discovered the entropy dissipa-
tion property for the non-cutoff linearized Boltzmann operator, there have been
many discussions in different contexts. See [2,5,7,21,29] for the dissipation es-
timate of collision operator, and [3, 4, 8, 10, 11, 13] for C* smoothing effect for
the solution to Boltzmann equation in a different aspect. We refer to [9, 16] for
the Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equa-
tion. Recently, the author [14, 15] established the smoothing effect of the Cauchy
problem for VPB system with hard potential and VPL system for Coulomb in-
teractions. These works show that the Boltzmann operator behaves locally like
a fractional operator
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Q(f,g)~ (—Ay)°g+lower order terms.

More precisely, according to the symbolic calculus developed by [2], the lin-
earized Boltzmann operator behaves essentially as

L~ (0)7 (= Ayp+]oAdy|?+[v[*)” +lower order terms.

We also mention [25] for global regularity of the Boltzmann equation without
angular cutoff.

1.3 Reformulation

We will reformulate the problem near Maxwellian as in [22]. For this, we denote
a normalized global Maxwellian u by

o2
2

n(v)=(2m) 2" 7.

Set Fu (t,x,0)=u(v)+u? fi(t,x,0). Denote f=(fy,f-) and fo=(fi0,f_0). Then
the Cauchy problem (1.1)-(1.3) can be reformulated as

atfi‘i‘v'vxfij:%vx(,b'vfi:va(,b'vvfiivx(,b'vﬂ%_Lifzri(frf)/ (1.4)
—Ax¢=/R3(f+—f_)y%dv, o > 0 as |x| - o (15)

with initial data
f+(0,x,0)=f10(x,0). (1.6)

The linearized operator L= (Ly,L_) and bilinear collision operator I' = (', T'_)
are given by

Laf =12 (2Q(um? fo) +Qu3 (fatf2)m) ).
Te(f,g)=n" (Q(uifeuigs) +Q(ul fruigs) ).
For later use, we introduce the bilinear operator 7 by
1
To(hy, o) = /]R 3 /S B(o—0.,0)25 (1) (11 (0o (o))~ 1 (02 )z (0)) oo

for two scalar functions hy,hy, and in particular, we set 7 = 7. Thus,

Lo f=2T (42, f2) + T (fa+ fe2),
Te(f,8)=T (f+,.8£)+T (f+,8+)
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1.4 Notations

Through the paper, C denotes some positive constant (generally large) and A de-
notes some positive constant (generally small), where both C and A may take
different values in different lines. For any v € R3, we denote (v) = (1+|v|?)1/2.
For multi-indices « = (x1,a2,a3) and B=(B1,B2,B83), write

0% =105 0b 052002,

The length of « is |a| = a1 +ap+a3. The notation a~ b (respectively a 2 b,a S b)
for positive real function a,b means there exists C >0 not depending on possible
free parameters such that C “lg<b<Ca (respectively a > C “1pa< Cb) on their
domain. .# denotes the Schwartz space. Re(a) means the real part of complex
number a. [a,b] =ab—ba is the commutator between operators. {a(v,7),b(v,77)} =
0,410, —yf11 0y a7 is the Poisson bracket. I'=|dv|?+|dn|? is the admissible metric
and S(m)=S(m,T) is the symbol class. For pseudo-differential calculus, we write
(x,0) € R¥*xR? to be the space-velocity variable and (y,77) € R>xR? to be the
corresponding variable in frequency space (the variable after Fourier transform).
The L? , space s defined as L2 ,=L*(R3 xR3). L?(Bc) is the L3 space on Euclidean
ball B¢ of radius C at the origin. For the usual Sobolev space, we will use the

notation
||f||H5H;31: Z Ha%fHL%,x
Bl <k |a|<m
tor k,m > 0. We also define the standard velocity-space mixed Lebesgue space
Z1=L?(R3;L}(IR?)) with the norm
1 llze =11l

In this paper, we write Fourier transform and inverse Fourier transform on x as

1%

(i) Asin [23], the null space of L is given by
kerL:span{ 11,0012, [0,1]p2, [1, 1oz (1<i <3), [1,1][0|u2 }

We denote P to be the orthogonal projection from L2 x L2 onto kerL, which is
defined by

Nl—=

Pf=(as(t,x)[1,0]4+a_(t,x)[0,1]+v-b(t,x)[1, 1]+ (|v|*=3)c(t,x)[1,1])uz, (1.7)
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or equivalently by

Nl—

Pyf=(as(t,x)+0-b(t,x)+(|v|*=3)c(t,x))uz.
Then for given f, one can decompose f uniquely as
f=Pf+(I-P)f.
The function a+,b, c are given by
at = (V%zfi)Lg, = (V%/Pif)L%z
bj:%(UjV%Ier"'f—)L%: (o2 P=f) 120

=5 (oP=3)ub, £ £) =5 (0P =3 Paf) .

(ii) To describe the behavior of linearized Boltzmann collision operator, [6] in-
troduce the norm ||| f||| while [20] introduce the norm N;"”. The work [2] give the

pseudo-differential-type norm || (a'/2)“f|| 12- They are all equivalent and we list
their results as follows.

Let ./ be the space of tempered distribution functions. N7 denotes the
weighted geometric fractional Sobolev space

N ={f €5t |flnon <o}
with the anisotropic norm
v 2 yH25+1 I £)2
Ros= o)+ [ (000D 3 Dt

with

o) = flo—o P+ (ol )2

In order to describe the velocity weight (v), as in [20], we define

|f’2 _’w <v>%+5ﬂ2 4 dow <v>7+25+1 do’ (f/_f)z 1
VA L Jrst R d(o,0)d+2s )<l

which turns out to be equivalent with |w; f|ns+. This follows from the proof of [20,
Proposition 5.1] since the ¢ therein has a nice support.
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On the other hand, as in [6], we define

1= [ Blo—ou0) (s (£~ 724 £~ 1i2)?) dodo.do

For pseudo-differential calculus as in [2], one may refer to the [14, Appendix] as
well as [28] for more information. Let I = |dv|?>+|dn|? be an admissible metric.
We say thatae S(M)=S(M,T), if for o, f € md,v,iy €R3,

yagaﬁa(v,n,g)} < CypM

with C, 4 a constant depending only on « and B. The space S(M,I') endowed
with the seminorms

ST = M(v,) ' 9%ha (o,
HaHk,S(M,F) Osﬂf)/éék(v;;lglw} (o,1) vna(vﬂé{)}

becomes a Fréchet space. Define
a(v,) = (0)" (1+ |7+ g Ao +[o]*)* +Ko (o) (1.8)

to be a '-admissible weight, where Ky >0 is chosen as the following. Applying [2,
Theorem 4.2] and [12, Lemmas 2.1, 2.2], there exists Ky > 0 such that the Weyl
quantizations @ : H(ac) — H(c) and (4'/2)“: H(a'/?c) — H(c) are invertible, with
¢ being any I'-admissible metric. The we1ghted Sobolev space H(c) is defined by

where 1
(e /M 2 gulalry Y <eo,

and (@y)ycge is any uniformly confined family of symbols which is a partition
of unity. If a€ S(M) is a isomorphism from H(M') to H(M'M~1), then (a“u,a"v)
is an equivalent Hilbertian structure on H(M). The symbol 4 is real and gives the
formal self-adjointness of Weyl quantization 4. By the invertibility of (7/2)®,
we have equivalence

b

and hence, we will equip H(4'/?), with norm ||( 1/2yw(. )12, see [14, Appendix].
Also,

R

21

2

e (@2)(-)

(')HL%

due to Lemma 2.1.
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The three norms defined above are equivalent since for [ € R,

1@ F12 I R~ (~LE Pz + 1 0 2

which follows from [20, Egs. (2.13), (2.15)], [6, Proposition 2.1] and [2, Theo-
rem 1.2]. An important result from [12, Section 3] is that

LeS(a),

where S(4) =S5(4,I') is the pseudo-differential symbol class, see [28, Chapter 2].
This implies that

1
(LF £l 511 @) A
For brevity, we denote dissipation norms

£ =11 Fllz 1 llizag, =1 (32)f

In order to extract the smoothing effect on x, we define a symbol b by

L3L5’

b(v,y)= (o) y|", (1.9)

where [y, 67 are defined by (3.16). This symbol will help us find out the smoothing
rate on spatial variables.

1.5 Main results

To state the result of the paper, we let K> 0 to be the total order of derivatives on
v,x and define the velocity weight function w; for any / € R by

wy (a, ) = (o) el =alBITK, (1.10)
where p,q>0 are given by
29(1— 2
p:—v—erL q=—§+1.

For brevity, we write w; =w;(0,0) and w(|«|,|8|) =w(a,B). To extract the smooth-
ing effect, as in [14], we define a useful coefficient

1, if k<0
= = 1.11
P {¢h if k>0, (1D



D.-Q. Deng / Commun. Math. Anal. Appl., 2 (2023), pp. 421-468 429

where =1 in Theorem 2.1 (for existence) and =t~ with N=N(a,8)>0 large in
Theorem 1.1 and Section 3 (for regularity). When considering i =t in proving
regularity, we always assume 0 <t <1, since regularity is a local property. In any
case, we have ¢ <1. The motivation of this weight is that when ¢ = N the initial
high-order energy functional defined in (1.12) would vanish at the initial time
t =0. This shows that high-order energy for any t >0 is controlled by low-order
initial energy and we obtain the regularizing effect.

Corresponding to given f = f(t,x,v), we introduce the instant energy func-
tional £k ;(t) satisfying the equivalent relation

Exit)= Y, ||)a)-a0" EHL2+ Y [0 -40" PfHLZ

la|<K la|<K

+ Y (g p-awr (@ pAFA-P)F] 1 . (1.12)

|af+|Bl<K

The precise definition will be given in (3.14). Also, we define the dissipation rate
functional D ; by

Di()= Y, |[[#a- 43“EHL2+ Y. [ $a 49"

la] <K—1 1<|a|<K
L 9apalat)w (“rﬁ)aﬁ(l—l’)ﬂ}igx- (1.13)
|l +BI<K ’

Here E=E(t,x) is determined by f(t,x,v) in terms of E=—V ¢ and (1.5). Notice
that one can change the order of (4'/2)% and w;(a,8) due to Lemma 2.1. The main
result of this paper is stated as follows.

Theorem 1.1. Let —3/2—25s<y<—-25,0<5<1,0<t<T<c0and [>0. For any K>4
and multi-indices |a|+|B| <K, assume =1t with N >1 large if |a| =0 or |a|+|B| <4,
and N = N(a,B) > 1 defined by (3.19) or (3.22) or (3.23) otherwise. Let (f,E) be the
solution to (1.4)-(1.6) satisfying that for n >0, there exists C,, >0 such that

sup || (0)" ()2, < Cu<co. (1.14)
0<t<T ’

Then the following holds true:

(1) If
€1= (54,1 (0)) 2 (1.15)
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is sufficiently small, then for |a|+|B| <K, T < oo,

sup (|| (@,B)95 f

T<t<T

i%,er Ha“vx"’”ig) §€:12CT,T,1<,1, (1.16)

where Cy 1 x>0 depends on T, T, K, L.

(2) There exists Cy ;>0 such that if £y ¢, (0) is sufficiently small, then for |a|+|B| <
K, k>0, T < oo, we have

2 2
sup (le(a,/s)aga’; fHL%erHa“a’;vx(pHL%) <CrThi <o, (1.17)
T<t<T .
where C 1 g is a constant depending on T, T, k,K,I. Consequently, we obtain that
feEC®(R xRExR3).

(3) If additionally, the initial data satisfies that

1
€0=(E4111,(0))* +[lwp, follz, + | Eoll 1 (1.18)

is sufficiently small, where

3(7+2s) ~ 5(y+2s) 5(7+2s)
l>max{ 1 ,K}, L= ii—p)’ I, > 1

are constants. Then the constants in (1.16) and (1.17) can be chosen independent of T
and T can take the value oo.

(4) Suppose that there exists sufficiently large Cy ;>0 such that if the solution (f,E)
satisfies that,

1
€0,k = (Ea,c1+1;(0)) > +|lwr, foll z, + | Eoll 1 (1.19)

is sufficiently small. Then the condition (1.14) can be removed and we have (1.16) and
(1.17). Also, the constants in (1.16) and (1.17) can be chosen independent of T and T can
take the value oco.

One way to obtain the existence of solutions to the VPB system with soft po-
tentials satistying (1.14) could be provided for example by using the weighted
arguments in [18], which is for the Vlasov-Maxwell-Boltzmann system with an-
gular non-cutoff and soft potentials, if we replace the weight function (v)77 x
exp{A/(1+t)%(v)} by (0)"Texp{q(v)+A/(1+1)%(v)} (with 0 < g< 1) in which
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case we can obtain the sub-exponential decay in v. However, this is not the main
topic of the current work, so we do not give detailed proof.

Notice that (1.16) gives the smoothing effect on velocity and spatial variables.
If we assume the initial data has more velocity decay, then we have the smoothing
effect on the time variable as (1.17). If we assume the initial data as in the exis-
tence theory (cf. Theorem 2.1), then the constants can be independent of time T.
Moreover, if we assume higher velocity decay, then we can derive (1.14) from ex-
istence theory instead of assuming it at the beginning. These results show that
the solutions to the Vlasov-Poisson-Boltzmann system enjoy a similar smoothing
effect to the Boltzmann equation, see [3,11]. That is, whenever the initial data has
algebraic decay in any order, the solution f is smooth in (t,x,v) for any positive
time t.

In what follows let us point out several technical points in the proof of The-
orem 1.1. We use K >4 because H2(IR?) is a Banach algebra when controlling
(2.4), where there are already second derivatives on v, and H? is useful to con-
trol the spatial variable when dealing with the trilinear estimate. The next tech-
nical point concerns the choice of ¥ =t in Theorem 1.1 and the usage of b,
¥)a|+|p|—4 is Section 3. Recall (1.11) for the definition of i.. Whenever |a|+|]>4,

Pla|+pl-4= tN(al+If1=4) is equal to 0 at t =0. Plugging this into energy estimate,
the higher order derivatives are canceled at t =0 and one can control the higher
order instant energy by lower order initial data. Then one can easily deduce the
smoothing effect locally in time. By using the global energy control obtained
in Theorem 2.1, the local-in-time regularity becomes global-in-time regularity.
Notice that we use —4 to eliminate the index arising from Sobolev embedding
|l 2 S I+ || g2 112, where the latter has derivatives of forth order. However, after
adding 1|, | g4, One need to deal with the term

(30 p1-0)23f = 0F (0 )F) |, - (1.20)

This is where we need b given in (1.9). By choosing N = N(a, ) properly, one has
interpolation

—lpla|

Plag 81—k SOD2Plagp-atCos(0) 0yl ¥y o

2 2

Nl—

The first term can be absorbed while the second term eliminates « derivatives
on x. Applying a similar interpolation on v with @, we can control (1.20) by a high-
order term and an algebraic decay term

~1 A 2
8| )a)+ 1 p|—ab>wi (a, ) (95 1) (U,y)HL%,y+5ZDK,l+C5||<U>CK'lf||i%,x-



432 D.-Q. Deng / Commun. Math. Anal. Appl., 2 (2023), pp. 421-468

Defining 6 by (3.18), using the Egs. (1.4)-(1.6) and Poisson bracket {v-y,0}, one
can control the high-order term by using functional £ ; and Dk ;, where J; in b
should be chosen properly. Hence, we can obtain a closed energy estimate lo-
cally. Here, when dealing with soft potential, there occurs an algebraic decay
term in v:|| (v)Ck! f]] 12 and we need to assume such norms are bounded initially,
as observed in the Boltzmann equation, cf. [11]. After obtaining a local regularity,
we can combine it with the global energy control from existence theory, cf. [17].
Then one can deduce the regularity globally in time.

The rest of the paper is arranged as follows. In Section 2, we present some
basic lemmas for existence theory, estimate on L,I', and some tricks in energy
estimates. In Section 3, we present the proof for regularity.

2 Preliminaries

In this section, we list several basic lemmas corresponding to the existence theory
of the Vlasov-Poisson-Boltzmann system, linearized Boltzmann collision term L+
and the bilinear Boltzmann collision operator I't. The following theorem comes
from [17, Theorem 1.1], except that we improve the index K > 8 to K >4 and
1/2<s<1to0<s<1.
Theorem 2.1 ([17, Theorem 1.1]). Let —3/2—2s<y<—25,0<s<1,K>4,pe(1/2,1).
Assume 1>0,1>—=3(y+2s)/4,11 =—5(y+2s)/(4(1—p)) and fo(x,v) = (fo,+(x,0),
fo,—(x,0)) satisfying

F(0,x,0) = p(0) +/ 1(0) fox (x,0) 2 0.
Assume Pp=1. If

1

0= (Ex1+1,(0))* + l[wi, follz, + | Eoll .2 (2.1)

is sufficiently small, where Eo(x) =E(0,x),l; > —5(y+2s) /4 is a constant. Then there

exists a unique global solution f(t,x,v) to the Cauchy problem (1.4)-(1.6) of the Vlasov-
Poisson-Boltzmann system such that

Fy(tx,0)=p(v)+ (1(0))

Nl—=

fi (t/x/v) Z 0/

and )
Ex 141, () Se€p,

Exi(t) Seg(1+1)”
Ex (D) Seg(1+1)”
for any t>0. Here, Ex ;(t) is defined by (1.12) with p=1.

(2.2)

NI NI
~

_p,
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Here the instant energy functional £}, is given by

E~ Y IREMIT+ Y I9°PfI7;

la| <K 1<]a|<K

SR CICYOLH(SS

|af+|pl<K
and we assume ¢ =1 in this theorem.

Proof. The proof is similar to [17, Theorem 1.1] and we only illustrate the differ-
ence. The first one is that we use || Eo||;; in (2.1) instead of ||(1+|x[)pol|1, where

po= [ (F+ (O~ f-(O)ddo.

The only place involving this term is estimate (4.25) in [17, Theorem 1.1]. One can
use

I1Eo(y)lle < [|Eoll 12

instead and hence, in (2.1), we can use || Eo||;; instead.

The second difference is that we use K >4 instead of K> 8. This is because, in
Corollary 2.1 below, we only require K>4. Replacing estimate in [17, Theorem 7.1,
Egs. (7.11)-(7.12)] by Corollary 2.1 below, we can use such index on K instead.

The third difference is to improve index from 1/2<s<1to 0 <s<1. The
work [17] is restricted to 1/2 <s < 1 because of [17, Lemmas 3.6, 3.7], where
the authors used Fourier transform on v € R3 to control the gradient V,. Us-
ing Lemma 2.10 below instead, we are able to obtain the result for 0 <s <1. Then
following the same proof of [17, Lemma 7.1 and Theorem 1.1], we complete the
proof of Theorem 2.1. O

Here we introduce the following lemmas from [12] on pseudo-differential cal-
culus, which will be frequently used in our analysis. Notice that the condition
[ <m in [12] is unnecessary.

Lemma 2.1 ([12, Lemma 2.3]). Let m,c be T'-admissible weight and a € S(m). Assume
a®:H(mc)— H(c) is invertible. If be S(m), then there exists C >0, depending only on
the seminorms of symbols to (a®) =1 and bY, such that for f € H(mc)

162, Do) fll 1) +16% (0, Do) f | 1a(e) < Clla® (0, Do) fll ey -

Consequently, if a® : H(my) — L?> € Op(m1),b% : H(my) — L? € Op(my) are invertible,
then for f €.
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16%a® fll2 S a6 f I 12,

where the constant depends only on seminorms of symbols to a¥,b®, (a®) =1, (b®) 1

Lemma 2.2 ([12, Lemma 2.4]). Denote ag ;:=a~+Kl,mg ;:=m+KI for K>1, where
m, | are I'-admissible weights. Assume a € S(m),dy (ak ;) € S(K™*mg ;) uniformly in K
and ag ;2 mg . Let p>0and b€ S(emy ;+e ), uniformly in e € (0,1). Then there
exists Ko > 0 such that for f € H(mc),e€(0,1),

16(2, Do) fll1(c) + 1% (0, Do) fl 1 c)
<Ck,(ella” (0, Do) fll )+ I fllmrge)) -

For composition of pseudodifferential operator we have a“b" = (a#b)® with

1 —k (=Dl ap
a#b:ab—i—ﬁ{a,b}—|—2<§:< 2 Z_ 2] DyoyaDyoib+ry(ab),  (2.3)
sksv af+|B[=k

where X = (v,1),
rv(a,b)(X) =Ry (a(X)@b(Y)) |x=v,

R, =/01 %exp <%<Uax,ay>) a0 (ﬁwax,aﬁ)v.

Leta;(v,17)€S(My,I'),a2(v,17) €S(My,T), then al’a¥ = (a1#a2)™, a1#ar € S(M1 M), T')
with

1
ar#tay (v,m) =ay(v,n)az(v,n) —|—/ (0ya1#90ya2 — a1 #g0y,a2)do,

224 o
ol (V)= o /]R 3 /]R o T 00 (4) 0By, By, ) g (Y1) (Ya) dYidYs

with Y=(v,17),0= _OI (I) . For any non-negative integer k, there exists /,C inde-

pendent of 6 € [0,1] such that

lg#el || k;s vy vy, ) < ClIS I 15 (a0 1715 (0, ) -

Thus, if 9,a1,0,a, € S(M],T) and 9ya1,0.a, € S(M),T), then [ay,a5] € S(M] M;,T),
where [-,-] is the commutator defined by [A,B]:= AB—BA. As a consequence of
composition and Lemma 2.1, we have the following.
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Lemma 2.3. Let m,c be T-admissible weight and a'/? € S(m'/?). Assume (a'/?)®
H(mc)— H(c) is invertible and L € S(m). Then

(Lf. e =(((a2)*) 'LF(a2)°F)

€S(m1/2)

<1 (a2) £l

L2

The following lemma concerns with dissipation of L4, whose proof can be
found in [20, Lemma 2.6, Theorem 8.1].

Lemma 2.4. For any | € R, multi-indices a, 8, we have the followings:
(i) It holds that
(—L8,8)12 2 | (1=P)glI72
(ii) There exists C >0 such that
—(wiLg,8) 13 2 lwigllza —Cllglz 5y
(iii) For any >0

—(wf (2, B)05Lg,058) 12 % [lwi (e, gHLz 77/32“8'”?01 ﬁl)aﬁlgHié
11<

_CUHang“%Z(BCq)'

Notice that in Carleman representation (cf. [2, Appendix]), the derivative on v
will apply to f,g and yl/ 2 respectively. Then

Pyal+1p-49T (f.8)

— Z Z Czlltxzcgl,ﬁz,l%Lp|a‘+|ﬁ|_47733 (agif,agig)lpw.
a+ao=a fi+pPr+p3=p
The next lemma concerns the estimates on the nonlinear collision operator I'y,

which comes from [17, Lemma 2.2] and [30, Proposition 3.1].

Lemma 2.5. Assume y+2s<0. For any | >0,m > 0 and multi-index B, we have the
upper bound

[(w} (@ B)RTL (£,8),050) 2
S X o5l el e p)agh] ; dx

a1 tar=a

B1+p2<p
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+ B leapag

a1 tar=a

Prtpa<p
+ Y /mm{Al,Az}le B)agh|| ; dx, (2.4)

N1 +ay=n

B1+B2<p

gHL2 w1 (e, B) a“hHLZ dx

where

Av= ) W o g f
B[<2

Azzuw—magfmg,ﬁgzuwzm,maz;ﬁ/gu%-

(a,B)0 gHLZ'

Leti=1if0<s<1/2andi=2if1/2<s<1, then

I{0)'T(f.8)ll2

Y+2s

§min{H<v>l+ 5 Y425

l
H? <U> M

Y+2s

<U>l+ 5 4252

> 8

f

g 12l @

i i) (25)

In order to obtain a suitable norm estimate of 7 on x. We write a fundamental
estimate, which is very useful throughout our analysis.

Lemma 2.6. For any u,v € H2, we have
HuUHL% gmin{ ||vxu||H; HUHL,%IHVJC”HL,% HUHH}C}' (2.6)

Proof. The proof is straightforward. Notice that this lemma gives that H? is a Ba-
nach algebra. By Gagliardo-Nirenberg interpolation inequality and Sobolev em-
bedding, cf. [27, Theorem 12.83] and [31, Proposition 2.2, Lemma 5.1], we have

1 1
ullLo SV el 2] V30| 2 S Vst
[uv]| 2 S lullsl[oll s STV aull 2 l|o] -
Then (2.6) follows from Holder’s inequality. O

The following corollary describes the behavior of nonlinear terms in the Vla-
sov-Poisson-Boltzmann system.
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Corollary 2.1. Let [ >0 and K> 4. Definei=1if0<s<1/2and i=2if1/2<
s<1. Assume | >max{—3(y+2s)/4+i+1,—5(y+2s)/4+2}. Then, there exists
l.>—5(y+2s)/4 such that

H <v>l*ginl + H <v>l*ngi HL%,X ,S(‘:K,l,

where 1
8+ :ivxqb'vvfi:lzivxﬁb’vfi+ri(f’f)'

Proof. By using (2.5) and Young's inequality, we have

Nd
|@T(£..) 1z, S [ dx]| (o) 4]
2s
S| <U>l*+%in15L§ SEk
whenever [ > 1.+ (y+2s) /2+2. On the other hand,

| @) Vop- Vofi |, S IVl | ) Vsl 2 <Exs
H <U>Z*U'Vx<l>fi HZl S ||Vx¢||L§ <U>Z*Ufi HL%,XSEK,II

whenever | > I, +1. Similarly, by using (2.6),

|@) VL) 5, S0

+ 1]l ¢oy

<U>l*+%+sf‘

Hj

T+

CVf |l @) f

Y+2s

> f

Hi
v L%
Y+2s

12 <U>I*+ 5 vxf‘

Hp

L3
Y+2s

Y+2s
<U>l*+ 2 fHH%,H}(’S’gKfl’

> f
whenever | > 1.+ (y+2s)/2+i+1. By (2.6),
@) Va (V- Vofe) |l 5 SVl
[(0)* V(0 Vi fe) HL%,x SVl

whenever [ >, +2. Now we verify that such [ exists. From the restriction above,
we need to choose I, such that

< H<v>l*+

Y

L3H?

<U>l*fi HH},H}C ngK,l/

() ofy 2 S €k,

—%zs—i—l, 1, <1—2.

Such choice exists, since [ > max{—3(y+2s)/4+i+1,—5(y+2s)/4+2}. O
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With the help of Lemmas 2.5 and 2.6, we can control the trilinear term as the
following.

Lemma 2.7. Let K> 4. For any multi-indices |a|+|B| < K and real number 1 >0, we
have

| (¢2\1x|+2|,3|—8w12(“/ﬁ)agri (f,8),08h) L%,x}

S8 W@l T Wwes sl

| +1BI<K 8|1, o +BI<K

+ Y [ Waris-a e, X Yeip-awi(@B)IEg 2
|21 a1+ BI<K " lal+1BI<K

+ ) - @B s (Paip-a988 1212
| +1BI<K 011 ja+BI<K

+ ) [)af+1p—awi(a,B)IgfI| 2 Y H‘P|a+|ﬁ|—4a%8HL§L%)

|a|>1,|a|+|B| <K 7 lal+|Bl<K
X HlP\a|+\/s\—4wl(a,[3)a%hHLgc%,

where we restrict t € [0,1] when considering Y =t as in Theorem 1.1.

Proof. Using the estimate (2.4), we have

| (21a] 4218157 (&, B)IET + (f,8),05h) Lz |
S Y e -all05 g llwi (e, B)9

n1t+ar=un

B1+B2<p
+ Y ([ Wiaip-allwn(@BIg £l

N1 +ar=n

P1t+pa<p
2 | Wiap+ip-amin{Br Ba} | |91af-+ipi-ar (2 B)OFR ] 2, @7)

N1+ =n

B1+B2<p

(a,8)0p

(@)

where

By = Z }}w_magl+ﬁ’
|p1<2

Hw"”a”“fHLzﬁZ (2 B)g; . g8 2 -

eer(a )58
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Here we divide the summation into several parts. For brevity, we denote the first
terms in the norm |-[| » inside the summation Yy, | 4,=a,p, 1 p,<p O the right-hand
side of (2.7) tobe I,],K and discuss their value in several cases. If 2<|a1|+|B1| <K,
then |ay|+|B2| <|a|+|B| —2 and |az+a'|+|B2| < |a|+|B| for any 1 <|a’| <2. Notice
that in this case

Do +181—4 < W)ay |+ 81| —4¥ jaa+a/| +| Bo| —4-
By using (2.6), we have

TS Pjag+ 1614l 1l 2 [l wi (@ B)IE8] 2 ||
S+ -295 fll 2, 2 HlP\a2+aI\+|/z2\—4wz(“+“'/ﬁz)a§§+“l8HL;L%

1<|a’|<2
S 2 vwep-a9fllia, X (¥upip-awn(@pB)opg . 28)
|| +|B| <K ‘ |‘i|\/§\1<1<
e <

Secondly, if |a1|+|B1]| =1, then |az|+|B2| < |a|+|B|—1. Using (2.6) to give one x
derivative to f, we have

wq+a!
Ié; ¥y 4o 4181495, f
a/|=1

X Y 1w+ 1] —ator (40! 52)3“2+“g!!Lsz

2
Lv,x

la/|<1

S X - L [ Pp-awn(@B)oggll2pn
a1 a6 <K

|a|+|B|<K

Here we used ¢ <1 and

/ /
Ve +181 -4 < Pl ot [ +1B1| -4 an o +1pa -4 V]a1| =1, ap[ <1

Thirdly, if |a1|+|B1]| =0, using (2.6) to give at most two and at least one spatial
derivative to f with, we have

IS Y |¥jagsa|+ip)- 43“+'Xf

L3
1<|a’|<2

DD Y g s @B)gl iz (29

|a[>1 " laf+|Bl<K
]+l <K

[Plaal +1821 201 (42, 82)95,8 | 212
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Here we used

Plud+181-4 S Pl 4 181 -4W s 8o -4 V0| S2:

Combining the above estimate, we have the desired result for I

IS Y [wsip-afllz, X [9is-a(@B)oggll 20

|a|+[B|<K |a|>1
|ae|+[B|<K
+ 2 ws-aBfll, X HlP\a|+\/s\—4wl(0é,l3)a%gHLch%-
|a|>1 " laf+|BI<K
|ae|+[B|<K

Similarly, using the same discussion on |a;|+|B2| instead of |a1|+|B1|, we have

IS Z Hlp\alﬂﬁ\—4wl(“/ﬁ)a%f‘}L%,x Z HIPMH/;‘_@%g

1212
Ja|+[B| <K | >1 °
o] +1B| <K
Y Wwspan@BIEfll Y [[ap-a958ll 2
a[>1 " |u|+1Bl<K
o] +1B| <K

For the term K, the idea is similar to I. If |a1|+|B1| =0, we use the first term in
the minimum of K and apply (2.6) to give at most two and at least one spatial
derivative to f. Noticing

Plaf+11—-4 S Plag-+a/ |+ B+ —4P o+ ol -2 VIS[[ <2, | <2,

we have

KSYapsipe 3 w05 ks

w) (a,B)dg’ 8

L3, L3123
1<]a’|<2
|B']<2
S 2 g9 iz, L ¥aip-awn(@ B8] 2p2
ja|>1 " al+|BI<K
|| +|B|<K

Similarly, if |a1|+|B1]| =1, we apply (2.6) to give at least one x derivative to f, at
most one x derivative to ¢ and deduce the same bound. If |a1|+|B1]|=2, we apply
(2.6) to give at most two and at least one spatial derivative to g. Noticing

Plaf+161—4 S Plag |+ 11+ —4Plr+at |+ ol -4 TIS[[ <2, | <2,



D.-Q. Deng / Commun. Math. Anal. Appl., 2 (2023), pp. 421-468 441

we have
KSuippa 1 o0 pflis, X [loiwB)ag ™™gl e
1B'|<2 1<]a’|<2
S 2 wep-a98flliz, X 1¥aip-awi(@B)gl 2p2
||+ [B|<K |a|>1
|a|+|B|<K

If |a1|+|B1]| =3, we will use the second term in the minimum of K. Applying (2.6)
to give at least one x derivative to f and at most one x derivative to g, noticing

Pla|+181-4 = V)ay+af |+ 81| —4¥ jaa+a | + | Bo+B/ | —4/
w; (e, B) <w;(aa+ay,Ba+p)

for any |a}|=1,[a’| <1,|p'| <2, we have

Z le a/sz+/3/g

KSWairip-a 2o [l

|“1‘_ ‘“2
\/3\<2
< )Y Y. H¢|zx\+|ﬁ|_4wl(%ﬁ)aﬁgHL%'
|a|>1 " laf+|Bl<K

If 4<|ay|+|B1]| <K, then applying (2.6) to give two x derivatives to g and noticing

Pla|+18]-4 = Ylay |+ 81|~ 4V x+ o' | +| B+ —47
wy(a,B) <w;(az+a,B2+p)

forany 1<|a’| <2,|8'| <2, we have

KSWpajrip-allw "0 fllz, ) sz(“/ﬁ)ang’é/

1<]a/|<2
|B'1<2

< ) Yo [ ¥gs g —atr (e, B)OG

|al+|Bl<K T fa=1
]+l <K

Substituting all the above estimates into (2.7), we have the desired bound. A sim-
ilar discussion on the indices |a1|+|B1| will be used frequently later and will not
be mentioned for brevity. O
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A direct consequence of Lemma 2.7 is the following estimate, see also [17,
Lemma 3.1].

Lemma 2.8. Let K>4,|a|+|B| <K,I>0. Then

(0T (F, ), a5 i) | SER D), (2.10)

1 1
| (@] (a0, B)OFT < (£, f), ¥aja2/p -89 S) 2| SEPri(B)+Ex Dy (). (2.11)

Also, for any smooth function {(v) satisfying |{(v)| ~ e~ Mol with some A >0, we have

(BT (f, ), ey -sC(0)) . SEEDE (). (2.12)

Proof. For (2.11), notice that

(w7 (a,B)FT= (£, ), Pafa 421895 =) 12
= (w0} (,B)OFT < (f,f), ¥2jal+2/p -s9f (1 —P+) ) 12,
+ (wzz(“zﬁ)aﬁri (ff) 2| +2/p|-0E P+ f) 2,

The first term on the right-hand side, by directly using Lemma 2.7 and the def-
inition of £x; and Dk, is bounded above by 5119/122)1(,1(15), since there is zero x
derivative on (I—P)f in the definition of Dk ;. But there is no such term for Pf
in Dk ;. Hence, the second right-hand side term can only be bounded above by
5K’ZD11<{12(15). This proves (2.11).

Similarly, noticing P+T'(f,f) =0, one can obtain (2.10). The proof of (2.12) is
directly from Lemma 2.7. This conclude Lemma 2.8. O

For later use, we need the following estimate on v-Vy¢f+ and Vy¢-Vfi.
We always assume that ||¢|| o < C, which follows from the a priori assumption
on energy &k given in (1.12) and hence, |e*?|~ 1. The proof here is different
from [17, Lemmas 3.4, 3.6], since we will cover the full range 0 <s <1.

Lemma 2.9. Let 1 <|a| <K, |a|+|B| <K and 1 >0. Then, for a1 <w,p1 <p with |a1|>1,
it holds that

1
| (00" 1" 1 fo oo —se™ Pwi (2,0)0% f ) 12, | S8/ Dx.is

1
| (9g, vialxl_'—ei()baz_%llfi/LP2\D¢|+2|,B| _gewi(a, ) 5f+) 12, 1< €Dk 1-
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Proof. For |a1|>1 with a1 <a, by using —3 <y < —2s and 0<s<1, we have from
(1.10) that |v;|w;(|«|,0) < (v)Tw;(|a|—1,0). Thus,
| (00" 10"~ fi oo —ge™ P07 (,0)9" ) L%x‘
1 _
< - Vo) o~ 1,009 £,
e
%[0 -a(0) 20r (|2, 0)3" f | 5 (2.13)

For the first term on the right hand of (2.13), we discuss its value as the following.
If x4y <a, then 1 <|a1| <K—1 and there is at least one derivative on f1 with respect
to x. Then by the same discussion on the value of |a;| as (2.8)-(2.9), one has

}Lp|tx\—4a“1 vx¢<v>

where we used ||(v)7/%2+5(.) HL%,x < ||L%L%. If a1 =, then we decompose fi+ =

y B 1 1
by (|a] =1,0)9 M fi | SERDE

P.f+(I+—P+)f and give one derivative to P f with respect to x by using (2.6).
That is,

Hlp|a‘_4a“vx¢<v> %wl(zx—oq,O)PifHL%,x

SHow-0"Veple Y lu)-a0Paf

1<]a’|<2

1 1
2 2
Sf gK,l DK,l'

L3

For the part (I+ —P+)f, we will use (2.6) to give two derivatives to (I+ —P+)f
when |a| > 3, one derivative to (I.—P4)f when |a| =2 and give nothing to
(I —P4)f when |a| =1. That is,

10 40"Vxp (0) Ty (—ax1,0) (Lt ~Po)fl,2
S Y [¥e-a0"Vag| 2

3<|al<K
x Y, HLP|M|—4<U>%W1(!“!—1r0)a“l(1i—1’i)fHL5x
1<]a’|<2 '
+ 1 2 [Warw-ad Vet
la|=2]a’|<1
< Y Y —4<U>%wz(!“!—1/0)3“3(&—12)/‘”@,(
laf |=1 '

+| Z—l %2 Hlp|a+a’|—4a“+“/vX¢HL§ H <v>%

1
2 2
S EK,ZDK,Z'

w; (Ii — Pi )f” L%,x
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where we used —4 in ¢ through our argument. Thus, when a1 =«,

A
2 W

1 1
[914|-40"1 Vxp(v) Zw; (|a] = 1,0)0"~ 'leiHLz E&1Dg - (2.14)

Plugging the above estimate into (2.13), we have

1
| (00" 10" 1 fi oo g™ Pwf (2,0)0 fi ) 12, | S Dxi-
Similarly, for |8| <K and B; <, we have [dg, v;| < (v) and hence,

|(9p,0i0" 1O fo Pajaf 215 P07 (0, B)Os f) 2 |
S Wpags 549" V(o) 20y (|| =1, |B—B1]) oy 'ElfiHLz
x
[0+ 1 -al0) 20r (@, B)IE f | 15 - (2.15)

For the first term on the right-hand side of (2.15), we use the same argument as
in (2.13)-(2.14) to find its upper bound & 1/ ZDl/ 2 Hence, (2.15) is bounded above

by £Y/*Dx . O
Lemma 2.10. Let |a|+|B| <K, >0. Then, for oy <w,pq1 < B, it holds that

1
| (017105, fa, pajaj—se™ P07 (a,0)9" f) L3 | <& Dk, (2.16)

1
| (9" F€ipdig o foe o] 421 —se P (a 0,B)05fs) 1z | <ER D (2.17)
Proof. We firstly prove (2.16). When a1 =0, by integration by parts and y+2s> -2,
we have
| (0105 fx e ™ 0 (2,000 f) 5 |
S}(ae@a“fi,%w 8€i¢(aeiw12(“ 0))a(xfﬁ:)L2 }

’)/ 2s

5H1P|a\—4vx¢< > 7wy (|a],0)0" fe |12 [[W1a)—atr (1], 009" |
Y [ ag-ato) 7 wr(lal 003 £l 2

la/|<2 1<|a|<K

< 3 g, 000 fe ] 2

‘pc|§K

1
S./ géIZDK,l/
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where we use (2.6) to assure that there is always at least one derivative on the
first f+. When |a1|>1, we have |a|>1. Then we decompose f+ =P+ f+ (I —P+)f
to obtain
(017 €1pde, " f e g™ P07 (2,0)0" f) 2, =1+
with
I= (a“1+ei¢a?i_ﬂlPifrll)zm—seiqbwzz(“ro)a“fi) 12
= (341908 (L — Po) f, s 00 (,0)0°f) 1

Now we estimate I and | as the following. For I, noticing there is exponential
decay in v, we have

1| S |90 —a0"1 10" 1P f
S 2 %29V

\961\<K

<)
1<]a|<K
1
rsg[%,]DK,l/

where we used same discussion on the value of |a;| as (2.8)-(2.9) and give at least
one derivative to P f. For |, we first provide some interpolation formulas. For
any k€ R, by Young’s inequality, we have () < (17)% (v)¥ 4 (37)1+5 (v) ~*ks/(1=5) and
hence, (1) is a symbol in S((17)° (v)*+ (57)1+5 (v) ~ks/(1=5)) wwhere  is the Fourier
variable of v. Then by [12, Lemma 2.3, Corollary 2. 5] we have

1f g S 1 @) s +]1f (o)
By our choice of w;(«,B) in (1.10), we have

w;(0,0) < (o) w;(Ja| ~1,0)w(la| ~1,1),
w;(#,0) = (0) Ty || ~1,0).

7425
Pla—a{0) 7 wi(|a],0)9" f || 5

2
Lv,x

(la],0)0% f [ 212

(2.18)

Choosing
(o) =wy(Ja] ~1,0)~wy (] ~1,1) =0~
in (2.18), we obtain
[(0)~ 2w (a,0)9% 1 (1. — P2.) )1z,
< 0) For (]~ 1.0 (L~ P f] 13

+ /(o) 2w (|| =1,1)9* % (T =P ) f || 21s </ Dy
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when |a1|=1. When |a1| =2, we have

() Zwl «,0)0" " (Lt — Py fHL6L2

<o) 3wy (Ja] = 1,0)0% 1V (L — P.) fllz <3/ D
When 3 < |a1| <K, we have

[ (v) Zwl 0,0)0" " (T4 — P fHL“L2
<o) 2wy (|| = 1,0)8% "1V (L — P )l iz <4/ P

Combining the above estimates, we have

( 2 90Vl ol (o) Feon(,009% 1 (L —Pu) f]]

|ay =1
+|2 [0V apl| 5[ (0) ™ 2y (2,003~ (1 =P ) f] o2
wq|=2
Lk ”aMVX‘i’HL%H<v>‘%w<m0>a“‘“l<li—Pimum)
3<]a1|<K

><H¢2|(X‘—8< >2'(/Ul(0(0 atxf:tHLz NEKZDKZ

Collecting all the above estimates for I and ], we obtain (2.16). The proof of (2.17)

is the same as (2.16), and the details are omitted for brevity. ]
Next, we give some illustration for the macroscopic estimate, see also [14].
Recall the projection P in (1.7). By multiplying the Eq. (1.4) with u!/ 2,ij1/ 2,
j=1,2,3,and (|v|?—3)/6u'/? and then integrating them over R3, we have
( 01a++V -b+Vy- (Uﬂ%,(li_Pi)f)L% =0,
3t (bj+ (o2, (L =P ) f)12) +0;(ax +2¢) F E
1 1
+ (U]"I/lf,l) ’ vx(li - Pi)f) L2 = (Lif—i_gi/v]'.u7 )L%’ (219)

ot <c+%((|v|2_3)y%,(1i—Pi)f)L%> +%Vx.b

1 1
g (0P =3)u2,0-V (1 ~Pu)f) 5 = o (L f g, ([0 ~3)u2) 1,
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where for brevity, we denote [ = (I,I_) with I+ f = f1 and

82 = £V VofuF o Vi ofe + T2 (£.f).

Notice that (Pif,vyl/z)L% and (P+f,(|v|? —3);41/2)L% is not 0 in general and sim-
ilar for I'+. Also, we have used

1 1
<ivx¢'vvf:t:|:§vx¢'vf:tzﬂ%) , =0,
L3
which is obtained by integration by parts on V. In order to obtain the high-order
moments, as in [19], we define for 1 <j,k <3 that

Oj(fe)= (oo~ fr) o, Aj(fa)= 1% ((lo2 =502, fx) 1.

Then multiplying Eq. (1.4) with the high-order moments (v;o,—1)u!/? and
(|o|>—5)v;u/2/10 and integrating over R, we have
( at(@]‘]‘((li—l’i)f) +2c)+28jbj=®jj(gi +hy),
at@jk ((Ii — Pi)f) +a]'bk+akb]'+vx' (UII/I%,(Ii —Pi)f) 12 (2 20)

=Ojk(g+ths)+ (V%,gi)L%, j#k,
L atAj((Ii—Pi)f) —|-a]'C:A]'(gi—|—hi),

where hy =—0v-V(I+—P4)f+Ly f. By taking the mean value of every two equa-
tions with sign & in (2.19), we have

( ar+a_
at( o )+vx-b=0,
ar+a_ 1
atbj+aj(( o )+zc)+§Zak®jk((1—l’)f-[1,1])
k=1

1
=§(g++g—,0j}4

Nl—

)L%’
1 52 1 2 1
dc+ Vbt Y 9iA;((I-P)f-[1,1]) = ﬁ (8++8— (lv]*=3)uz) ;2
\ j=1
for 1<;j<3. Similarly, taking the mean value with =+ of the equation in (2.20), we

have

1 1
0t <§®]’k((lﬁ: —Py)f- [1,1]) +2C5]'k) +ajbk+akbj= §®jk(g+ +9-+hy+h_),

1 1
500 (Le =P f-[L1]) +9je =S Aj(g+ +8—+hi+h-)
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for 1 <j,k<3. 5jk is the Kronecker delta. Moreover, for obtaining the dissipation
of the electric field E, we take the difference with sign =+ in the first two equations
in (2.19), we have

or(ay—a_)+Vy-G=0, (2.21a)
0:G+Vy(ay—a_)—2E+V,-O((I-P)f-[1,—-1])
= ((g+Lf)-[1,-1],0%) 5, (2.21b)

where )
G=(vu2,(I-P)f- [1’_1])L%‘
Recall that E= —V¢. Then by Eq. (1.5), we have

Vy-E=a4—a_. (2.22)

3 Regularity

In this section, we will prove the smoothing effect of solutions to the Vlasov-
Poisson-Boltzmann system with lower-order initial data. Let K>4 and [ > 0. The
Vlasov-Poisson-Boltzmann system reads

1
Ot f +0i0% fr £ 5090, f4 F 0P, f +%pvipz — Lo f =T+ (f,f),
—Ax¢=/3(f+—f—)y%dv, ¢ — 0 as |x| = oo, (3.1)
R
f+li=0=fo,+-

The index appearing in both superscript and subscript means the summation.
Our goal is to obtain the a priori estimate from these equations. To extract the
smoothing estimate, we let N = N(a,) >0 be a large number chosen later. As-
sume T € (0,1],t€[0,T] and

1, if k<0
=V, =7 = 3.2
v P {ka, if k>0 (3:2)

is this section. Then |0:9x| S r_1,/n. Let f be the smooth solution to (1.4)-(1.6)
over 0 <t <T and assume the a priori assumption

sup () <do, (3.3)
0<t<T
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where Jp € (0,1) is a suitably small constant. Under this assumption, we can
derive a simple fact that

19l Sllgllpz <o, [le 1.

Also, by Eq. (2.21a) and Gagliardo-Nirenberg interpolation inequality (cf. [27,
Theorem 12.83]), we have

dp=—A;"0(ay —a_)=A;"Vy-G, (3.4)

1 1
9:ll S 11V 331115, | V2019 |, S VGl
1
SIA=P)fll 2 S (k) 0) (35)

Theorem 3.1. Assume —3 <y < —2s5,0<s<1,K>4,1>0. Let f be the solution to
(1.4)-(1.6) satisfying that

e1=E41(0), sup [[{0) K/ f(t)]

0<t<T

2 o
L3

for some large constant Cy ;> 0 depending on K, 1. Then there exists to € (0,1) such that

2
sup Ex(t) <Ck et
0<t<to

The reason of choosing 9|, |4 in (1.12) is that whenever K > 4, the initial
value & (0) = &4(0), since 44 |g|—s|t=0 =0 whenever |a[+[B]>5. In order to
prove Theorem 3.1, we give the following a priori estimates.

Lemma 3.1. For any 1 >0, there is £k ; satisfying (1.12) such that for 0<t<T
9k, (t) +ADk () S0l L Ex i (1) +Ek

8 g g @, GO
i +1BI<K |

where Dy ; is defined by (1.13).

Proof. For any K >4 being the total derivative of v,x, we let |a|+|8| <K. On one
hand, we apply 0* to Eq. (3.1) to get

ata“fi+vjaei+afii% Z aei—}—m(l)viaa—t)qfi

a1 <ua

g Z aei”lgba?f“lfiiae’*“qbvm% —0*Ly f=0"T+(f,f). (3.7)

o <w
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On the other hand, we apply ag to Eq. (3.1). Then,

ata%fi—i_ Z 8/31 ae i fij: Z Z aez+“1¢)aﬁ1 ag D'éllfi
B1<B “1<’X[51<!5

F Y OO fu k0 g0 (o) — 0L f=08TL(f,f).  (3.8)

a1 <ua

Step 1. Estimate without weight. For the estimate without weight, we take
the case |#| <K and f=0. This case is for obtaining the term ||E)"‘qu>||:i2 on the

left-hand side of the energy inequality. Taking inner product of Eq. (3?7) with
a|a)—se™ 79" f1 over R xR}, we have

(ata“fj:,¢2|a\_8€i¢aafﬁ:) 12, + (U'aei+“fﬁ:/¢2\uc|—Sei(l)a[xfi) L2,

<2 Z aez+tx1¢v 9r— fi/¢2|zx\ g€ TPgu fi)

g <w Lv,x

a1 <ua Lv,x

-+ (aei“‘“gbviﬂl/z,lﬁzw_seiqba“fi) 12, " (a“Lifr‘PZ\wl—Seiqbaafi)L%x
= (0T (f,f), Pofa)-se 70" fx) 13 -

Now we take the summation on & and real part and denote these resulting terms
by I to I7. In the following, we estimate them term by term. For the term I,

1 1
h= Qat;}ﬁwa|—4a“fiHi%ﬁRe§E(at4’€i"’a“frll)z|a—8a“fi)L%x

—Re; (0 (14 —4)0" fes 1o —ae™ 70" fx) L3, (3.9)
The second term on the right-hand side of (3.9) is estimated as
% (Oe¢Wafa)—se 70" f,0" 1) 12 | SI10spLo|thja)—a0" f Hig,x SlowpllL=Exci(t).
The third right-hand side term of (3.9) is estimated as

| (01 (P1a )" Fies o) 20" fi) 1o [0 a1
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For the second term I,, we will combine it with I3 and aq =0. It turns out that
the sum is zero. This is what e*% designed for, cf. [24]. Taking integration by parts
on x, one has

| 1.,
(Uiael+“fifll)2|a—8€i¢a“fi)L%xi(Qaelq’via“fbll)zm—sei"’a“fi) =0. (3.10)

L3

For the left terms in I3, the weight will be used. In this case, |#1| >1 and by
Lemma 2.9, it is bounded above by 511</12DKJ. Using Lemma 2.10, the term 14 is

also bounded above by £ Il<,/12DK,1.

For the term I5, we will decompose e*? into (e*?—1) and 1. Recall Egs. (2.22)
and (2.21). For the part of 1, we have

Zj:Re (8ei+“¢0iﬂ%z¢2\a|—8a“fi)L%x
a ,
=—Re(9%¢,¥;/4-59" V- G) 12
=Re(a“¢,¢2‘“|_8a“at(a+ _a—))@
1 2
= 50tl19101-49" Va1
For the part of (e*¥ —1), notice that
e =1 SNl SNVl -
Then
)ZiRe (02 o2, (¥ — D)oo 89" f) 2
a ,

rSJHvx(PHH}C Z HB”‘chpHL%x Z Ha“(I_P)fHL%,x

|a[<K " la]<K

1
ggé,z(t)DK,l(t)-
For the term I, since L+ commutes with 0% and ¢*?, by Lemma 2.4, we have
lo=—3 ("L f poja—s€ 79 fx) ;3 > A} paj—a0" (L =P)fll7z 2
+ ' +

For the term I7, by Lemma 2.8, we have

17| = } ; (0T (f/f)/¢2\tx|—8€i¢aafi) L3 S 51%,1 (£)Dk,1 (1)
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Therefore, combining all the estimates above and taking the summation on
la| <K, we conclude that,

L L (s v.olf)
+)‘Z Z HIP\M 40" (I — Py fHL2L2
+ |a|<K
§||at¢||L°°5K,l(t)+5é (t)Dg i (t)+ Z H%M 45l wi(|a],0) aleHLz . (3.11)

la| <K

Step 2. Estimate with weight on the mixed derivatives. Let K>4, |a|+|B|<K.
Taking inner product of Eq. (3.8) with 912 ﬁ|_gei4’w12(zx,,3)8% f+ over R3xIR3,
one has

(ata%f/€i¢¢2|a‘+2‘ﬁ‘_8'(/012(0(,‘3)8%]() L%x

(Z dp,0i05 B ﬁfe Y1) 42157 (&, ,B)aﬁf)

2
Lo

H_

993, 0 f,€ e 121|507 (4, B)I5 S )

L3

:F

<2D(1<D( ,Bl<ﬁ

Y. ae’ﬂl‘i’a“ﬁ fret P2)4|+2/p|—8W] P (a, .B)a/sf)

a1 <ua Lv,x

+ (9% +zx¢aﬁ (vlpl ) eiqbll)zm—i—z\/%\—8w22(“’16)a%f)LZ—,,X

KLaf,e” 1P2|1x\+2\,3\—8w12([x"6)a%f)L%,x
= (9T (f.£), = Yoo 121/ st (. B)Of ) 12,

Now we denote these terms with summation ), by J; to J; and estimate them
term by term. The estimate of J; to J4 are similar to I; to I4. For J;, we have

(
—(9

]12atzHe%lﬁwﬂﬁ\—ﬂ’l("‘/,B)a%fiHL%/X—CHat‘PHL“gK,l(t)
ZH‘P|a\+|/z| s p(wp a%fiui%,x'

Similar to (3.10), ], and J3 with &y =0 are canceled by using integration by parts.
Using Lemmas 2.9 and 2.10, the left case 1 #0 in 3 together with |4 are bounded
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above by 511<’/12 (t)Dk ;(t). For the term J5, we only need an upper bound

eita 1 «
|J5| = ’;i(a - ‘Paﬁ(vi,uz)/¢2\p¢|+2|/§|—8ei¢wlz(‘xl.3)aﬁfi)L%,x

Sﬂgﬂ¢|a\+|ﬁ|_4wz(“/ﬁ)a§fi

faz +Cy [V 3 V>0

Notice that ||, “‘_48"‘Vx¢||iz is bounded above by £ ;. For the term Jg, since L

commutes with e*?, by Lemma 2.4, we have

]6 = _;(a%Lif/¢2|Dé+2ﬁ—Sei(Pwlz(a"B)a%fi)L%,x
+¢ 2
ZA;H%MHM—‘Le 7 wl(zx,ﬁ)agfiHLﬁL%—Cq;HB”‘fiH"i%L%

*¢
_772 Z H¢|a\+|ﬁ|_4ezwz(oc,ﬁl)aglfiHi%Lzb, V17>0.
+ |pil<Ipl

Here we use the fact that ||w;(«,8)(") ||L2(Bc,7) < ||L2D. The term J7, by Lemma 2.8,
is bounded above by

1 1 1
E& 1 Dri+Ek Dy S (E¢ 1 +Ex1) Dii+Ek -

Combining all the above estimate, taking summation on |x|+|B| <K and letting
1 sufficiently small, we have

1 20
9 2 [le iag g -a9hf
|+l <K, +

+A ) H‘P|a\+|/z|—4wl(“rﬁ)a%fiHizc%
|o|+|B|<K,+

Slopliei®+ Y |9 p—at wi(aB)IEf
|af+[B]<K

1
+ (88 1 +Ek1) Dri+Ek i (3.12)

2
L3

2
L3

Together with (3.3), taking combination (3.11)+(3.12), we have
9tEk1(£) +AD 1 (£) S0l e ki (1) +Ek
o [ pa g @ B)IES

N
|a|+|B|<K

2
o (3.13)
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where we let

+
)= L e F Gupeipadfelly + L [9a-Vatllly 619
+ |a|+|B|<K " al<K

It is straightforward to show that £ satisfies (1.12). Notice that there is a term
[h)q|—40"E(t) ||:£2 in £k ; on the right-hand side of (3.13), and hence, we can put

[h)q|—40"E(t) ||i2, which is in Dk ;, on the left-hand side. O
Therefore, now it suffices to control the last term in (3.6).

Lemma 3.2. Let K >4 and f to be the solution to (1.4)-(1.6) and assume the same
assumption as in Lemma 3.1. It holds that for any 0<6 <1 and multi-indices |a|+|B| <K,
there exists N =N (a,B) >1 such that

22

19101810, 01 (@ BB 12,
e ﬂ w o ﬂ

<8204 (— g appl-s01 (B e T (070, B) (3 fe ) "))

L3y
1
+0° (DK,Z + (&8 +Ek1) Dii+ 119l i (t) +5K,l)

+Col| (@) £33 (3.15)

where 0¥ =0"(v,D,) and 6 € S(1) is defined by (3.18).
Proof. The proof will be split into two steps.

Step 1. To deal with the last term of (3.6), we choose constants

61="01(a,B) € (0,min{2s/(1+2s),1/2}],
br=1-6 € [max{1/(1+2s),1/2},1), (3.16)
lo=’}’(52<0

to be determined later. Let x( to be a smooth cutoff function such that x((z) equal
to 1 when |z| <1/2 and equal to 0 when |z| > 1. Define

b(v,y) = (o) |y[*, (3.17)
oy () {0)
x( 177)—)(0( Y[ )

0(v,1) = (o) |y| 2y -nx(v,n). (3.18)
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If |a| >4, we choose N=N(«)>1 such that

INx(la|-4)—1  |af
> =5 (3.19)

In this case, we have

Plaj 8/ 4___tN(|1X\+|,B| 4-5) — ¢N(la=4=5) o $NIBl Plaf 4_LLP|/5|- (3.20)

Then, by the definition (3.17) of b and Young’s inequality,

_ PNCE S T/ N
Piuf 14 S VIp ‘5<(b2) Pl - 4—)

. lmmamyeny 2N(e=4)
+C0,(5<(b_2) o[ —4 )

Iy \a\
5211/ 4+C05<< ) |yl |)‘P|ﬁ| 4 (3.21)

where we used the assumption f <ty <1 as in Lemma 3.1 to obtain ¢ g <
Y1|-4-1/2N-
If |x| =0, we can simply use

,_.

Plat+1p1-4- = VIpl-4-o°
If 0<|a| <4 and |B| >4, we have

Vapriprag =0 T = e
Then we choose N=N(a)>1 by
_2N|a|-1 _ af
2 5’
and use Young’s inequality to obtain

(3.22)

la]

-1, la]=1/(2N) Ta[-1/(2N)
Pl 11—y SPlpl-4 ((bZ) T }V)

_ 1 la=1/en) 2N
+Cos((FH )

l\rx
-+ Coa (@5 1)y

where we also used 5/ _4 <9541y from £ <o <1.

S

<6b
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If0<|a|<4,|B| <4 and |a|+|B| >4, we choose N = N(a,B) such that

_2N(la[+|p[=4) -1 [a]

= 2

> o (3.23)

Then by the definition (3.17) of b and Young’s inequality,

o o (1 L ey
¢“|+ﬁ_4_ﬁr\/5<(b2) [a[+][B]— ¢“|+ﬁ—4—%)
_ 1 laisi—a—1/en) N 2N(lal+[Bl—4)
+Cos <(b_2) la]+1p[—4 )

-1 _lolel

55b2%|+/&—4+co,6(<v> |yl '“), (3.24)

where C 5 is a large constant depending on § >0, |«| and |B].

If0<|a| <4,|B| <4 and |a|+|B| <4, we simply choose N >1, use t <ty <1 to
obtain

Plaf+ipl-a—y <1

and choose 17 €[0,1) such that —1/(2(1—#))=—|«a| /1. Then

~n 1 S N
Plaf g4y =13 (6702) 7+ (077672)

Therefore, for any |a| >0, taking the Fourier transform ()" with respect to x, we
have

19101+151-2- g (@RS | 5,
= ([0 -, 2 (@B (35F) " @) 12,
< 0[tp1ap1—ab 201 (2, B) %f)A(UII/)HLg,y

—lpla]

+Co,s ¢\ﬁ\_4_ﬁwl(“rﬁ)<v>73/&f (3.25)

2
Lv,x

To deal with the second right-hand side term of (3.25), we use a similar interpo-
lation on #/2.
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In fact, if |B| >4, we have
1Bl—4-1/(2N) 1Bl

: 1\ |Bl-4-1/(2N)
P @ 0 S0 (mat)
a2 O S (a4

L lplmam1/en) il 2N(1B1=4)
+<(C0,(55_1ﬁ_7) =4 (v) 51)

E

<_¢|'B|_4ﬁ%+C5a_%(2N(|/3|—4)—1)<U>CK, (3.26)

where Cy 5 comes from (3.21) and Ck depends only on K. Here, K is the total order
of derivatives. Recalling the definition (1.8) of 4, we have

G2 (2N(|Bl=4)-1) < (<U>—% <,7>—s)2N(\/3\—4)—1.

When || >4, N is given by (3.19), i.e. 2N = (2|a| /01 +1)/(|a| —4), and hence,

g 1@N(BI=9-1) < ((5) =3 () %) =)

Y

Then we choose 01 =1 («,8) >0 sufficiently small such that
Bl —4 (2|
_ bl 1)< —
S<|oc|—4 5 +1)-1)<—|B|

g~ 2@N(BI=9=1) < () Cic (1)~ 1Bl (3.27)
When 0 < |a| <4, N is given by (3.22), i.e. 2N = (2|a|/d1+1)/|a|, and hence,

and hence,

a2 N1 < (1)~ 3 () %) b (B) -1

Y

Then we choose 01 =1 («,8) >0 sufficiently small such that

(4 E) )<

and hence, we still have (3.27) in this case. When |a| =0,N can be arbitrarily
large. Then we choose N sufficiently large that (3.27) is valid. Combining the
above three cases, (3.26) becomes

_IO"X‘ 5 1 C o
1/’\/3\_4_%@» i §®1P\/3\—4ﬂ2+c(5<0> “(n) Al




458 D.-Q. Deng / Commun. Math. Anal. Appl., 2 (2023), pp. 421-468

If || <4, we choose 17 € (0,1) such that —/(2(1—7))=—|B|/(2s). Then

gl el _ 5 oy, e\ T
Hpa g @ % =) 0 Sabrcy(a b )

Thus, whenever || <4 or |B| >4, we have

lole] 6
‘P|5|_4_ﬁ<v> o1 68<@ﬁ7+cé< > (;7>—|ﬁ|)

uniformly in 4, as a symbol in (v,7). Then using Lemma 2.2 with respect to v, we
have

—lgla]

Hlp\ﬁ\—ﬁl—iwl(“/ﬁ)(w

1

NC 5”%;&\ 4(@2)%w;(0,B1) aﬁfHLz +C5||< 0) K fl gz,

0

S G Ph Gl g,

Plugging this into (3.25), we have

14+ 1 Wi (2, B) fHL2

2
<62 H‘P|a\+|/z|—4bzwz(“/ﬁ)( 5" v,y)HL%,y
+0°Dy 1+ Cs|| <U>CK'lfH%%x- (3.28)

Now it suffices to eliminate the first right-hand side term of (3.28).

Step 2. Recalling (3.18), we regard 6 as a symbol in (v,77) with parameter y.
Then,

10(v,1)| = (o) ly| 2|y 5| x (v,1) S 1.

Direct calculation gives that 8%859 <1 and hence, 6 € S(1) as a symbol on (v,7).
On the other hand, regarding the Poisson bracket on (v,77) we have

{0,0-y} = ()0ly|" 2+ (o) ly[* %2 (x(v,7) 1)
+(0)oly| 712y nayxy
=:b+Rq+Ry.
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Now we claim that Ry, Ry € S(4). Indeed, noticing the support of x—1, by (3.16)

we have s,

52 s
Ri| < (@) (n) ™ ()05 < (0)7 () <a.
For R, since 1—26, <0, we have

Iy 1-6,
[Ral < (@)20ly 12251 o<y pe0 < (@) 2 () % <.

Higher derivative estimate can be calculated by Leibniz’s formula and hence,
Rq,Ry€S5(d). Thus, by Lemma 2.3 and (2.3), we have

1628 )lI2, = (b(0¥)3.8) 2

=Re({6,v- y}w(v Dv)g,A) —i—Re Ri+Ry)% (v Dv)§§)L2

((
<27Re(i0-y,6(0,D0)g) ;5 +Cll(@ )],
<27Re(v-V,g,(678)") ;2 +CH( 7|2, (3.29)

for any g in a suitable smooth space. Here and after, we write 9“’ =0"(v,Dy). Note
that

Re27r(iv-y2,6* (v,D0)8) 2
=27 (iv-y3,0" (v,D0)8) 5 +27 (0" (0, D0)3,10-YZ) 12
200, De) 0 418 8) 1,
= ({00 9}*(©,D)82) 2,

and the Weyl quantization (-)% is acting on (v,77) with parameter y.

Now we let g = |4 |p|—4W] (oc,/%)agfiei‘l’/z in (3.29), then

" )
152910 g1 -awor (@ B) (3 ) " (0.9)e 2 || 5
9 9
SRQ(U'Vx¢|a\+|ﬁ|—4wz(“/ﬁ)a%f€ 2 (0 P|a |+ |g —ator (o, B) (O fre 2 )A)V) L%x+DK,l

=:Ko+Dx. (3.30)
By Eq. (1.4), we have

v-V, (9% iez —UE)’HEL iezi 0831 eza o\
B ¢

:aﬁ(viaﬂffffiﬁ‘”)— Y 95005 fre vael e 7 .
0#p1<p
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1 . _ +¢
= —0;0% fie 2 :FZ Z Z ael+“1¢aﬁlvi82_’2§11fie 2

ap<ap1<p
+ Z Cglaei-l—mgbaz::ilfie% :Faei—&-lxcpaﬁ(vl.‘u%)e% +8%Life%
o <o
FOTL(f et — Y 05005 freT £ vlaﬂ e 7S
0#£B1<B

Thus,

+ + Vv
Ko=1y)u|12/p|-8 | Re —wl(“/ﬁ)ata%fie#, 0w, (a,B) (9% fre ? '
B
Lzzi,x

1 AN
FRe wl(oc,,B)z Y 0%t ¢ag v; a 1fi€ cy <QZ wy(a,B) (a%fie 2 ) )
i
ANV
£Re( wi(a,p) ) Co'o ¢y, ”‘1fie <9 wy(a,pB) (aﬁfie 2 ) ) )
mse L3

+ s\ A\ VY
IFRe wl(a,ﬁ)aei”cpaﬁ (ZJl-‘u%)eT(p, <9ww1(a,/§) (a%fieT(P) ) )
L3,

+Re wl(a,ﬁ)a“ﬁLife%, (waz(w,ﬁ) <B%fie%> A) v)
L3

+Re | w;(a,B)oT+(f, fle? (9 wi(a,p) (aﬁfie;p)A) v)
L3

_Re wl(“'ﬁ)o#;'gﬁaﬁlvl ﬁfie2,<9 “wy(a,B) (a%fi€%>A) )

L3
Cipe T “w ares )Y .
j:Re(wl(zx,ﬁ) v;0“Ipe 2 dgfy, (6“w; (a ,B)(aﬁfi ) )L%,x)

Denote these terms by K; to Kg. Noticing that there is coefficient ¢ in (3.28), we
only need to obtain an upper bound for these terms. For Kj, noticing that 0% is
self-adjoint, we have

K S%&( Wa|+218)—sW1 (@, ,B)a/&fﬂ:e ! (69w, (, ,B)(aﬁfie ?) )v>

L3
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HC|(~tupsaps @i BA re T (0w (@ p) (9 f2eF) "))

+C) (at¢ll)zla\+2\l%\—8wl(“/ﬁ)a%fiegr (6“w(a,B) (a%fie%)A)v)

L3

5 .
Lo

We denote the second and third terms on the right-hand side by K;; and Kj».
Since 6 € 5(1), 6% is a bounded operator on Lzz,,y. The boundedness of 6 will be

frequently used in the following without further mention. Using the trick from
(3.21)-(3.28) to the term for the first f+ in K; 1, we have

~1 Ap2
K1 §52H‘P|a\+|ﬁ|—4bzwl(0¢/ﬁ)( %f) HL%JJMQDK,ZJFC&H<U>CK"fH%%,x+5K,1-

The term Kj > is similar to the case Iy, i.e.

Kip S |0l e

2
Plaf+|p| -4 (0 B)IRf || 12 SN10ellLeExa(8)-

For the term K; with &y =1 =0, a nice observation is that it is the same as Kg ex-
cept for the sign and hence, they are eliminated. For K, with a1+ 1 #0, the order
of derivatives for the first f- is less or equal to K—1 and hence, the weight can be
controlled as w;(&,8)dp,v; S (v) 7w (¢ —aq,—B1). Then similar to Lemma 2.9, by

noticing 6% is bounded on 2

vy, We have

1
Ky +Ks| SE2, Di

For K3, when a1 =0, noticing 0% is self-adjoint, we use integration by parts over v
to obtain

K| = | (Watefsaipy-ston(a, B 908 fre T, (67w, ) (30 7)) )

2
Lv,x

(0w (@, B) (3 1)) ")

| (Varsa1p1 s, B 905 e ([0, 60° or (e B) (920 7) "))
€S(1)

+’ (¢2\1x|+2|[5|—8wl(“uB)aEiqba%fie%r (60, (wi(,B)) ( %f%%)/\)v)

. 2
SN Pl iz |10+ 14701 (@, B)Op fc | 2
So0€k ()

£¢
2

N ‘ (¢2|1x\+2\ﬁ\—8aei (wi(a,B)) 0 fre

2
Lv,x

L3

2
Lv,x
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with the help of (2.6) and 6 € S(1). When a7 #0, then a #0, the total number of
derivatives on the first f- is less or equal to K and there is at least one derivative
on the second f4 with respect to x. Thus,

1
|K3| gg[%,IDK,I'

For K4, there is exponential decay in v and hence, |[K4| SEk ;. For Ks, recalling that
we only need an upper bound and using Lemma 2.7 with 9*u =0 for || >1, we
have |K5| S & 1+ Dk ;. For Kg, we use Lemma 2.8 to obtain

1 1 1
Kel SE&  Dii+Ex Dy ) S (Eg +Ek1) D +Ex i

For K7, since B1 # 0, one has |dg, v;| <1 and the total number of derivatives on
the first f1 is less or equal to K. Also, w(a,p) = (v)"w(|a|+1,|8| —1). These yield
that |Ky| < €k ;. Combining the above estimate with (3.30) and choosing 6 >0
sufficiently small, we have

||¢\tx|+\/3\—4b%ZUZ(lX,,B)( %f)A(v,y)H%%,y

1 + +
S50 ( —2ja| 42/p|-8WI (“/ﬁ)a%fie% (6%wi(a,p) (a%fie% )") v)

1
+ (€ 1+ E€xct) Da+Coll (@) K1 fIIT, +110rpll L Ex (1) +8> D+ Ex

L3

Substituting this into (3.28), we have the desired estimate (3.15). This completes
the proof of Lemma 3.2. O

Proof of Theorem 3.1. Substituting (3.15) into (3.6), we have that for 0 <6 <1,

0:Ex1(t) +ADk (1)
< 2 ® E= ) w x EX AW
ST (o s P fre (67w () (3 fre 1)) >L2
|la|+|B|<K %

1
+10epll e Ex i (B) +0 (Dia+ (E2 ki) Pit) +Exi+Coll (0) <117

By (3.5) and (3.3), we have |01 < 511</12 < 25(1)/ 2, Using the a priori assumption
(3.3) and choosing 4,59 > 0 sufficiently small, we have

€k (1) + ADi 1 (1) < Ex (1) + 1| 0) I 3

+0 Vo aaprap-sr(wpafre T (60w (w p) (B e T) "))

12,
|| +|B| <K ’
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By solving this ODE with neglecting ADy ;(¢) and noticing

’ (—¢z\a|+z|ﬁ|—8wl(“/ﬁ)aﬁfie% (6w, (e, B) (aﬁfie%)A)v)

12 S(C"K,l(t)/

we have that for 0 <t <t,

t
Ex (1) SEx1(0)+8Ex 1 (1) +6Ex1(0) + /0 (Exit (@) fl 12, dr,
Ex(t) Set, (3.31)

by choosing >0 and to=tq(ey, || (v) k! f]| 12 ) >0 sufficiently small. Here we used
Ex 1(0) <&4;(0). This completes the proof of Theorem 3.1. ]

Proof of Theorem 1.1. We prove Theorem 1.1 in four steps.

Step 1. It follows immediately from the a priori estimate (3.3) and Theo-
rem 3.1 that
sup Ex ;< C €3
0<t<ty
holds true for some small ty >0, as long as €; is sufficiently small. The rest is
to prove the local existence and uniqueness of solutions in terms of the energy
norm & ;. One can use the iteration on the system

(

atf;r?1 +0- fojn[H FVio"- VdenzH = %vx‘i’n ) UfjnzH iUV% V" —Lif
=T (f", 1),

1
—Bag" 1= [ WA e,
L i=0=fo

to find the local existence and the details of proof are omitted for brevity, see
[20,24,31].

Step 2. Notice that the constants in Theorem 3.1 are independent of time ¢
and hence, we can apply Theorem 3.1 to any time interval with length less than
to to obtain that, for 0< 7t < T,

sup & (t) <eXCori - (3.32)
T<t<T
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Recalling Definition 1.12 of £k ; and the choice (3.2) of ¢, we have that, for any
0<t<T,[>0and K>4,

sup ), [wi(wp aﬁfHLz+sup Y [[9°Vagl[ < Cori<oco.  (339)
T<t<T|a|+|B|<K t<T|a|<K

Notice that 1/)‘;41 1|4 1 singular near t =0 when |a|+|B| >4, so the constant is
necessarily depending on 7. This proves (1.16).

Let/>0,K>4 and assume additionally & ¢, ,(0) is sufficiently small for some
large constant Cg ; >0 to be chosen later. Then by (3.32), we have

sup Ek,cy,(f) < e% Cerki (3.34)
T<t<T

For the regularity on t, the technique above is not applicable and we only make
a rough estimate. For any t >0, applying <ZJ>18’[8% with k,1 >0, |a|+|B] <K to
Eq. (1.4) and taking L2 , norms, we have

H< lakHaf HL2
S0 o Vadtasfelll; +|| @) X 040 Vap-odf N ) i
~ X + L2 o~ p\Yt xCP ¢ + 12,
< ,
! a (k1 k—kq 2 [ nk~a NI
+ ) ¥ 0% (0} V- V1 aﬁfi)HL2 +[|(0) 00V -2 (o) | 22
ki <k
"’H<U>la%LiaIt(fiHi%,x+H Z a‘" aklf ak klf) (3‘35)
Denoting
Ep= Y, @ fll
||+ B <K k1 <k '

we estimate the right-hand side terms of (3.35) one by one. The first term on the
right-hand side is bounded above by £k 1 141 . Applying the trick in Lemma 2.9,
the second right-hand side term of (3.35) is bounded above by

Yo PVl X @Rl SR
|a+[B|<K 1<k || +|B| <K k1<k

Similarly, applying the trick in Lemma 2.10, the third term of (3.35) is bounded
above by £ 12< 41,041k FOr the fourth term, when k=0, it is bounded above by £ | o.
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When k > 1, by using (3.4), it is bounded above by £k ;1. For the fifth term,
noticing Ly € S(@) C S({v)725()*) and s € (0,1), we have

[(0)'9f L} fa Hi:?—,,x S [[(@)" 72 (Do)*((Dx, Do) 5 f Hi%,x SEK+2 4y +25k

For the last term, using (2.5), it is bounded above by

I+ 252 ~a~ky 112 2
I(w) a%aflfHL%,ngKJrz,H%zs,k'
||+ | B| <K+2,k1 <k

Combining the above estimate and taking summation of (3.35) over |a|+|B| <K,
k <ko for any ko >0, we have

2
Ek kg1 (1) SEKL0TEx Lkg—1FER 111k T+ ER 1,141 4

2
+ 5K+2,l+')/+25,k0 + 8K+2,l+ ’)“ZFZS,kO .

The t derivative on the right hand is less than the left hand. Hence, noticing (3.34),
tor any T > 7 >0, we have

sup Ex 1k, (1) <Co T ik,
T<t<T

For the time derivatives on V¢, we apply (3.4) to obtain

2
sup ) [|0"9F Vg2 S sup Exigy() <Cori,
T<t<T|a|<K,k<kg T<t<T

Then we obtain (1.17). Consequently, by Sobolev embedding, f € C®(R;" x R3 x
R3).

Step 3. Now we additionally assume (1.18) is sufficiently small. Noticing
=1 in Theorem 2.1, (2.2) shows that for any 1) > 7,

Y (1) %+ ¥ 110°Pf ()l
|| <4 |ac| <4 '

+ Y [fw(p)dsa-P)f(n-1)|5 Se, (3.36)
o] +1Bl <4 :

which is the global-in-time estimate. Using this as the initial data instead of (1.15),
we can apply the above calculation on any time interval [1)— 7,7y +t] to obtain
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the same estimate as in (3.33) with constants independent of T. In fact, in this
case, we can deduce from Theorem 3.1 that

sup Y [lwi(@pagfls + sup Y [0°Vap|| S Cry<oo, (3.37)

T <t<To+to|a|+|B|<K T0<t<To+to|a|<K

where the constant C;; is independent of 1y, T. We then give some comments on
why the constant C.; is independent of T. In (3.34) we start at the initial point
7> 0 and go to the endpoint T >0, so that it contains [T /ty]+1 steps of length f
and hence, the constant depends on T >0. Here, [T /1] is the largest integer less
than T'/ty. However, in estimate (3.37), we start at the initial point 7p—7 and go to
the endpoint 15+ tp, whose length is ty 47 >0 and is independent of T > 0. Here,
the choice of

to = tO (61/ || <U>CK,]f||L%,x) >0

in (3.31) is uniform in any time t and is independent of T > 0. Thus, starting
from the point 70— 7 and ending at 19+t takes [tp—T|+1 steps of length to >0
that is independent of T. Therefore, the constant C; in (3.37) is independent of
T > 0. Since the starting point 7y > 7 is arbitrary, we deduce a uniform estimate
independent of time T in (3.37). This completes the proof of Theorem 1.1(3).

Notice that the estimate (3.33) is necessarily depending on T since 1p|;‘1 1Bl—4 is
singular near t =0 when |a|+|B| > 4.

Step 4. If we assume (1.19) is sufficiently small for some large enough Cg ;>0,
then by Theorem 2.1, we can obtain the estimate (3.36) with [ replaced by Cg.
Then the result follows from the same argument as Steps 2 and 3; the proof of
regularity is the same as Step 2 while the same proof in Step 3 shows that the
constant is independent of T > 0. This completes the proof of Theorem 1.1. O
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