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Abstract

By combination of iteration methods with the partition of unity method (PUM), some

finite element parallel algorithms for the stationary incompressible magnetohydrodynamics

(MHD) with different physical parameters are presented and analyzed. These algorithms

are highly efficient. At first, a global solution is obtained on a coarse grid for all approaches

by one of the iteration methods. By parallelized residual schemes, local corrected solutions

are calculated on finer meshes with overlapping sub-domains. The subdomains can be

achieved flexibly by a class of PUM. The proposed algorithm is proved to be uniformly

stable and convergent. Finally, one numerical example is presented to confirm the theo-

retical findings.
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1. Introduction

The stationary incompressible MHD equations [1] in a Lipschitz polygon/polyhedron Ω ⊂
Rd (d = 2, 3) with homogeneous Dirichlet boundary conditions are described as

−R−1
e ∆u+ u · ∇u+∇p− Sccurl B×B = f , (1.1)

div u = 0, (1.2)

ScR
−1
emcurl curl B− Sccurl (u×B)−∇r = g, (1.3)

div B = 0, (1.4)

u|∂Ω = 0, B× n|∂Ω = 0, r|∂Ω = 0, (1.5)

where Re and Rem are the Reynolds numbers of hydrodynamic and magnetic, respectively, n is

the unit outward normal vector on ∂Ω, Sc is the coupling number of the two fields. u represents
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fluid velocity field, B magnetic field strength, p hydrodynamic pressure and r magnetic pseudo-

pressure. Let g be solenoidal.

The governing MHD model is strongly nonlinear because the classical equations of Maxwell

and Navier-Stokes are coupled. This physical system describes the relationship between in-

compressible flows with electrically conducting property and the existing magnetic field. It has

important applications in numerous areas of science, e.g., process metallurgy and MHD ion

propulsion, see [2, 3].

Recently, finite element methods (FEM) for numerically solving MHD equations have be-

come an attractive topic for the community of scientific computing. Based on the exact penalty

constraint idea on magnetic, a stabilized FE formulation was studied in [4]. Stabilized FEM mo-

tivated by residual-based stabilizations was investigated in [5]. Divergence-cleaning algorithm

in continuous FEM was given in [6]. A divergence-free discontinuous FEM was analyzed in [7].

To treat the nonlinear terms efficiently, three classical FE iterative methods were proposed

and the stability and convergence related to physical parameters and iterations were proved

by Dong et al. [8]. By using the Lagrange multiplier associated with the magnetic divergence

constraint, a double-saddle-point FE formulation was given and analyzed in [9], and a mixed

discontinuous Galerkin scheme of this version was proposed by Houston et al. [10]. The mixed

FEMs with exactly preserving mass conservation of hydrodynamics and Gauss law of magnetic

were studied in [11] and [12–15], respectively. Some robust solvers for finite element discrete

system was designed in [16–18]. As for the time-dependent MHD equations, the stabilized

nodal-based FEMs were proposed in [19], Euler semi-implicit fully discrete FE schemes were

analyzed by Prohl [20] and He [21], the Crank-Nicolson extrapolation fully discrete FE scheme

was analyzed by Dong and He [22].

It has been proven practically that two-level FEM [23, 24] is a high-efficiency technique to

solve partial differential equations numerically, since it can reduce the cost of computing. This

method has been applied to treat the nonlinear terms and coupled terms in the MHD problem

in [25–27]. According to the observation of the behavior of a FE solution, [28] proposed parallel

FEMs based on local algorithms. [28] obtained low frequencies component governing the global

properties of the solution by using coarse mesh, and then approximates high frequencies one by

solving the resulted local residual subproblems on several subdomains with the fine grids. This

numerical algorithm is of high performance for few communications between blocks. Thus, it

has been developed and extended to various problems, such as, Navier-Stokes equations [29–31],

MHD equations [32, 33], etc.

Inspired by the algorithm in [28] and two-level FEM with respect to different physical pa-

rameters for the stationary MHD [27], in this article, we mainly extend the recent work [34,35]

to some local and parallel FE iterative algorithms (LPFEIAs) related to different physical pa-

rameters (Explicit in Theorem 3.2) for problem (1.1)-(1.5). The extensions to the previous

studies [34, 35] are explained clearly before Theorem 3.12. According to different stable con-

ditions of three classical m-iteration methods, we combine FEM with different iterations on

a globally coarse mesh to obtain FE iterative solutions (um
H ,Bm

H , pmH , rmH ) first, then we correct

them by different linearized residual schemes in parallel on some local overlapping subdomains

Ωj to seek the correction solutions (uj
mh,B

j
mh, p

j
mh, r

j
mh), j = 1, . . . , J , where J is the number

of the subdomains, m is the iterative step and mesh sizes satisfy h (h ≪ H). Moreover, the

uniform stability and convergence of each algorithm is analyzed.

The paper is divided into 4 sections. The next section is devoted to giving some notation

preparation and providing some results of FEM for the problem (1.1)-(1.5). In Section 3, some
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LPFEIAs with respect to different physical parameters are proposed, and the stability and error

bounds of each algorithm are proved. In Section 4, a series of numerical results are shown to

validate our theoretical analysis.

2. A FE Scheme for Stationary MHD Equations

This section is devoted to giving the notation and some results of the FE solution to the

MHD equations (1.1)-(1.5). Let

H1
0(Ω) = {v|v ∈ H1(Ω),v|∂Ω = 0}, H0(curl,Ω) = {C|C ∈ H(curl,Ω),C× n|∂Ω = 0}

and

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

qdx = 0

}

be the Sobolev spaces, ‖ · ‖0,Ω be the L2 norm, and ‖ · ‖−1,Ω be the norm of H−1(Ω). Denote

the graph norms on H1
0(Ω) × H0(curl,Ω) and L2

0(Ω) × H1
0 (Ω) by ‖(u,B)‖E,Ω = (‖∇u‖20,Ω +

‖B‖2curl)1/2, and ‖(p, r)‖B,Ω = (‖p‖20,Ω + ‖∇r‖20,Ω)1/2, respectively, where ‖B‖curl = (‖B‖20,Ω +

‖curl B‖20,Ω)1/2.
A weak form of the MHD system (1.1)-(1.5) is to seek (u,B, p, r) ∈ H1

0(Ω)×H0(curl,Ω)×
L2
0(Ω)×H1

0 (Ω) such that

a0((u,B), (v,C)) + a1((u,B), (u,B), (v,C)) + b(p, r;v,C)− b(q, s;u,B)

= F((v,C)), ∀(v,C, q, s) ∈ H1
0(Ω)×H0(curl,Ω)× L2

0(Ω)×H1
0 (Ω), (2.1)

where

a0((u,B), (v,C)) = R−1
e (∇u,∇v) + ScR

−1
em(curl B, curl C),

bp(v, q) = −(div v, q), br(s,C) = −(∇s,C),

a1((u,B), (w,Φ), (v,C))

=
1

2
(u · ∇w,v)− 1

2
(u · ∇v,w) − Sc(curl Φ×B,v) + Sc(curl C×B,w),

b(q, s;v,C) = bp(v, q) + br(s,C), F((v,C)) =< f ,v > +(g,C)

for u,w,v ∈ H1
0(Ω),B,Φ,C ∈ H0(curl,Ω), q ∈ L2

0(Ω), s ∈ H1
0 (Ω). Taking (v,C, q, r) =

(0,∇r, 0, 0) in (2.1) and noticing that ∇ · g = 0, curl∇r = 0, we have ‖∇r‖0,Ω = 0, which

implies that r ≡ 0 in Ω by r|∂Ω = 0.

We recall some properties of a0(·, ·) and a1(·, ·, ·) from [9,36]: for u,w,v ∈ H1
0(Ω),B,Φ,C ∈

H0(curl,Ω), there have

a0((w,Φ), (v,C)) ≤ Cmax‖(w,Φ)‖E,Ω‖(v,C)‖E,Ω, (2.2)

a0((w,Φ), (w,Φ)) ≥ Cmin‖(w,Φ)‖2E,Ω, (2.3)

a1((u,B), (w,Φ), (w,Φ)) = 0, (2.4)

a1((u,B), (w,Φ), (v,C)) ≤ N̂‖(u,B)‖E,Ω‖(w,Φ)‖E,Ω‖(v,C)‖E,Ω, (2.5)

where Cmax = max{R−1
e , ScR

−1
em}, Cmin = min{R−1

e , Scλ0R
−1
em}, λ0 and N̂ are positive constants

related only to Ω [36, 37]

‖B‖2curl ≤ λ−1
0 ‖curlB‖20,Ω, ∀B ∈ H0(curl,Ω), (2.6)

N̂ = sup
u,w,v∈H1

0
(Ω),B,Φ,C∈H0(curl,Ω)

a1((u,B), (w,Φ), (v,C))

‖(u,B)‖E,Ω‖(w,Φ)‖E,Ω‖(v,C)‖E,Ω
. (2.7)
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From [9], there has the following inf-sup condition:

sup
v∈H1

0
(Ω),C∈H0(curl,Ω)

b(q, s;v,C)

‖(v,C)‖E,Ω
≥ β‖(q, s)‖B,Ω, ∀q ∈ L2

0(Ω), s ∈ H1
0 (Ω), (2.8)

where β > 0 is a constant related to Ω.

Based on (2.2)-(2.8), some properties of the solution to (2.1) can be derived in [9, 36].

Theorem 2.1. Assume that f ∈ H−1(Ω),g ∈ L2(Ω), and ∇ · g = 0. Suppose

0 < ϑ =
N̂‖F‖∗,Ω
(Cmin)2

< 1, (2.9)

then the problem (2.1) has a unique solution (u,B, p, r) ∈ H1
0(Ω)×H0(curl,Ω)×L2

0(Ω)×H1
0 (Ω)

satisfying

Cmin‖(u,B)‖E,Ω ≤ ‖F‖∗,Ω, (2.10)

where ‖F‖∗,Ω = (‖f‖−1,Ω + ‖g‖0,Ω)1/2.

Let Tµ(Ω) = {K} (µ = H,h) be a family of regular and uniform triangulations or tetrahe-

drons partition of Ω, µ the mesh size. t-th order inf-sup stable Galerkin finite element spaces (for

example, Taylor-Hood element (Pt, Pt−1), t ≥ 2, Mini element (P b
1 , P1), t = 1) are employed to

approximate u and p, which are denoted by (Xµ
0 (Ω), S

µ
0 (Ω)). Denote by Yµ

n(Ω) ⊂ H0(curl,Ω)

the discrete space for B, which is the l-th order Nédélec edge element space [38]. The FE space

for r is defined by Qµ
0 (Ω) = {sµ ∈ H1

0 (Ω) : sµ|K ∈ Pl+1(K), ∀K ⊂ Tµ(Ω)}.
Then the FE scheme of (2.1) is to find (uµ,Bµ, pµ, rµ) ∈ Xµ

0 (Ω)×Yµ
n(Ω)× Sµ

0 (Ω)×Qµ
0 (Ω)

such that

a0((uµ,Bµ), (v,C)) + a1((uµ,Bµ), (uµ,Bµ), (v,C)) + b(pµ, rµ;v,C) = F((v,C)),

b(q, s;uµ,Bµ) = 0, ∀ (v,C, q, s) ∈ Xµ
0 (Ω)×Yµ

n(Ω)× Sµ
0 (Ω)×Qµ

0 (Ω). (2.11)

The existence, uniqueness of the solution to this discrete system, and error estimate results

are as follows [9, 36]:

Theorem 2.2. Suppose (2.9) holds. Then the FE scheme (2.11) has a unique solution (uµ,Bµ,

pµ, rµ) ∈ Xµ
0 (Ω)×Yµ

n(Ω)× Sµ
0 (Ω)×Qµ

0 (Ω) satisfying the following energy estimate:

Cmin‖(uµ,Bµ)‖E,Ω ≤ ‖F‖∗,Ω. (2.12)

Moreover, we assume that the solution of the problem (2.1) u ∈ H1+γ(Ω), curl B ∈ Hδ(Ω),

p ∈ Hγ(Ω), r ∈ H1+δ(Ω) (γ, δ > 1
2) hold, then

Cmin‖(u− uµ,B−Bµ)‖E,Ω + ‖(p− pµ, r − rµ)‖B,Ω

≤ κµτ (‖u‖1+γ,Ω + ‖B‖δ,Ω + ‖∇×B‖δ,Ω + ‖p‖γ,Ω + ‖r‖1+δ,Ω), (2.13)

where τ = min{γ, t, δ, l}, κ > 0 is a constant related to (Ω, Re, Rem , Sc).
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3. LPFEIAs Based on PUM for Stationary MHD Equations

This section aims to combine three iterations with PUM, we extend the work [34,35] to the

LPFEA related to different physical parameters for the problem (1.1)-(1.5).

Let THp
(Ω) be a regular triangulation or tetrahedron whose mesh size is Hp. TH(Ω) and

Th(Ω) are nested regular meshes of Ω with h < H ≤ Hp. Hp is fixed and could be independent

of mesh sizes h and H . Denote Dj = suppφj ∩Ω by the union of triangules/tetrahedra sharing

the common vertex xj ∈ THp
(Ω), whose Lagrangian basis function is φj such that φj(xi) = δj,i.

Let Dj,0 = Dj , extend one layer of its neighbors to obtain

Dj,1 =
⋃

xi∈Dj,0

Di. (3.1)

Similarly, we can get the two layers of oversampling

Dj,2 =
⋃

xi∈Dj,1

Di. (3.2)

Gradually, we arrive at the k layers of oversampling Dj,k, who can be viewed as the local

subdomain corresponding to xi for partition of unity. In the extreme, we could extend to the

full domain Ω. See Fig. 3.1 for the cases of k = 0, k = 1 and k = 2.

Obviously, {Dj,k} form an open coverage of Ω and {φj} are the corresponding partition of

unity function satisfying

suppφj ⊂ Dj,k, ∀ 1 ≤ j ≤ J, (3.3)
∑

j

φj ≡ 1, ∀x ∈ Ω, (3.4)

‖φj‖L∞(Ω) ≤ Cp, ∀ 1 ≤ j ≤ J, (3.5)

‖∇φj‖L∞(Ω) ≤
Cp

diam(Dj,k)
≤ CpH

−1
p , ∀ 1 ≤ j ≤ J. (3.6)

Denote by Xh
0 (D

j,k),Yh
n(D

j,k), Sh
0 (D

j,k), Qh
0 (D

j,k) the FE spaces on Dj,k. They can be

treated as the restriction of Xh
0 (Ω),Y

h
n(Ω), S

h
0 (Ω), Q

h
0 (Ω) on Di,k, which have the same bound-

ary conditions on ∂Dj,k ∩ ∂Ω and zero on ∂Dj,k located in the interior of Ω.

Fig. 3.1. A subdomain: (left) no oversampling Dj,0, (middle) one layer of oversampling Dj,1, (right)

two layers of oversampling Dj,2.
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Motivated by [28], the LPFEA for MHD equations (1.1)-(1.5) can be designed as follows:

Algorithm 3.1. LPFEA for MHD

Step I. Given a initial solution (uH ,BH , pH , rH) ∈ XH
0 (Ω) × YH

n (Ω) × SH
0 (Ω) ×

QH
0 (Ω)

by

a0((uH ,BH), (v,C)) + a1((uH ,BH), (uH ,BH), (v,C)) + b(pH , rH ;v,C)

−b(q, s;uH ,BH) = F((v,C)),

∀(v,C, q, s) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω). (3.7)

Step II. Find local correction solutions (uj
h,B

j
h, p

j
h, r

j
h) ∈ Xh

0 (D
j,k) × Yh

n(D
j,k) ×

Sh
0 (D

j,k)

×Qh
0(D

j,k), j = 1, . . . , J in parallel by one of the following three correction

schemes:

a0((u
j
h,B

j
h), (v,C)) + b(pjh, r

j
h;v,C)− b(q, s;uj

h,B
j
h) = RH((v,C)), (3.8)

a0((u
j
h,B

j
h), (v,C)) + a1((u

j
h,B

j
h), (uH ,BH), (v,C))

+a1((uH ,BH), (uj
h,B

j
h), (v,C)) + b(pjh, r

j
h;v,C)

−b(q, s;uj
h,B

j
h) = RH((v,C)), (3.9)

a0((u
j
h,B

j
h), (v,C)) + a1((uH ,BH), (uj

h,B
j
h), (v,C))

+b(pjh, r
j
h;v,C)− b(q, s;uj

h,B
j
h) = RH((v,C)) (3.10)

for all (v,C, q, s) ∈ Xh
0 (D

j,k)×Yh
n(D

j,k)× Sh
0 (D

j,k)×Qh
0(D

j,k), where

RH((v,C)) = F((v,C)) − a0((uH ,BH), (v,C))

− a1((uH ,BH), (uH ,BH), (v,C)) − b(pH , rH ;v,C) +b(q, s;uH ,BH).

Step III. Update (uj ,Bj , pj , rj) = (uH + uj
h,BH +Bj

h, pH + pjh, rH + rjh) in Dj,k.

Step IV. Assemble the solution

uh =

J∑

j=1

φju
j , Bh =

J∑

j=1

φjB
j , ph =

J∑

j=1

φjp
j , rh =

J∑

j=1

φjr
j .

Algorithm 3.1 is designed based on the double-saddle point scheme presented in [9], which

is different from the version based on exact penalty scheme in our previous work [34]. For the

(uh,Bh, ph, rh) from Algorithm 3.1 by both the three corrections, we can derive their errors

between the solution (uh,Bh, ph, rh) of (2.11).

Theorem 3.1. Under the assumptions of Theorem 2.2, then there holds

‖(uh − uh,Bh −Bh)‖E,Ω + ‖(ph − ph, rh − rh)‖B,Ω ≤ C1H
2τ , (3.11)

where

C1 =
(
CRe,Rem ,Sc

+ ϑ
)
C0(‖u‖1+γ,Ω + ‖B‖δ,Ω + ‖∇×B‖δ,Ω + ‖p‖γ,Ω + ‖r‖1+δ,Ω),

CRe,Rem ,Sc
= Cmax/Cmin.
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Proof. For the solutions (uh,Bh, ph, rh) obtained from (3.7) with correction schemes (3.9)

and (3.10), the proof of (3.11) can be deduced similar to the proof of Theorem 3.2 in [34]. For

the solution (uh,Bh, ph, rh) obtained from (3.7) with correction scheme (3.8), since the trilinear

term a1(·, ·, ·) disappears in the left hand of the correction scheme (3.8) compared to the other

two correction schemes, (3.11) can be derived naturally. �

Remark 3.1. The constant C0 appeared in (3.11) depends on the number of the subdomain

Dj,k (j = 1, . . . , J) and the constant Cp in (3.5) and (3.6). The relationship of dependance

can be found in the proofs of Theorem 3.3 in [31] and Theorem 3.2 in [34]. From now on, we

assume that J is a fixed constant, which allows the algorithm to be suitable for those parallel

architectures with a moderate number of processors.

3.1. Three iterative methods

The three iterative methods based on FEM studied in [8,36] are described by (um
H ,Bm

H , pmH ,

rmH ) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω) by

Iteration I (Stokes-type iteration)

a0((u
n
H ,Bn

H), (v,C)) + a1((u
n−1
H ,Bn−1

H ), (un−1
H ,Bn−1

H ), (v,C)) (3.12)

+b(pnH , rnH ;v,C) = F((v,C)),

b(q, s;un
H ,Bn

H) = 0. (3.13)

Iteration II (Newton iteration)

a0((u
n
H ,Bn

H), (v,C)) + a1((u
n−1
H ,Bn−1

H ), (un
H ,Bn

H), (v,C))

+a1((u
n
H ,Bn

H), (un−1
H ,Bn−1

H ), (v,C)) + b(pnH , rnH ;v,C)

= F((v,C)) + a1((u
n−1
H ,Bn−1

H ), (un−1
H ,Bn−1

H ), (v,C)), (3.14)

b(q, s;un
H ,Bn

H) = 0. (3.15)

Iteration III (Oseen-type iteration)

a0((u
n
H ,Bn

H), (v,C)) + a1((u
n−1
H ,Bn−1

H ), (un
H ,Bn

H), (v,C))

+b(pnH , rnH ;v,C) = F((v,C)), (3.16)

b(q, s;un
H ,Bn

H) = 0 (3.17)

for n = 1, . . . ,m, where (u0
H ,B0

H , p0H , r0H) is given by

a0((u
0
H ,B0

H), (v,C)) + b(p0H , r0H ;v,C)− b(q, s;u0
H ,B0

H) = F((v,C)) (3.18)

for all (v,C, q, s) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω).

(um
H ,Bm

H , pmH , rmH ) got from Iterations I-III are of uniform stability and convergence, which

have been proven in [8, 36].

Theorem 3.2. Suppose that (uH ,BH , pH , rH) is the solution of (2.11). ϑ is defined by (2.9).

Set (um
ite,B

m
ite) = (uH − um

H ,BH −Bm
H), (pmite, r

m
ite) = (pH − pmH , rH − rmH ). If 0 < ϑ ≤ 2

5 , then

(um
H ,Bm

H , pmH , rmH ) derived by Iteration I satisfy

Cmin‖(um
H ,Bm

H)‖E,Ω ≤ 6

5
‖F‖∗,Ω, ‖(pmH , rmH )‖B,Ω ≤ 1

β
CRe,Rem ,Sc

‖F‖∗,Ω, (3.19)

Cmin‖(um
ite,B

m
ite)‖E,Ω + ‖(pmite, rmite)‖B,Ω ≤ CCRe,Rem ,Sc

(11
5
ϑ
)m

‖F‖∗,Ω. (3.20)
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If 0 < ϑ ≤ 5
11 , then (um

H ,Bm
H , pmH , rmH ) derived by Iteration II satisfy

Cmin‖(um
H ,bm

H)‖E,Ω ≤ 4

3
‖F‖∗,Ω, ‖(pmH , rmH )‖B,Ω ≤ 1

β
CRe,Rem ,Sc

‖F‖∗,Ω, (3.21)

Cmin‖(um
ite,B

m
ite)‖E,Ω + ‖(pmite, rmite)‖B,Ω ≤ CCRe,Rem ,Sc

(15
13

ϑ
)2m−1

‖F‖∗,Ω. (3.22)

If 0 < ϑ < 1, then (um
H ,Bm

H , pmH , rmH ) derived by Iteration III satisfy

Cmin‖(um
H ,bm

H)‖E,Ω ≤ ‖F‖∗,Ω, ‖(pmH , rmH )‖B,Ω ≤ 1

β
CRe,Rem ,Sc

‖F‖∗,Ω, (3.23)

Cmin‖(um
ite,B

m
ite)‖E,Ω + ‖(pmite, rmite)‖B,Ω ≤ CCRe,Rem ,Sc

ϑm‖F‖∗,Ω, (3.24)

where C > 0 is a general constant which is independent of H,h and m.

Motivated by LPFEA [28] and FE iterative methods with different physical parameters for

stationary MHD problem [27], applying the above three iterations to seek an initial solution of

the nonlinear problem on a coarse mesh, we present some LPFEIAs related to different physical

parameters.

3.2. LPFEIAs based on PUM with 0 < ϑ ≤ 2/5

According to Theorem 3.2, when 0 < ϑ ≤ 2
5 , we can choose nine kinds of LPFEIAs by

combining the iterative solution (um
H ,Bm

H , pmH , rmH ) from Iterations I, II and III on TH(Ω) with

three local corrections in parallel on Th(D
j,k), j = 1, . . . , J . The LPFEIAs are proposed as

follows:

Step I. Find a coarse solution (um
H ,Bm

H , pmH , rmH ) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω) by

Iterations I, II and III.

Step II. Solve local corrections (uj
mh,B

j
mh, p

j
mh, r

j
mh) ∈ Xh

0 (D
j,k)×Yh

n(D
j,k)×Sh

0 (D
j,k)×

Qh
0 (D

j,k) (j = 1, . . . , J) in parallel by three corrections

Correction I (Stokes-type correction)

a0((u
j
mh,B

j
mh), (v,C)) + b(pjmh, r

j
mh;v,C)− b(q, s;uj

mh,B
j
mh) = Rm

H((v,C)). (3.25)

Correction II (Newton correction)

a0((u
j
mh,B

j
mh), (v,C)) + a1((u

m
H ,Bm

H), (uj
mh,B

j
mh), (v,C))

+a1((u
j
mh,B

j
mh), (u

m
H ,Bm

H), (v,C)) + b(pjmh, r
j
mh;v,C)

−b(q, s;uj
mh,B

j
mh) = Rm

H((v,C)). (3.26)

Correction III (Oseen-type correction)

a0((u
j
mh,B

j
mh), (v,C)) + a1((u

m
H ,Bm

H), (uj
mh,B

j
mh), (v,C))

+b(pjmh, r
j
mh;v,C)− b(q, s;uj

mh,B
j
mh) = Rm

H((v,C)) (3.27)

for all (v,C, q, s) ∈ Xh
0 (D

j,k)×Yh
n(D

j,k)× Sh
0 (D

j,k)×Qh
0 (D

j,k), where

Rm
H((v,C)) = F((v,C)) − a0((u

m
H ,Bm

H), (v,C))

−a1((u
m
H ,Bm

H), (um
H ,Bm

H), (v,C))

−b(pmH , rmH ;v,C) + b(q, s;um
H ,Bm

H).
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Step III. Set (uj
m,Bj

m, pjm, rjm) = (um
H + uj

mh,B
m
H +Bj

mh, p
m
H + pjmh, r

m
H + rjmh) in Dj,k.

Step IV. Assemble the solution:

uh
m =

J∑

j=1

φju
j
m, Bh

m =
J∑

j=1

φjB
j
m, phm =

J∑

j=1

φjp
j
m, rhm =

J∑

j=1

φjr
j
m.

The correction schemes (3.25)-(3.27) are linearized by (um
H ,Bm

H , pmH , rmH ) from Step I, while

the correction scheme studied in our previous work [35] is employed by Picard’s iteration.

Compared to the numerical methods for MHD studied in [9, 27, 33], the advantages of the

proposed method are that it not only improves efficiency, but also provides a flexible and

manageable way to decompose the whole computing domain.

Lemma 3.1. Suppose that the conditions of Theorem 2.2 hold and 0 < ϑ ≤ 2
5 . Then (uj

mh,B
j
mh,

pjmh, r
j
mh) obtained by Iterations I, II and III with Corrections I, II and III satisfy

CminCRe,Rem ,Sc
‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(pjmh, r

j
mh)‖B,Dj,k

≤ C(CRe,Rem ,Sc
)2‖F‖∗,Ω, (3.28)

Cmin‖(uj − uj
m,Bj −Bj

m)‖E,Dj,k + ‖(pj − pjm, rj − rjm)‖B,Dj,k

≤ C
(
Cmin‖(uH − um

H ,BH −Bm
H)‖E,Dj,k + ‖(pH − pmH , rH − rmH )‖B,Dj,k

)
, (3.29)

where (uj ,Bj , pj, rj) and (uH ,BH , pH , rH) are from Algorithm 3.1 and (um
H ,Bm

H , pmH , rmH ) is

from Iterations I-III.

Proof. The proof is divided into two parts.

Part 1. This part is devoted to analyze (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations I, II

and III with Correction II. Taking (q, s) = (0, 0) in (3.26), and using (2.8), (2.2) and (2.5) give

‖(pjmh, r
j
mh)‖B,Dj,k ≤ 1

β

(
Cmax

(
‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(um

H ,Bm
H)‖E,Dj,k

)

+N̂
(
2‖(um

H ,Bm
H)‖E,Dj,k‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(um

H ,Bm
H)‖2E,Dj,k

)

+‖F‖∗,Dj,k +
√
d‖(pmH , rmH )‖B,Dj,k

)
. (3.30)

Note that Xh
0 (D

j,k) ⊂ Xh
0 (Ω), S

h
0 (D

j,k) ⊂ Sh
0 (Ω),Y

h
n(D

j,k) ⊂ Yh
n(Ω) and Qh

0(D
j,k) ⊂ Qh

0 (Ω).

Setting (v,C, q, s) = (uj
mh,B

j
mh, p

j
mh, r

j
mh) in (3.26), and applying (2.4)-(2.5), we conclude

from Theorem 3.2 and 0 < ϑ ≤ 2
5 that

7

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

≤
(
1−max

{
6

5
,
4

3
, 1

}
ϑ

)
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

≤ Cmin

(
1− N̂

(Cmin)2
· Cmin‖(um

H ,Bm
H)‖E,Dj,k

)
‖(uj

mh,B
j
mh)‖2E,Dj,k

≤
(
Cmin − N̂‖(um

H ,Bm
H)‖E,Dj,k

)
‖(uj

mh,B
j
mh)‖2E,Dj,k

≤ a0((u
j
mh,B

j
mh), (u

j
mh,B

j
mh)) + a1((u

j
mh,B

j
mh), (u

m
H ,Bm

H), (uj
mh,B

j
mh))

= Rm
H((uj

mh,B
j
mh)). (3.31)
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Applying (3.30) to (3.31), and using Cauchy-Schwarz inequalities yields

7

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

≤ ‖F‖∗,Dj,k‖(uj
mh,B

j
mh)‖E,Dj,k + Cmax‖(um

H ,Bm
H)‖E,Dj,k‖(uj

mh,B
j
mh)‖E,Dj,k

+N̂‖(um
H ,Bm

H)‖2E,Dj,k‖(uj
mh,B

j
mh)‖E,Dj,k

+
√
d‖(pmH , rmH )‖B,Dj,k‖(uj

mh,B
j
mh)‖E,Dj,k +

√
d‖(um

H ,Bm
H)‖E,Dj,k‖(pjmh, r

j
mh)‖B,Dj,k

≤ 15

4Cmin
‖F‖2

∗,Dj,k +
1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
15(Cmax)

2

4Cmin
‖(um

H ,Bm
H)‖2E,Dj,k +

1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
15(N̂)2

4Cmin
‖(um

H ,Bm
H)‖4E,Dj,k +

1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
15d

4Cmin
‖(pmH , rmH )‖2B,Dj,k +

1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
15d(Cmax)

2

4β2Cmin
‖(um

H ,Bm
H)‖2E,Dj,k +

1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
15d(N̂)2

4β2Cmin
‖(um

H ,Bm
H)‖4E,Dj,k +

1

15
Cmin‖(uj

mh,B
j
mh)‖2E,Dj,k

+
1

2Cmin
‖F‖2

∗,Dj,k +
d

2β2
Cmin‖(um

H ,Bm
H)‖2E,Dj,k

+

√
d

β
Cmax‖(um

H ,Bm
H)‖2E,Dj,k +

√
d

β
N̂‖(um

H ,Bm
H)‖3E,Dj,k

+
d

4β2
Cmin‖(um

H ,Bm
H)‖2E,Dj,k +

d

Cmin
‖(pmH , rmH )‖2B,Dj,k , (3.32)

which can be rearranged as

Cmin‖(uj
mh,B

j
mh)‖2E,Dj,k

≤ C

(
1

Cmin
‖F‖2

∗,Dj,k + CRe,Rem ,Sc
(CRe,Rem ,Sc

+ 1)Cmin‖(um
H ,Bm

H)‖2E,Dj,k

+N̂‖(um
H ,Bm

H)‖3E,Dj,k +
(N̂)2

Cmin
‖(um

H ,Bm
H)‖4E,Dj,k +

1

Cmin
‖(pmH , rmH )‖2B,Dj,k

)
. (3.33)

With the help of Theorem 3.2 and 0 < ϑ ≤ 2
5 , it follows that

Cmin‖(uj
mh,B

j
mh)‖E,Dj,k

≤ C
(
‖F‖∗,Dj,k + CRe,Rem ,Sc

Cmin‖(um
H ,Bm

H)‖E,Dj,k + (N̂Cmin)
1

2 ‖(um
H ,Bm

H)‖
3

2

E,Dj,k

+N̂‖(um
H ,Bm

H)‖2E,Dj,k + ‖(pmH , rmH )‖B,Dj,k

)

≤ C(CRe,Rem ,Sc
+ ϑ+ ϑ

1

2 )‖F‖∗,Ω ≤ CCRe,Rem ,Sc
‖F‖∗,Ω. (3.34)

An application of (3.30), (3.34) and Theorem 3.2 implies that

‖(pjmh, r
j
mh)‖B,Dj,k ≤ 1

β

(
CRe,Rem ,Sc

(CRe,Rem ,Sc
+ 1)‖F‖∗,Ω

+ϑ
(
2Cmin‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(um

H ,Bm
H)‖E,Dj,k

))

≤ C(CRe,Rem ,Sc
)2‖F‖∗,Dj,k . (3.35)
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Then, (3.28) follows by combining (3.34) and (3.35).

On the other hand, reorganizing the forms of Algorithm 3.1 with correction (3.9) and Cor-

rection II, we have

a0((uH + uj
h,BH +Bj

h), (v,C)) + a1((uH ,BH), (uH + uj
h,BH +Bj

h), (v,C))

+a1((uH + uj
h,BH +Bj

h), (uH ,BH), (v,C)) − a1((uH ,BH), (uH ,BH), (v,C))

−b(pH + pjh, rH + rjh;v,C) + b(q, s;uH + uj
h,BH +Bj

h) = F((v,C)), (3.36)

a0((u
m
H + uj

mh,B
m
H +Bj

mh), (v,C)) + a1((u
m
H ,Bm

H), (um
H + uj

mh,B
m
H +Bj

mh), (v,C))

+a1((u
m
H + uj

mh,B
m
H +Bj

mh), (u
m
H ,Bm

H), (v,C)) − a1((u
m
H ,Bm

H), (um
H ,Bm

H), (v,C))

−b(pmH + pjmh, r
m
H + rjmh;v,C) + b(q, s;um

H + uj
mh,B

m
H +Bj

mh) = F((v,C)) (3.37)

for all (v,C, q, s) ∈ Xh
0 (D

j,k) × Yh
n(D

j,k) × Sh
0 (D

j,k) × Qh
0 (D

j,k). Setting (ẽj , H̃j , η̃j , ξ̃j)
.
=

(uj
h − uj

mh,B
j
h −Bj

mh, p
j
h − pjmh, r

j
h − rjmh) and subtracting (3.37) from (3.36) yield

a0((uH − um
H + ẽj ,BH −Bm

H + H̃j), (v,C))

+a1((uH ,BH), (uH − um
H + ẽj,BH −Bm

H + H̃j), (v,C))

+a1((uH − um
H + ẽj ,BH −Bm

H + H̃j), (uH ,BH), (v,C))

+b(q, s;uH − um
H + ẽj ,BH −Bm

H + H̃j)− b(η̃j , ξ̃j ;v,C)

= G((v,C)), ∀(v,C, q, s) ∈ Xh
0 (D

j,k)×Yh
n(D

j,k)× Sh
0 (D

j,k)×Qh
0(D

j,k), (3.38)

where

G((v,C)) = b(pH − pmH , rH − rmH ;v,C)

−a1((uH − um
H ,BH −Bm

H), (um
H + uj

mh,B
m
H +Bj

mh), (v,C))

−a1((u
m
H + uj

mh,B
m
H +Bj

mh), (uH − um
H ,BH −Bm

H), (v,C))

+a1((uH − um
H ,BH −Bm

H), (uH ,BH), (v,C))

+a1((u
m
H ,Bm

H), (uH − um
H ,BH −Bm

H), (v,C)).

Using (2.5), Theorem 3.2 and (3.28) we get

‖G‖−1,Dj,k = sup
v∈Xh

0
(Dj,k),C∈Yh

n(D
j,k)

G((v,C))

‖(v,C)‖E,Dj,k

(3.39)

≤
√
d‖(pH − pmH , rH − rmH )‖B,Dj,k

+N̂
(
3‖(um

H ,Bm
H)‖E,Dj,k + 2‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(uH ,BH)‖E,Dj,k

)

×‖(uH − um
H ,BH −Bm

H)‖E,Dj,k

≤
√
d‖(pH − pmH , rH − rmH )‖B,Dj,k + Cϑ

(
1 + CRe,Rem ,Sc

)

×Cmin‖(uH − um
H ,BH −Bm

H)‖E,Dj,k

≤ C
(
‖(pH − pmH , rH − rmH )‖B,Dj,k + CRe,Rem ,Sc

Cmin‖(uH − um
H ,BH −Bm

H)‖E,Dj,k

)
.

Thus, proceeding as in the proof of (3.30), we obtain by using (3.38) with (q, s) = (0, 0) and

(2.12) that

‖(η̃j , ξ̃j)‖B,Dj,k ≤ 1

β

(
Cmax

(
‖(uH − um

H ,BH −Bm
H)‖E,Dj,k + ‖(ẽj, H̃j)‖E,Dj,k

)
+ ‖G‖−1,Dj,k

)
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+
2N̂

β
‖(uH ,BH)‖E,Dj,k

(
‖(ẽj , H̃j)‖E,Dj,k + ‖(uH − um

H ,BH −Bm
H)‖E,Dj,k

)

≤ C
(
‖(pH − pmH , rH − rmH )‖B,Dj,k + (ϑ+ CRe,Rem ,Sc

)Cmin

(
‖(ẽj, H̃j)‖E,Dj,k

+‖(uH − um
H ,BH −Bm

H)‖E,Dj,k

))
. (3.40)

Taking (v,C, q, s) = (ẽj , H̃j , η̃j , ξ̃j) in (3.38), and combining with the fact that (s, s − t) =
1
2 (|s|2−|t|2+ |s− t|2) with s = uH −um

H + ẽj (or BH −Bm
H + H̃j), t = uH −um

H(or BH −Bm
H),

we conclude from (2.6) that

a0((uH − um
H + ẽj ,BH −Bm

H + H̃j), (ẽj , H̃j))

= R−1
e (∇(uH − um

H + ẽj),∇ẽj) + ScR
−1
em(∇× (BH −Bm

H + H̃j),∇× H̃j)

=
1

2
R−1

e

(
‖∇(uH − um

H + ẽj)‖20,Dj,k + ‖∇ẽj‖20,Dj,k − ‖∇(uH − um
H)‖20,Dj,k

)

+
1

2
ScR

−1
em

(
‖∇× (BH −Bm

H + H̃j)‖20,Dj,k + ‖∇× H̃j‖20,Dj,k − ‖∇× (BH −Bm
H)‖20,Dj,k

)

≥ 1

2
Cmin

(
‖(uj − uj

m,Bj −Bj
m)‖2E,Dj,k + ‖(ẽj , H̃j)‖2E,Dj,k

)

−1

2

(
R−1

e ‖∇(uH − um
H)‖20,Dj,k + ScR

−1
em‖∇× (BH −Bm

H)‖20,Dj,k

)
. (3.41)

Therefore, using (3.38), (3.41), (2.4), (2.5) and (2.12) leads to

1

2
Cmin‖(uj − uj

m,Bj −Bj
m)‖2E,Dj,k +

(
1

2
− ϑ

)
Cmin‖(ẽj , H̃j)‖2E,Dj,k

+a1((uH ,BH), (uH − um
H ,BH −Bm

H), (ẽj , H̃j))

+a1((uH − um
H ,BH −Bm

H), (uH ,BH), (ẽj , H̃j))

≤ 1

2
Cmin‖(uj − uj

m,Bj −Bj
m)‖2E,Dj,k +

1

2
Cmin‖(ẽj, H̃j)‖2E,Dj,k

−N̂‖(uH ,BH)‖E,Dj,k‖(ẽj , H̃j)‖2E,Dj,k

+a1((uH − um
H ,BH −Bm

H), (uH ,BH), (ẽj , H̃j))

+a1((uH ,BH), (uH − um
H ,BH −Bm

H), (ẽj , H̃j))

≤ 1

2

(
R−1

e ‖∇(uH − um
H)‖20,Dj,k + ScR

−1
em‖∇× (BH −Bm

H)‖20,Dj,k

)

−b(η̃j , ξ̃j ;uH − um
H ,BH −Bm

H) +G((ẽj , H̃j)). (3.42)

Due to (2.5), (2.12), (2.9), Young’s inequality and (3.40), we have

|a1((uH ,BH), (uH − um
H ,BH −Bm

H), (ẽj , H̃j))|
+|a1((uH − um

H ,BH −Bm
H), (uH ,BH), (ẽj , H̃j))|

≤ 2N̂‖(uH ,BH)‖E,Dj,k‖(uH − um
H ,BH −Bm

H)‖E,Dj,k‖(ẽj , H̃j)‖E,Dj,k

≤ 2ϑCmin‖(uH − um
H ,BH −Bm

H)‖E,Dj,k‖(ẽj, H̃j)‖E,Dj,k

≤ 1

60
Cmin‖(ẽj , H̃j)‖2E,Dj,k + 60Cmin‖(uH − um

H ,BH −Bm
H)‖2E,Dj,k , (3.43)

|b(η̃j , ξ̃j ;uH − um
H ,BH −Bm

H)|
≤

√
d‖(uH − um

H ,BH −Bm
H)‖E,Dj,k‖(η̃j , ξ̃j)‖B,Dj,k
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≤ CCRe,Rem ,Sc
Cmin‖(uH − um

H ,BH −Bm
H)‖2E,Dj,k

+CCRe,Rem ,Sc
Cmin‖(uH − um

H ,BH −Bm
H)‖E,Dj,k‖(ẽj, H̃j)‖E,Dj,k

+C‖(uH − um
H ,BH −Bm

H)‖E,Dj,k‖(pH − pmH , rH − rmH )‖B,Dj,k

≤ 1

60
Cmin‖(ẽj , H̃j)‖2E,Dj,k + C

(
(CRe,Rem ,Sc

)2Cmin‖(uH − um
H ,BH −Bm

H)‖2E,Dj,k

+
1

Cmin
‖(pH − pmH , rH − rmH )‖2B,Dj,k

)
, (3.44)

|G((ẽj , H̃j))| ≤ 1

60
Cmin‖(ẽj , H̃j)‖2E,Dj,k +

15

Cmin
‖G‖2

−1,Dj,k . (3.45)

Substituting (3.43)-(3.45) into (3.42) and tidying up the resultants, then employing (3.39) and

0 < ϑ ≤ 2
5 , we deduce that

Cmin

(
‖(uj − uj

m,Bj −Bj
m)‖E,Dj,k + ‖(ẽj , H̃j)‖E,Dj,k

)
(3.46)

≤ C
(
CRe,Rem ,Sc

Cmin‖(uH − um
H ,BH −Bm

H)‖E,Dj,k + ‖(pH − pmH , rH − rmH )‖B,Dj,k

)
.

It follows from (3.40), (3.46) and triangular inequality that

‖(pj − pjm, rj − rjm)‖B,Dj,k

≤ ‖(pH − pmH , rH − rmH )‖B,Dj,k + ‖(η̃j , ξ̃j)‖B,Dj,k

≤ CCRe,Rem ,Sc

(
CRe,Rem ,Sc

Cmin‖(uH − um
H ,BH −Bm

H)‖E,Dj,k

+‖(pH − pmH , rH − rmH )‖B,Dj,k

)
. (3.47)

So, we can finish the proof of Part 1 by combining (3.46) with (3.47).

Part 2. This part is for the case of Iterations I, II and III with Corrections I and III.

For the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations I, II and III with Correction III,

to get (3.28) and (3.29), we just need to change the forms of (3.36) and (3.37) according to

Algorithm 3.1 with correction (3.10) and Correction III, respectively. The rest of the proof is

similar to the above procedure.

From Algorithm 3.1 with correction (3.8) and Correction I, we have

a0((uH + uj
h,BH +Bj

h), (v,C)) + a1((uH ,BH), (uH ,BH), (v,C))

−b(pH + pjh, rH + rjh;v,C) + b(q, s;uH + uj
h,BH +Bj

h) = F((v,C)), (3.48)

a0((u
m
H + uj

mh,B
m
H +Bj

mh), (v,C)) + a1((u
m
H ,Bm

H), (um
H ,Bm

H), (v,C))

−b(pmH + pjmh, r
m
H + rjmh;v,C) + b(q, s;um

H + uj
mh,B

m
H +Bj

mh) = F((v,C)) (3.49)

for all (v,C, q, s) ∈ Xh
0 (D

j,k) × Yh
n(D

j,k) × Sh
0 (D

j,k) × Qh
0 (D

j,k). In this case, two trilinear

terms disappear in (3.48) and (3.49) respectively compared to (3.36) and (3.37). Therefore, the

results of (3.28) and (3.29) for the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations I, II

and III with Correction I can be regarded as a natural result of Part 1. This ends the proof.�

Remark 3.2. It is shown in (3.42) that if 0 < ϑ < 1
2 , (uj

m,Bj
m, pjm, rjm) provided by the

Correction II in Step II is convergent to (uj ,Bj , pj , rj). From Part 2, we see that the terms

−N̂‖(uH ,BH)‖E,Ω· ‖(ẽj, H̃j)‖2E,Dj,k and −ϑCmin‖(ẽj, H̃j)‖2E,Dj,k vanish in (3.42) and 1
2 Cmin·

‖(ẽj , H̃j)‖2E,Dj,k stands alone on the left hand. So (uj
m,Bj

m, pjm, rjm) derived by the Corrections I

and III converges to (uj ,Bj , pj, rj) without the restriction of 0 < ϑ < 1
2 . This is also the basis

for our discussion in Subsections 3.4 and 3.5.
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Theorem 3.3. Under the conditions of Lemma 3.1, (u,B, p, r) and (uh,Bh, ph, rh) are solu-

tions of (2.1) and (2.11), respectively. If (uh
m,Bh

m, phm, rhm) is obtained from Iteration I with

Corrections I, II and III, then there holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C

[
hτ +H2τ + CRe,Rem ,Sc

(
11

5
ϑ

)m

‖F‖∗,Ω
]
. (3.50)

If (uh
m,Bh

m, phm, rhm) is obtained from Iteration II with Corrections I, II and III, then there holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C

[
hτ +H2τ + CRe,Rem ,Sc

(
15

13
ϑ

)2m−1

‖F‖∗,Ω
]
. (3.51)

If (uh
m,Bh

m, phm, rhm) is obtained from Iteration III with Corrections I, II and III, then there

holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C
(
hτ +H2τ + CRe,Rem ,Sc

ϑm‖F‖∗,Ω
)
. (3.52)

Proof. We just give the proof of the case of (uh
m,Bh

m, phm, rhm) obtained from Iterations I, II

and III with Correction II, the other two cases can be proved similarly. For (uh,Bh, ph, rh) got

by Algorithm 3.1, we have

‖(uh − uh
m,Bh −Bh

m)‖E,Ω + ‖(ph − phm, rh − rhm)‖|B,Ω

=

∥∥∥∥∥

J∑

j=1

φj(u
j − uj

m,Bj −Bj
m)

∥∥∥∥∥
E,Ω

+

∥∥∥∥∥

J∑

j=1

φj(p
j − pjm, rj − rjm)

∥∥∥∥∥
B,Ω

≤ C

(
J∑

j=1

(
‖φj(u

j − uj
m,Bj −Bj

m)‖2E,Dj + ‖φj(p
j − pjm, rj − rjm)‖2B,Dj

)
) 1

2

≤ C

[
J∑

j=1

(
C2

p

(
‖(uj − uj

m,Bj −Bj
m)‖2E,Dj + ‖(pj − pjm, rj − rjm)‖2B,Dj

)

+C2
pH

−2
p

(
‖(uj − uj

m,Bj −Bj
m)‖20,Dj + ‖(pj − pjm, rj − rjm)‖20,Dj

))
] 1

2

. (3.53)

Using triangular inequality derives

‖(uh − uh
m,Bh −Bh

m)‖E,Ω + ‖(ph − phm, rh − rhm)‖B,Ω

≤ ‖(uh − uh,Bh −Bh)‖E,Ω + ‖(ph − ph, rh − rh)‖B,Ω

+‖(uh − uh
m,Bh −Bh

m)‖E,Ω + ‖(ph − phm, rh − rhm)‖B,Ω. (3.54)

Since Hp is a fixed and independent of H,h, the proof ends with (3.53), (3.54), Lemma 3.1,

and Theorems 2.2, 3.12 and 3.2. �

Remark 3.3. From Lemma 3.1, we may see that (uh
m,Bh

m, phm, rhm) derived by Iteration i with

Correction j (i, j = I, II, III) is stable and convergent when 0 < ϑ ≤ 2
5 . Furthermore, the

LPFEIA consisting of Iteration II and Correction II is suggested to be a preferable way to solve

the stationary MHD problem according to Theorems 3.2 and 3.3.
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3.3. LPFEIAs based on PUM with 2/5 < ϑ ≤ 5/11

When 2
5 < ϑ ≤ 5

11 , Iterations II and III are stable. This subsection is devoted to giving six

kinds of LPFEIAs consisting of the iterative solution (um
H ,Bm

H , pmH , rmH ) derived by Iterations II

and III on TH(Ω) and Corrections I, II and III in parallel on Th(D
j,k), j = 1, . . . , J . The

stability and convergence of these algorithms are analyzed. The LPFEIAs are presented as

Step I. Find a coarse solution (um
H ,Bm

H , pmH , rmH ) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω) by

Iterations II and III.

Step II. Solve local corrections (uj
mh,H

j
mh, p

j
mh, r

j
mh) ∈ Xh

0 (D
j,k)×Yh

n(D
j,k)×Sh

0 (D
j,k)×

Qh
0 (D

j,k) in parallel by Corrections I, II and III.

Step III. Set (uj
m,Bj

m, pjm, rjm) = (um
H +uj

mh,B
m
H +Bj

mh, p
m
H +pjmh, r

m
H + rjmh) in Dj,k (j =

1, . . . , J).

Step IV. Assemble the solution

uh
m =

J∑

j=1

φju
j
m, Bh

m =

J∑

j=1

φjB
j
m, phm =

J∑

j=1

φjp
j
m, rhm =

J∑

j=1

φjr
j
m.

Lemma 3.2. Suppose that the conditions of Theorem 2.2 hold and 2
5 < ϑ ≤ 5

11 . Then

(uj
mh,B

j
mh, p

j
mh, r

j
mh) derived by Iterations II and III with Corrections I, II and III satisfies

CminCRe,Rem ,Sc
‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(pjmh, r

j
mh)‖B,Dj,k

≤ C(CRe,Rem ,Sc
)2‖F‖∗,Ω, (3.55)

Cmin‖(uj − uj
m,Bj −Bj

m)‖E,Dj,k + ‖(pj − pjm, rj − rjm)‖B,Dj,k

≤ C
(
Cmin‖(uH − um

H ,BH −Bm
H)‖E,Dj,k + ‖(pH − pmH , rH − rmH )‖B,Dj,k

)
, (3.56)

where (uH ,BH , pH , rH) and (uj ,Bj, pj , rj) are obtained by Algorithm 3.1, and (um
H ,Bm

H , pmH , rmH )

is from Iterations II-III.

Proof. For the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations II and III with Correc-

tion II when 2
5 < ϑ ≤ 5

11 , the process of proof of (3.55) and (3.56) is the same as the ones of

(3.28) and (3.29) for the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations I, II and III with

Correction II when 0 < ϑ ≤ 2
5 . We just need to change some coefficients in the process, for

example, change 7
15 and 1 − max{ 6

5 ,
4
3 , 1}ϑ to 13

33 and 1 − max{ 4
3 , 1}ϑ in (3.31), respectively;

replace 7
15 ,

1
15 and 15

4 by 13
33 ,

2
33 and 33

8 in (3.32), respectively; replace 1
60 and 15 by 1

132 and 44

in (3.43)-(3.45), respectively. (3.55) and (3.56) in the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by

Iterations II and III with Correction I when 2
5 < ϑ ≤ 5

11 can be derived naturally by the one in

the case of Correction II.

For the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations II and III with Correction III

when 2
5 < ϑ ≤ 5

11 , the proof of (3.55) and (3.56) can be deduced similarly. The proof ends. �

Similar to the proof of Theorem 3.3, we conclude from Lemma 3.2 that

Theorem 3.4. Assume that the conditions of Lemma 3.2 hold, (u,B, p, r) and (uh,Bh, ph, rh)

are the solutions to (2.1) and (2.11), respectively. If (uh
m,Bh

m, phm, rhm) is obtained from Itera-

tion II with Corrections I, II and III, then there holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω
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≤ C

[
hτ +H2τ + CRe,Rem ,Sc

(
15

13
ϑ

)2m−1

‖F‖∗,Ω
]
. (3.57)

If (uh
m,Bh

m, phm, rhm) is obtained from Iteration III with Corrections I, II and III, then there

holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C
(
hτ +H2τ + CRe,Rem ,Sc

ϑm‖F‖∗,Ω
)
. (3.58)

Remark 3.4. From Lemma 3.2, we realize that the LPFEIA formed by Iteration i and Cor-

rection j (i = II, III, j = I, II, III) is valid for slightly high ϑ (25 < ϑ < 5
11 ). Moreover, the

combination of Iteration II with Correction II is a priority to numerically solving the stationary

MHD problem.

3.4. LPFEIAs based on PUM with 5
11 < ϑ ≤ 1

2 − ǫ0

According to Theorem 3.2, when 5
11 < ϑ, only Iteration III is stable and convergent. Due to

the explicit expression of the constant with respect to 1
2 −ϑ in (3.42), for 5

11 < ϑ ≤ 1
2 − ǫ0 ( ǫ0 is

a fixed constant can be chosen from 0 to 1
22 ), we consider three kinds of LPFEIAs by combining

the iterative solution (um
H ,Bm

H , pmH , rmH ) obtained by Iteration III on TH(Ω) with Corrections I,

II and III in parallel on Th(D
j,k), j = 1, . . . , J . The stability and convergence of the three

algorithms are proved. The LPFEIAs are

Step I. Find a coarse solution (um
H ,Bm

H , pmH , rmH ) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω) by

Iteration III.

Step II. Solve local corrections (uj
mh,B

j
mh, p

j
mh, r

j
mh) ∈ Xh

0 (D
j,k)×Yh

n(D
j,k)×Sh

0 (D
j,k)×

Qh
0 (D

j,k) in parallel by Corrections I, II and III.

Step III. Set (uj
m,Bj

m, pjm, rjm) = (um
H +uj

mh,B
m
H +Bj

mh, p
m
H +pjmh, r

m
H + rjmh) in Dj,k (j =

1, 2, . . . , J).

Step IV. Assemble the solution

uh
m =

J∑

j=1

φju
j
m, Bh

m =

J∑

j=1

φjB
j
m, phm =

J∑

j=1

φjp
j
m, rhm =

J∑

j=1

φjr
j
m.

Lemma 3.3. Assume that the conditions of Theorem 2.2 hold and 5
11 < ϑ ≤ 1

2 − ǫ0. Then

(uj
mh,B

j
mh, p

j
mh, r

j
mh) provided by Iteration III with Corrections I, II and III satisfies

CminCRe,Rem ,Sc
‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(pjmh, r

j
mh)‖B,Dj,k

≤ C(CRe,Rem ,Sc
)2‖F‖∗,Ω, (3.59)

Cmin‖(uj − uj
m,Bj −Bj

m)‖E,Dj,k + ‖(pj − pjm, rj − rjm)‖B,Dj,k

≤ C
(
Cmin‖(uH − um

H ,BH −Bm
H)‖E,Dj,k + ‖(pH − pmH , rH − rmH )‖B,Dj,k

)
, (3.60)

where (uH ,BH , pH , rH) and (uj ,Bj , pj , rj) are derived by Algorithm 3.1, and (um
H ,Bm

H , pmH , rmH )

is from Iteration III.

Proof. For the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by the combination of Iterations II

and III with Correction II when 5
11 < ϑ ≤ 1

2 − ǫ0, the process of proof of (3.59) and (3.60)
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is the same as the ones of (3.28) and (3.29) for the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by

Iterations I, II and III with Correction II when 0 < ϑ ≤ 2
5 . We just need to change some

coefficients in the process, for example, change 7
15 and 1−max{ 6

5 ,
4
3 , 1}ϑ to 1

2 + ǫ0 and 1−ϑ in

(3.31), respectively; replace 7
15 ,

1
15 and 15

4 by 1
2 ,

1
24 and 6 in (3.32), respectively; substitute 1

60

and 15 by ǫ0
8 and 2

ǫ0
in (3.43)-(3.45), respectively. Similarly, (3.59) and (3.60) for the case of

(uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations II and III with Correction I when 5

11 < ϑ ≤ 1
2 − ǫ0

are naturally valid.

For the case of (uj
mh,B

j
mh, p

j
mh, r

j
mh) obtained by Iterations II and III with Correction III

when 5
11 < ϑ ≤ 1

2 − ǫ0, the proof of (3.59) and (3.60) can be deduced similarly. The proof is

complete. �

Based on Lemma 3.3, similar to the proof of Theorem 3.3, we have the following error

estimates:

Theorem 3.5. Suppose that the conditions of Lemma 3.3 hold, (u,B, p, r) and (uh,Bh, ph, rh)

are the solutions to (2.1) and (2.11), respectively. (uh
m,Bh

m, phm, rhm) is obtained from Itera-

tion III with Corrections I, II and III, then there holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C
(
hτ +H2τ + CRe,Rem ,Sc

ϑm‖F‖∗,Ω
)
. (3.61)

Remark 3.5. From Lemma 3.3, we realize that the combination of Iteration III with Correc-

tion j in parallel (j = I, II, III) is valid for slightly high ϑ ( 5
11 < ϑ ≤ 1

2 − ǫ0).

3.5. LPFEIAs with 1/2− ǫ0 < ϑ < 1

From Remark 3.2, for ϑ ≥ 1
2 , we see that (uj

m,Bj
m, pjm, rjm) obtained by Iterations I, II and

III with Correction II in parallel may not converge to (uj ,Bj, pj , rj) of Algorithm 3.1. So, for
1
2 − ǫ0 < ϑ < 1, we investigate two kinds of LPFEIAs formed by (um

H ,Bm
H , pmH , rmH ) obtained

by Iteration III and Corrections I and III in parallel. The stability and convergence of the two

algorithms are given. The LPFEIAs are described as follows:

Step I. Find a coarse solution (um
H ,Bm

H , pmH , rmH ) ∈ XH
0 (Ω)×YH

n (Ω)× SH
0 (Ω)×QH

0 (Ω) by

Iteration III.

Step II. Solve local corrections (uj
mh,B

j
mh, p

j
mh, r

j
mh) ∈ Xh

0 (D
j,k)×Yh

n(D
j,k)×Sh

0 (D
j,k)×

Qh
0 (D

j,k) (j = 1, 2, . . . , J) in parallel by Corrections I and III.

Step III. Set (uj
m,Bj

m, pjm, rjm) = (um
H + uj

mh,B
m
H +Bj

mh, p
m
H + pjmh, r

m
H + rjmh) in Dj,k.

Step IV. Assemble the solution

uh
m =

J∑

j=1

φju
j
m, Bh

m =

J∑

j=1

φjB
j
m, phm =

J∑

j=1

φjp
j
m, rhm =

J∑

j=1

φjr
j
m.

Lemma 3.4. Suppose that the conditions of Theorem 2.2 hold and 1
2 − ǫ0 < ϑ < 1. Then

(uj
mh,B

j
mh, p

j
mh, r

j
mh) provided by Iteration III with Corrections I and III satisfies

CminCRe,Rem ,Sc
‖(uj

mh,B
j
mh)‖E,Dj,k + ‖(pjmh, r

j
mh)‖B,Dj,k

≤ C(CRe,Rem ,Sc
)2‖F‖∗,Ω, (3.62)
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Cmin‖(uj − uj
m,Bj −Bj

m)‖E,Dj,k + ‖(pj − pjm, rj − rjm)‖B,Dj,k

≤ C
(
Cmin‖(uH − um

H ,BH −Bm
H)‖E,Dj,k + ‖(pH − pmH , rH − rmH )‖B,Dj,k

)
, (3.63)

where (uH ,BH , pH , rH) and (uj ,Bj , pj , rj) are derived by Algorithm 3.1, and (um
H ,Bm

H , pmH , rmH )

is from Iteration III.

Proof. The proof of (3.62) and (3.63) can be derived naturally by previous techniques. �

Based on Lemma 3.4, similar to the proof of Theorem 3.3, we have the following error estimates:

Theorem 3.6. Suppose that the conditions of Lemma 3.4 hold, (u,B, p, r) and (uh,Bh, ph, rh)

are the solutions to (2.1) and (2.11), respectively. (uh
m,Bh

m, phm, rhm) is got by Iteration III with

Corrections I and III, then there holds

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω

≤ C
(
hτ +H2τ + CRe,Rem ,Sc

ϑm‖F‖∗,Ω
)
. (3.64)

Remark 3.6. From Lemma 3.4, we see that the LPFEIA consisting of Iteration III and Cor-

rection j (j = I, III) is valid for large 1
2 − ǫ0 < ϑ < 1. ϑ is proportional to the physical

parameters Re and Rem , this means that LPFEIA by Iteration III and Corrections I and III is

a better way to efficiently solve MHD problem at high Reynolds numbers.

4. Numerical Investigations

In this section, the FreeFEM++ software [40] is used for the numerical test. We consider

the MHD form of the classical Poiseuille flows, called Hartmann flow [3]. We show some test

results to assess the numerical efficiency of our parallel algorithms for the MHD equations

(1.1)-(1.5) under different physics parameters. The Mini element (P b
1 , P1) [39] is used for the

hydrodynamic subproblem, the lowest order Nédélec’s element for the magnetic subproblem.

To treat the nonlinear problem in the step I, the iterative tolerance is chosen as 1.0e − 12.

Denote Algorithm MiCj (i, j = 1, 2, 3) by Iteration i with Correction j (i, j = I, II, III).

Hartmann flow describes the changes of a steady unidirectional incompressible flow in the

channel Ω = [0, 6]× [−1, 1] under an external transverse magnetic field Bd = (0, 1). Let Ha =√
ReRmSc be the Hartmann number. Take f = g = 0 and the solutions are

u(x, y) = (u(y), 0), B(x, y) = (b(y), 1),

p(x, y) = −Gx− 1

2
Scb

2(y) + p0 (4.1)

with

u(y) =
GRe

Ha · tanh(Ha)

(
1− cosh(yHa)

cosh(Ha)

)
, b(y) =

G

Sc

(
sinh(yHa)

sinh(Ha)
− y

)
,

which has the boundary conditions

u = 0 on y = ±1,

(pI−Re−1∇u)n = pdn on x = 0 and x = 6,

n×B = n×Bd on ∂Ω,

where pd(x, y) = p(x, y), p0 is a constant and I is identity matrix.
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Set Re = 1.0, Rem = 0.1, Sc = 1.0. Let Tµ(Ω) (µ = Hp, H, h) be the unstructured triangu-

lation of Ω. We employ the PUM based on P1 on THp
(Ω) with Hp = 1

6 , J = 536, and 1 layer

oversampling.

According to Theorems 3.3-3.6, set the mesh size H = O(h
1

2 ) to obtain

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖(p− phm, r − rhm)‖B,Ω ≤ C(h+ Ierror),

where Ierror is the iterative errors with respect to m. If Ierror is higher order infinitesimal

quantity compared to h as h → 0, then this error estimate can be transformed to

‖(u− uh
m,B−Bh

m)‖E,Ω + ‖p− phm‖0,Ω ≈ O(h).

It should be noted that in the numerical experiment, as m increases, Ierror decreases signifi-

cantly.

The results in Table 4.1 display the errors of standard finite element method (SFEM) for this

problem. From Tables 4.2-4.4, we observe that the Algorithms MiCj (i, j = 1, 2, 3) can compute

well, the rates of ‖(u− uh
m,B−Bh

m)‖E,Ω and ‖p− phm‖0,Ω have optimal order, ‖∇(r− rhm)‖0,Ω
nearly equal to zero, and the Algorithms M2Cj save lots of CPU time. In a word, compared

to Table 4.1, the data in Tables 4.2-4.4 show the correctness and effectiveness of the proposed

Algorithms MiCj (i, j = 1, 2, 3).

Table 4.1: The errors of SFEM.

h ‖(u− uh,B−Bh)‖E,Ω rate ‖p− ph‖0,Ω rate ‖∇(r − rh)‖0,Ω CPU

1/36 2.02E-03 / 5.22E-04 / 2.01E-11 31

1/64 1.14E-03 9.95E-01 3.06E-04 9.27E-01 6.50E-11 146

1/144 5.01E-04 1.01E+00 1.18E-04 1.18E+00 1.33E-10 311

1/256 − − − − − −

1/400 − − − − − −

Table 4.2: The errors of Algorithms M1Cj (j = 1, 2, 3).

H h ‖(u− u
h
m,B−B

h
m)‖E,Ω rate ‖p− phm‖0,Ω rate ‖∇(r − rhm)‖0,Ω CPU

1/8 1/64 9.32E-03 / 1.34E-02 / 2.46E-13 40

1/12 1/144 4.19E-03 9.86E-01 5.60E-03 1.08E+00 3.87E-13 192

M1C1 1/16 1/256 2.25E-03 1.08E+00 3.16E-03 9.94E-01 5.29E-13 599

1/20 1/400 1.43E-03 1.02E+00 2.05E-03 9.70E-01 6.42E-13 1167

1/24 1/576 9.97E-04 9.89E-01 1.44E-03 9.69E-01 1.91E-13 3435

1/8 1/64 9.30E-03 / 1.29E-02 / 2.47E-13 31

1/12 1/144 4.18E-03 9.86E-01 5.57E-03 1.04E+00 3.89E-13 192

M1C2 1/16 1/256 2.25E-03 1.08E+00 3.16E-03 9.85E-01 5.31E-13 600

1/20 1/400 1.43E-03 1.01E+00 2.05E-03 9.70E-01 6.78E-13 1161

1/24 1/576 9.92E-04 1.00E+00 1.43E-03 9.88E-01 1.34E-13 3431

1/8 1/64 9.30E-03 / 1.29E-02 / 2.82E-13 31

1/12 1/144 4.18E-03 9.86E-01 5.57E-03 1.04E+00 3.66E-13 191

M1C3 1/16 1/256 2.25E-03 1.08E+00 3.16E-03 9.85E-01 5.30E-13 600

1/20 1/400 1.43E-03 1.01E+00 2.05E-03 9.70E-01 6.94E-13 1162

1/24 1/576 9.92E-04 1.00E+00 1.43E-03 9.88E-01 1.12E-13 3436
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Table 4.3: The errors of Algorithms M2Cj (j = 1, 2, 3).

H h ‖(u− u
h
m,B−B

h
m)‖E,Ω rate ‖p− phm‖0,Ω rate ‖∇(r − rhm)‖0,Ω CPU

1/8 1/64 9.29E-03 / 1.21E-02 / 7.50E-14 8

1/12 1/144 4.16E-03 9.90E-01 5.55E-03 9.61E-01 9.83E-14 34

M2C1 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.30E-13 103

1/20 1/400 1.43E-03 1.02E+00 2.05E-03 9.63E-01 1.41E-13 269

1/24 1/576 9.96E-04 9.92E-01 1.44E-03 9.69E-01 2.11E-13 688

1/8 1/64 9.27E-03 / 1.18E-02 / 7.49E-14 8

1/12 1/144 4.16E-03 9.88E-01 5.55E-03 9.30E-01 9.90E-14 43

M2C2 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.33E-13 106

1/20 1/400 1.41E-03 1.05E+00 2.05E-03 9.63E-01 1.45E-13 255

1/24 1/576 9.92E-04 9.64E-01 1.41E-03 1.03E+00 2.11E-13 676

1/8 1/64 9.27E-03 / 1.18E-02 / 7.50E-14 9

1/12 1/144 4.16E-03 9.88E-01 5.55E-03 9.30E-01 9.81E-14 41

M2C3 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.32E-13 117

1/20 1/400 1.41E-03 1.05E+00 2.05E-03 9.63E-01 1.45E-13 289

1/24 1/576 9.92E-04 9.64E-01 1.41E-03 1.03E+00 2.11E-13 629

Table 4.4: The errors of Algorithms M3Cj (j = 1, 2, 3).

H h ‖(u− u
h
m,B−B

h
m)‖E,Ω rate ‖p− phm‖0,Ω rate ‖∇(r − rhm)‖0,Ω CPU

1/8 1/64 9.29E-03 / 1.21E-02 / 7.23E-14 10

1/12 1/144 4.16E-03 9.90E-01 5.55E-03 9.61E-01 8.65E-14 52

M3C1 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.14E-13 152

1/20 1/400 1.43E-03 1.02E+00 2.05E-03 9.63E-01 1.47E-13 348

1/24 1/576 9.96E-04 9.92E-01 1.44E-03 9.69E-01 1.96E-13 785

1/8 1/64 9.27E-03 / 1.18E-02 / 8.53E-14 10

1/12 1/144 4.16E-03 9.88E-01 5.55E-03 9.30E-01 6.22E-14 56

M3C2 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.14E-13 153

1/20 1/400 1.41E-03 1.05E+00 2.05E-03 9.63E-01 1.62E-13 404

1/24 1/576 9.92E-04 9.64E-01 1.41E-03 1.03E+00 1.96E-13 927

1/8 1/64 9.27E-03 / 1.18E-02 / 7.25E-14 11

1/12 1/144 4.16E-03 9.88E-01 5.55E-03 9.30E-01 6.21E-14 46

M3C3 1/16 1/256 2.25E-03 1.07E+00 3.15E-03 9.84E-01 1.14E-13 144

1/20 1/400 1.41E-03 1.05E+00 2.05E-03 9.63E-01 1.62E-13 387

1/24 1/576 9.92E-04 9.64E-01 1.41E-03 1.03E+00 1.96E-13 825
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[9] D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics,

Numer. Math., 96 (2004), 771–800.
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