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Abstract

Topology optimization (TO) has developed rapidly recently. However, topology op-

timization with stress constraints still faces many challenges due to its highly non-linear

properties which will cause inefficient computation, iterative oscillation, and convergence

guarantee problems. At the same time, isogeometric analysis (IGA) is accepted by more

and more researchers, and it has become one important tool in the field of topology opti-

mization because of its high fidelity. In this paper, we focus on topology optimization with

stress constraints based on isogeometric analysis to improve computation efficiency and

stability. A new hybrid solver combining the alternating direction method of multipliers

and the method of moving asymptotes (ADMM-MMA) is proposed to solve this problem.

We first generate an initial feasible point by alternating direction method of multipliers

(ADMM) in virtue of the rapid initial descent property. After that, we adopt the method

of moving asymptotes (MMA) to get the final results. Several benchmark examples are

used to verify the proposed method, and the results show its feasibility and effectiveness.

Mathematics subject classification: 49J20, 65J15, 65N30.

Key words: Isogeometric topology optimization, Stress constraints, The ADMM-MMA

solver.

1. Introduction

Topology optimization (TO) is a mathematical method that finds the optimal material

layout by a given design domain under a set of loads, and boundary conditions [1]. It can be

classified into two types according to the properties of different optimized objects, that are,

topology optimization of continuum structures and discrete structures. Topology optimization

of continuum structures is a hot topic nowadays. It can be applied to various fields, such as

aerospace, bio-engineering, architectural design and so on.

Bendsoe and Kikuchi [2] first introduced the conception of the topology optimization of con-

tinuum structures and put forward a homogenization method that generated optimal topolo-

gies. Thereafter, a series of works came out. At present, there are many practical and effective

numerical methods of topology optimization of continuum structures such as homogenization
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method [2], the solid isotropic material with penalization (SIMP) method [3, 4], the level set

method [5], the moving morphable components (MMC) method [6, 7] and the moving mor-

phable void (MMV) method [8, 9]. It is very difficult to solve topology optimization of contin-

uum structures by the analytical method due to its nonlinearity. Most current methods adopt

the numerical algorithm during calculation, which is based on finite element analysis (FEA).

However, low-order shape functions often lead to numerical instabilities, slow convergence and

iterative oscillation. Moreover, the gap and barrier between geometric representation and finite

element analysis (FEA) still exist. The isogeometric analysis (IGA) offers us the opportunity

for integrating computer-aided design (CAD) and computer-aided engineering (CAE), which

was proposed by Huges et al. [10]. Recently, isogeometric analysis has already been applied

to the field of topology optimization, which is called isogeometric topology optimization (ITO)

because of its higher accuracy than traditional FEA. Kim et al. [11] extended IGA to the topol-

ogy optimization by trimming the spline. Kumar et al. [12] used B-spline elements to represent

the density function for topology optimization. They applied the implicit boundary method

to boundary conditions and loads. Finally, they made a comparison with traditional elements

and the results indicated that B-spline elements naturally tend to suppress shape irregularities

and stability. Hassani et al. [13] proposed an isogeometric approach to topology optimization

by optimality criteria. The results are independent of the number of discrediting control points

and checkerboard free. Qian [14] represented the density distribution by B-splines over a rect-

angular domain, and this representation is compact in storage and does not require neighboring

element information. Lin et al. [15] developed a unified strategy to simultaneously insert in-

clusions or holes of regular shape as well as the material to affect optimal topologies of solids.

Wang et al. [16] introduced isogeometric topology optimization for periodic lattice materials to

improve computational accuracy and efficiency and get faster convergence.

In practical engineering applications, the optimization problem with stress constraints is

very important so that we can not ignore it. In 1996, Yand and Chen [17] studied stress-

based topology optimization. They summarized the major difficulties of solving this problem.

The first one is numerous constraints because of the local quantity of stress. This property

will result in a huge computational burden of both optimization and sensitivity analysis. The

second one is highly nonlinear with design variables. Later, Bendsoe and Sigmund [18] added one

challenging issue, that is, the stress singularity phenomenon. The stress singularity arises in the

density-based optimization approaches due to the discontinuity of local stress constraints when

topology design variables tend to the critical values. It may prevent optimization algorithms

from finding the true optimal material distribution [19]. We summarize three difficulties in

topology optimization with stress constraints, which are as follows:

• Numerous stress constraints due to the local quantity of stress.

• Highly nonlinear properties.

• Stress singularity issues.

Later, researchers put forward different optimization models to solve the above three prob-

lems. Firstly, to avoid the huge computational burden created by local quality, the local stress

constraints are often replaced with some stress aggregation formulation such as the P-norm

function [20] and the Kreisselmeier Steinhauser (K-S) function [21]. However, instability will

occur in the calculation process through the approximation of these two methods. The key is

to make a trade-off between computational accuracy and efficiency. There are some works to
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illustrate this problem including the normalized P-norm measure approach [22], the improved

penalty functional approach [23], the shape equilibrium constraint strategy [24], the global stress

measure method [25] and several recently developed numerical techniques [26]. Secondly, stress

constraints are highly nonlinear. To remedy this situation, Francavilla et al. [27] presented

the optimization of shape to minimize stress concentration. Despite this, Walter [28] detailed

introduced the factors that lead to stress concentration. Thirdly, researchers put forward some

methods such as the epsilon-relaxation method [29], the qp relaxation method [30] to avoid

stress singularity. Although there are many ways to solve stress-based topology optimization,

it is still an open problem to establish new stress constraint formulations that make problems

more efficient and convergence. Liu et al. [31] solved the IGA-SIMP model with global stress

constraint and the results showed it avoided the obvious zigzag boundaries. They choose a sta-

bility transformation method (STM)-based stabilization scheme in the optimization process. In

this paper, we use the IGA-SIMP model to solve the topology optimization with stress con-

straints and choose a p-norm scheme to approximate the maximum stress and an STM-stable

scheme to ensure iteration stability.

Numerical methods of topology optimization can be divided into three types: the crite-

rion algorithm, the mathematical programming algorithm, and the intelligent algorithm [32].

The criterion algorithm is also called the optimal criterion (OC) algorithm such as the La-

grange multiplier algorithm with KKT conditions. The evolutionary structural optimization

(ESO) method [33] is also the typical criterion method. The mathematical programming al-

gorithm mainly includes sequential quadratic programming algorithm (SQP) [34], penalty and

augmented Lagrangian algorithm, the primal-dual interior point method [35] and so on. This

mathematical programming can also be used in topology optimization. Out of all of these

methods, Svanberg put forward the method of moving asymptotes (MMA) [36] in 1987, later he

promoted its convergence and came up with its globally convergent counterpart (GCMMA) [37]

in 2002. Susana and Mathias [38] made a comparison of these methods in some iterations, and

parameters when applied to various finite elements based topology optimization problems. The

intelligent algorithm is also used commonly in topology optimization including genetic algorithm

(GA) [39], simulated annealing (SA) algorithm [40], the particle swarm method [41] and so on.

One of the advantages of these algorithms is to omit the calculation of sensitivity analysis. But

when the scale of the problem is larger, optimization efficiency is decreased significantly. In this

paper, we mix the two algorithms which are Alternating Direction Method of Multipliersto

(ADMM) and MMA to improve computational efficiency.

The structure of this paper is organized as follows. In Section 2, we briefly review some

basic definitions of NonUniform Ration B-Spline (NURBS) and representation. In Section 3,

we describe the ADMM-MMA solver for topology optimization problems with global stress

constraints. In Section 4, experimental results are demonstrated and comparisons are made

between various methods on several factors (optimization time, number of iterations, and the

objective values). After that, we make a discussion on the alternating optimization method.

We conclude the paper with a summary in the last section and look to future work.

2. Preliminaries

In this section, we present the definition and general properties of NonUniform Rational

B-Spline (NURBS) basis functions and surface representations. Model formulation of topology

optimization based on isogeometric analysis is also given.
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2.1. NURBS functions

2.1.1. Definition and properties of B-spline basis functions

Given a knot vector T = {t0, t1, · · · , tn+p} (∀i, ti ≤ ti+p), the ti are called knots. The associated

B-spline functions are recursively defined by

Np
i (t) =

t− ti
ti+p−1 − ti

Np−1
i (t) +

ti+p − t

ti+p − ti+1
Np−1

i+1 (t),

where

N1
i (t) =

{

1, ti ≤ t ≤ ti+1,

0, otherwise,

where n is the number of basis functions, p is the polynomial order (degree p− 1). If the knots

are distributed equally, it is called uniform knots span, otherwise called non-uniform knots span.

2.1.2. Definition and properties of NURBS surfaces

Given a knot vector S = {s0, s1, · · · , sn+p}, (∀i, si ≤ si+p) and a knot vector T = {t0, t1, · · · ,

tm+q}, (∀j, tj ≤ tj+q), therein, p and q are the order in the s and t directions, respectively.

A NURBS surface is represented as follows:

R(s, t) =

∑n
i=0

∑m
j=0 N

p
i (s)N

q
j (t)wi,jPi,j

∑n
i=0

∑m
j=0 N

p
i (s)N

q
j (t)wi,j

, 0 ≤ s, t ≤ 1. (2.1)

{Pi,j}
n,m
i=0,j=0 forms a bidirectional control net, {wi,j}

n,m
i=0,j=0 is weight parameter and the Np

i (s)

and Np
j (t) are the NURBS basis which are defined on knots vector S and T. In Fig. 2.2, we

draw the tensor product surface of the basis function of s and t directions. Further, we define

Rp,q
i,j (s, t) as follows:

Rp,q
i,j (s, t) =

Np
i (s)N

q
j (t)wi,j

∑n
i=0

∑m
j=0 N

p
i (s)N

q
j (t)wi,j

.

So the Eq. (2.1) can be written as

R(s, t) =

n
∑

i=0

m
∑

j=0

Rp,q
i,j (s, t)Pi,j .

The properties of NURBS surfaces are also briefly listed as follows:

(1) Local support. Rp,q
i,j (s, t) is a step function, equal to zero everywhere except on s ∈

[si, si+p) and t ∈ [tj , tj+q).

(a) order=2 (b) order=4

Fig. 2.1. (a) The nonzero first-degree basis function, T = {0,0,0,1,2,3,4,4,5,5,5}; (b) The nonzero
second-degree basis functions, T = {0,0,0,1,2,3,4,4,5,5,5}.
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(a) parameter space (b) NURBS basis (c) NURBS surface

Fig. 2.2. Given S = [0, 0, 0, 0.5, 1, 1, 1], T = [0, 0, 0, 0.5, 1, 1, 1]. (a) Parameter space. (b) NURBS basis.
(c) NURBS surface.

(2) Non-negativity: Rp,q
i,j (s, t) ≥ 0, ∀i, j, s, t.

(3) Partition of unity:
∑n

i=0

∑m
j=0 R

p,q
i,j (s, t) = 1 for all (s, t) ∈ [0, 1]× [0, 1].

(4) In any given rectangle of the form [si, si+1) × [tj , tj+1), at most (p + 1) × (q + 1) basis

functions are nonzero.

2.2. Representation by IGA

We briefly recall the model formulation of static equilibrium analysis, for elaboration, refer

[42]. After that, we detailed describe the isogeometric analysis representation.

In structural analysis, given a design region Ω, the external force f and boundary conditions

BC, the material distribution ρ under the maximum stress constraints max(σ) (less than the

yield force σ0) is optimized. It should emphasize that σ0 is constant for a given material. In

response to such problems, it is usually divided into three parts, region subdivision, element

analysis and model solution. In this subsection, we focus on element analysis. It is noted that

elastic mechanics study the elastic deformation phase of the elastomer, after the removal of

external forces, the elastomer can be restored to its original state. So all equations are under

the assumption of small deformations.

Here, ε and σ are denoted as the strain tensor and the stress tensor. The relevant calculation

of the equilibrium equation is as follows:

Ku = f , (2.2)

ε = Bu, σ = D · ε = DBu,

where K is the global stiffness matrix which is composed of element stiffness matrices as

K =
∑

Ke, Ke =

∫

Ωe

BTDBdΩe.

Eq. (2.2) is called equilibrium equation. Matrix B is a strain matrix that only depends on

the shape of the element. When elements are generated and then the node coordinates are

determined, the matrix B is a constant matrix. The matrix D is called the elastic matrix

(elastic tensor). It is a constant matrix that is associated with the modulus of elasticity E

and Poisson’s ratio µ. The modulus of elasticity E is density-dependent. Some researchers [42]



Alternating Optimization Method for Isogeometric Topology Optimization with Stress Constraints 139

(a) Real design domain (b) Parameter domain (c) Integral domain

Fig. 2.3. (a) The real design domain. (b) The parameter domain with T = {0,0,0,0,0,0.125, 0.25, 0.375,
0.5,0.625,0.75,0.875,1,1,1,1,1} and S = {0,0,0,0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1,1,1,1}. (c) The
integral domain.

suggests they have a power-law relationship, that is, E = ρkE0 (k=3). The elastic matrix D

can be represented as

D =
E

1− µ2







1 µ 0

µ 1 0

0 0
1− µ

2






=

ρk · E0

1− µ2







1 µ 0

µ 1 0

0 0
1− µ

2






= ρkD0.

The von Mises yield criterion stipulates that if the von Mises stress of a material under load

is equal to or greater than the yield limit of the same material under simple tensile force (which

is easily determined experimentally), then the material will yield. Von Mises stress σvm can be

calculated by σ through transfer matrix V̄

σvm = (σT V̄ σ)
1

2 , V̄ =











1 −
1

2
0

−
1

2
1 0

0 0 3











.

Based on the concept of isogeometric analysis, NURBS are employed not only as a geometry

representation, but also a discretization tool for structural analysis. At first, we define Ω as the

physical domain and Ω̂ as the parameter domain. In this paper, we perform k-refinement to

obtain a subdivision, and then we can get many small elements Ω̂e. Next, we take the NURBS

basis functions as shape functions during the processing of analysis. The displacement u (the

density ρ) of any points is the combination of displacements at the control points uij (ρij). It

can be described as follows:

u(s, t) =

n
∑

i=0

m
∑

j=0

Rp,q
i,j (s, t)ui,j ⇒ ue =

n
∑

i=0

m
∑

j=0

Rp,q
i,j (s

c
e, t

c
e)ui,j , (2.3)

ρ(s, t) =

n
∑

i=0

m
∑

j=0

Rp,q
i,j (s, t)ρi,j ⇒ ρe =

n
∑

i=0

m
∑

j=0

Rp,q
i,j (s

c
e, t

c
e)ρi,j , (2.4)

where ui,j and ρi,j are the displacement and density control coefficients. For efficient calculation,

the displacement function and the density function in the element centroid are chosen, the

representation can be shown on the right side of Eqs. (2.3)-(2.4).
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Similarly, if we want to calculate any variables (such as stress σ, strains ε) at any point in

the physical domain Ω, it can be obtained by weighting NURBS basis. It is important to note

that all integrals are converted to Gauss integrals, defined at [0, 1]× [0, 1].

3. Methods

3.1. Formulation of optimization problem

In this paper, we take a design domain, external forces, and boundary conditions as the

inputs and structural volume as the objective function. The maximum stress is adopted as the

constraint. So the topology optimization problem can be formulated mathematically as follows:

(P) Find ρ = (ρ1,1, ρ1,2, . . . , ρ1,n, . . . , ρm,1, ρm,2, . . . , ρm,n)

min V (ρi,j) =

Ne
∑

e=1

ρeve (3.1)

s.t. Ku = f , (3.2)

max(σvM ) ≤ σ0, (3.3)

0 < ρmin ≤ ρi,j ≤ 1, (3.4)

where Eq. (3.1) represents the structural volume. ρi,j (i = 1, . . . , n, j = 1, . . . ,m) is the design

variables. ρe (e = 1, . . . , Ne) is the density of the e-th element. It is interpolated by NURBS

basis. The relationship between ρi,j and ρe can be referred to Eq. (2.4). ve (e = 1, . . . , Ne) is

the volume of the e-th element and Ne is the number of elements. K represents the stiffness

matrix. u denotes the displacement control coefficients. f is external forces. Constraint (3.3)

is the stress constraints. σVM = {σV M
1 , σV M

2 , · · · , σV M
Na

}, Na is the number of Gauss points.

We calculate the stress at the Gauss point Pa (a = 1, . . . , Na). In this paper, we adopt P-norm

scheme to approximate the maximum stress max(σvM
a ). σ0 implies yield stress of materials.

We refer to the paper [31] and use the STM stabilization scheme to avoid iterative oscillation.

The P-norm stress and relaxation functions are stated as follows:

max(σvM ) ≈ σPnorm =

(

Na
∑

a=1

(ρsaσ
vM
a )Pnorm

)

1

Pnorm

,

where Pnorm = 16 and s = 1
2 . Bound constraints (3.4) are discretized the density from two

values of 0-1 into a continuous variation between 0 and 1. ρmin is a small positive number, in

this paper, we set ρmin = 0.001 to avoid singularity in stiffness matrix.

3.2. ADMM-MMA solver

The formulation stated in Section 3.1 is a nonconvex optimization problem. We can find

that the objective function is linear, and stress constraints are highly nonlinear. In this sec-

tion, a new optimization method is proposed for isogeometric topology optimization with stress

constraints. We first generate an initial feasible point by alternating direction method of mul-

tipliers (ADMM) due to its property of rapid initial descent. After that, we adopt the method

of moving asymptotes (MMA) introduced in paper [36] to get the final results.
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3.2.1. Determine an initial feasible point by ADMM

We first introduce the details of getting an initial feasible point by ADMM. We transfer the

original problem (P) into the followed formulation by converting mandatory constraints into

soft constraints through penalty functions µ(σV M−max(σV M
a )) and adding Lagrange multiplier

λ and parameter η

L(ρ,σVM ,λ) =
∑

ρeve + µ(σ0 −max(σVM )) + λT (σV M − g(ρ))

+
η

2
‖σVM − g(ρ)‖2, (3.5)

where ρe and ρi,j (i = 1, . . . , n, j = 1, . . . ,m) are the same meaning as previous definition which

is bounded by constraints ρmin ≤ ρi,j ≤ 1. The general requirements of penalty function µ(x)

are as follows:

µ(x) =

{

∞, x > 0,

0, x ≤ 0.

µ(x) = c1 · x
c2 is taken as smooth penalty function to ensure the differentiability. Here, we use

g(ρ) to approximate von Mises stress σVM . The formulation is as follows:

g(ρi,j) =
(

D(ρi,j) · Ba ·D(ρi,j)
TV D(ρi,j) · Ba ·D(ρi,j)

T
)T

, (3.6)

where D(ρ) = ρkD0. D0 is the elastic matrix. Ba is an elastic displacement matrix on an

element. In this paper, we set λk = 0.001 (k = 1, . . . , Na), η = 0.001 and c1 = 100000, c2 = 5.

In Eq. (3.5), we regard density ρi,j and von Mises stress σVM as two independent variables

for optimization respectively to obtain the final results. These two design variables are con-

nected by the Eq. (3.6). We transfer the formulation into two-block optimization processes.

The first block takes ρ as design variables, while σVM is the design variables in the second block.

Finally, we update the parameter λ. The optimization formulations are stated as follows:

L
(

ρ[k]
)

=
∑

ρ[k]
e ve + λT

(

(σV M )[k] − g(ρ[k])
)

+
η

2

∥

∥(σV M )[k] − g(ρ[k])
∥

∥

2
, (3.7)

L
(

(σV M )[k]
)

= µ
(

σ0−max
(

(σV M )[k]
)

)

+λT
(

(σVM )[k]−g(ρ[k+1])
)

+
η

2

∥

∥(σV M )[k] − g(ρ[k+1])
∥

∥

2
, (3.8)

λ[k+1] = λ[k] + η
(

(σVM )[k+1] − g(ρ[k+1])
)

. (3.9)

Under the 2-block framework, the basic form of our ADMM algorithm is

ρ[k+1] = argmin L
(

ρ[k], (σvM )[k],λ[k]
)

, (3.10)

(σvM )[k+1] = argmin L
(

ρ[k+1], (σVM )[k],λ[k]
)

, (3.11)

λ[k+1] = λ[k] + η
(

σ[k+1] − g(ρ[k+1])
)

. (3.12)

Feasible points can be obtained by alternately optimizing density ρ and von Mises stress σ

in the initial iterations. And then, the Method of Moving Asymptotes (MMA) [36] is adopted

to get the final results. From the experimental results, it shows the initial stage of the iteration

process decreases rapidly. It should be noted that due to the highly nonlinear properties of the
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Fig. 3.1. The pipeline of our algorithm.

problem, oscillation cannot be avoided in the process of iteration. The calculation process of

our algorithm is shown in Fig. 3.1.

3.3. Sensitivity analysis

We introduce the sensitivity formulation in the ADMM method. The sensitivity analysis of

the original problem can be transformed into the sensitivity analysis of two block problems. In

Eq. (3.7), we fix the variable σV M , λ and iterated the optimal density ρ through the current

loop. To get sensitivity of Eq. (3.7), we need to calculate ∂V
∂ρij

and ∂g(ρ)
∂ρij

. In Eq. (3.8), we fix

the variable iterated from the first block problem ρ, max(σV M ), g(ρ) and iterated the optimal

von Mises σV M through the current loop.

The sensitivity of the first block problem. It mainly concludes ∂V
∂ρij

and ∂g(ρ)
∂ρij

. The

derivative of material volume with respect to density ρij reads

∂V

∂ρij
=

∂
∑Ne

e=1 ρeve
∂ρij

=

Ne
∑

e=1

∂ρe
∂ρij

· ve,

∂ρeve
∂ρij

= Rpq
ij (ξ

c
e, η

c
e) = Rij ,

∂V

∂ρij
=

Ne
∑

e=1

Rij · ve.

To calculate the derivative of g(ρ) with respect to density ρij , we first analysis g(ρ). g(ρ)

is a vector and ρij (i ∈ [0, Nx], j ∈ [0, Ny]) is also a vector. g(ρ) = (g1(ρ), g2(ρ), · · · , gNa
(ρ)),
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Na is a number of Gauss points. So ∂g(ρ)
∂ρ

is a matrix with Na rows and m cols, that is

∂g(ρ)

∂ρ
=















∂g1(ρ)

∂ρ1

∂g1(ρ)

∂ρ2
· · ·

∂g1(ρ)

∂ρNx×Ny

...
...

...
...

∂gNa
(ρ)

∂ρ1

∂gNa
(ρ)

∂ρ2
· · ·

∂gNa
(ρ)

∂ρNx×Ny















,

where Nx and Ny are the number of elements divided in u and v directions.

Let us choose an element ∂ga
∂ρij

of the matrix ∂g(ρ)
∂ρ

. Further, the derivative of the function

g(ρ) with respect to the design variable ρij in terms of chain rule shows as follows:

∂ga
∂ρij

=
∂ga
∂σa

·
∂σa

∂ρij
.

As for the term A, we give the formulation of the von Mises stress. It is a combination of

three variables σx, σy, σxy

σV M =

(

(σx − σy)
2

2
+

σx

2
+

σ2
y

2
+ 3τ2xy

)
1

2

.

So the derivative of g(ρ) with respect to density ρij is

∂g(ρ)

∂σa

=

(

∂g(ρ)

∂σx

,
∂g(ρ)

∂σy

,
∂g(ρ)

∂σxy

)

.

Moreover,

∂σV M

∂σx

=
1

2σVM
(2σx − σy),

∂σV M

∂σy

=
1

2σVM
(2σy − σx),

∂σV M

∂τxy
=

1

3τxy
(σVM ).

The derivative of σa with respect to density ρij , that is

∂σa

∂ρij
=

∂ρke
∂ρij

D0Baue + ρkeD0Ba

∂ue

∂ρij
= kρk−1

e D0Baue + ρkeD0Ba

∂ue

∂ρij
.

To simplify, we can get the following formula:

∂σa

∂ρij
= kρk−1

e D0Baue − ρkeD0Ba(−K−1
e )

∂Ke

∂ρij
ue.

Here, we adopt the adjoint method in the sensitivity analysis.

The sensitivity of the second block problem. In this part, we fix g(ρk+1) and

max(σVM ). Compared to the first part, the part of sensitivity analysis is simpler. So the
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derivative of L(σV M ) with respect to density σ reads

∂L(σVM )

∂σVM
=

∂µ(σVM −max(σV M ))

∂σVM
+ λT + η

(

σV M − g(ρ)
)

= c1 · c2 ·
(

σVM −max(σV M )
)c2−1

+ λT + η
(

σV M − g(ρ)
)

.

4. Numerical Examples

In this section, we present several examples of stress-related topology optimization obtained

with the proposed algorithm and implementation. We refer to current algorithms based on

the SIMP model such as MMA, and GCMMA algorithms. We use five factors to evaluate the

performance of the proposed algorithm, and they are volume ratio (V/V0), optimization time(t),

number of iterations (Niter), stress distribution, and convergence stability. In addition, in the

color map of stress distribution, the redder the region, the larger the von Mises stress value

is, and vice versa. The parameters and symbols are shown in Table 4.1. All the algorithms

are implemented in MATLAB 2015b and measured on an Inter(R) CoreTM i7-8550U CPU

@1.80GHz with 16GB RAM.

Table 4.1: Parameters used in the numerical experiments.

Parameter Description Value

E Young’s modulus 210 GPa

ν Poisson’s ratio 0.3

σ0 The maximum yield stress 358 GPa

Dr/DR The inner/outer radius of the quarter annulus 100/200 mm

DH/DW The height/width of the model 100/100 mm

Dh/Dw The height/width of the short edge of L-shape model 40/40 mm

f The external force 2000 N

p SIMP penalization parameter 3

maxiter Maximum number of iterations 1000

Pnorm The parameter of P-norm stress function 16

Nele The number of elements 103 − 104

Niter The number of iterative steps 1000

Pnorm The parameter of P-norm stress function 16

4.1. Quarter annulus structure design

First of all, the quarter annulus with stress-related topology optimization are solved to

demonstrate the effectiveness of the proposed approach. All relevant geometry data as well as

boundary conditions are introduced in Fig. 4.1(a). A vertical concentrated load is imposed in

the upper-left corner of the model, and we fix the bottom of the model.

We test the effectiveness of our method compared with MMA and GCMMA under the girds

100× 60. Table 4.2 lists the number of elements (Nele), some intermediate iterative topologies

and final optimal topology, final stress distribution, number of iterative steps (Niter), volume

ratio (V/V0) and optimal time (t). On the one hand, our method can achieve acceptable designs.

On the other hand, it is superior to MMA in these factors. It is also better than GCMMA in the

effectiveness of the algorithm. Generally, we use the number of iteration steps and optimization
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(a) Initial conditions (b) Initial stress distribution

Fig. 4.1. Quarter annulus structure examples.

Table 4.2: Comparison of the topology optimization process among Quarter annulus examples with
MMA, GCMMA, and ADMM-MMA.

Methods MMA GCMMA ADMM-MMA

Nele 100 × 60 100× 60 100× 60

Intermediate topologies

Stress distribution

Niter 225 964 143

V/V0 44.50% 38.58% 39.55%

t(s) 7137 32113 4856
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(a) MMA, Niter = 225 (b) GCMMA, Niter = 964 (c) ADMM-MMA, Niter = 143

Fig. 4.2. The convergence curve of three algorithms on the quarter annulus. The left horizontal axis
represents the ratio of volume (V/V0), the right horizontal axis represents the maximum von Mises
(max(σ)) and the vertical axis represents iteration numbers.

time to measure the rate of convergence. According to the comparison of total iteration steps

and the column named Intermediate topologies among the three methods, it is clearly shown

that the convergence using ADMM-MMA is faster than using the other two methods. Our

algorithm takes the least time. It saves 32% time than MMA and 85% than GCMMA. From

the colormap of stress distribution, our algorithm further reduces stress concentration. Apart

from this, in the aspect of the objective function, our method is 4.95% less than MMA and

0.97% more than GCMMA.

Next, we analyze the convergence of solving isogeometric topology optimization with stress

constraints by three algorithms. Fig. 4.2 shows the convergence plots for the Quarter annu-

lus structure, where the left horizontal axis represents the ratio of volume (V/V0), the right

horizontal axis represents the maximum von Mises (max(σ)) and the vertical axis represents

iteration numbers. As can be seen from the figure, iteration oscillation occurs in MMA. Al-

though GCMMA iterates smoothly, its convergence is slow. Our algorithm guarantees smooth

iteration and fast convergence.

4.2. L-shaped beam design

The classical L-shape beam example for stress-related topology optimization is tested in this

subsection. We fix the upper boundary and apply a downward force on the right side, shown

in Fig. 4.3(a). In Fig. 4.3(b), serious stress concentration occurs near the corner marked by

the red circle.

(a) Initial conditions (b) Initial stress distribution

Fig. 4.3. L-shaped beam structure example.
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We test three algorithms on L-shape structure and statistic number of iterations (Niter),

volume ratio (V/V0) and optimization time (t) in Table 4.3. The operation time for every

iteration is approximately 45.65s, 199.80s and 38.71s. The optimal topology can be obtained

within 209, 311, and 178 iterations, respectively. From the objective function, our method is

3.43% less than MMA and 0.19% less than GCMMA. Our algorithm takes the least time. It

saves 27.78% time than MMA and 88.90% than GCMMA.

Table 4.3: Comparison results on L-shaped beam structure with MMA, GCMMA and ADMM-MMA.

Methods MMA GCMMA ADMM-MMA

Niter 209 311 178

V/V0 32.85% 29.61% 29.42%

t(s) 9541 62137 6891

Compared with the initial design, the optimized design does alleviate the stress concentra-

tion substantially in Fig. 4.4. The stress concentration of topological structures optimized by

the GCMMA algorithm is the most serious. The results show our algorithm can further reduce

the volume ratio while avoiding stress concentration. We can find that our algorithm converges

faster and is more stable than the other two algorithms. The curve oscillation produced by the

GCMMA solver is the most obvious.

4.3. The rectangle domain design

In this subsection, the rectangle domains, that are, the Messerschmitt-Bolkow-Blohm (MBB)

beam example and cantilever beam example, are adopted to test the numerical performance of

a topology optimization approach, and demonstrate the stability of the presented approach. In

(a) MMA, σmax = 358GPa, V/V0 =
32.85%

(b) GCMMA, σmax = 358GPa,
V/V0 = 29.61%

(c) ADMM-MMA, σmax = 358GPa,
V/V0 = 29.42%

(d) MMA, Niter = 209 (e) GCMMA, Niter = 311 (f) ADMM-MMA, Niter = 178

Fig. 4.4. Comparison results on L-shape examples with MMA, GCMMA and ADMM-MMA shows in
the first row. Convergence curves (volume ratio and max von Mises stress) on the L-shape structure
shows in the second row.
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MBB beam structure, we test two situations, that are, single external force (shown in Fig. 4.5(a))

and multiple external forces (shown in Fig. 4.5(b)). In the first situation, the left edge and

bottom-right corner are fixed in the x-direction and y-direction, respectively. The downward

force is acting in the top-left corner. In the second situation, we perform two external forces

on the top boundary and fix the lower-left corner point and the lower-right corner point. As

for the cantilever beam structure, the left edge is fixed in the x-direction. The downward force

is acting on the middle-left point (shown in Fig. 4.5(c)).

We summarize the factors Niter, V/V0 and t(s) of three examples (MBB beam I, MBB

beam II, Cantilever beam) in Table 4.4. The results are consistent with the previous two cases,

that is, the convergence of ADMM-MMA is faster than MMA’s and GCMMA’s. In the three

examples, our algorithm has the least number of iteration steps and optimization time. The

number of iteration steps is 15 less than the MMA algorithm and 447 less than the GCMMA

algorithm on average. The optimization time is 12.7% less than the MMA algorithm. At the

same time, our final optimization result is better than MMA, equal to or even better than

GCMMA.

Table 4.4: Comparison results on rectangle domain examples among MMA, GCMMA and ADMM-
MMA.

Examples Factors MMA GCMMA ADMM-MMA

Niter 172 382 160

MBB beam I V/V0 27.80% 20.73% 24.62%

t(s) 9405 27704 8759

Niter 243 542 235

MBB beam II V/V0 35.62% 25.13% 28.65%

t(s) 9300 19829 7941

Niter 215 1000 189

Cantilever beam V/V0 35.68% 37.36% 33.37%

t(s) 8763 71506 8233

The isogeometric topology optimization (ITO) results of three examples with different algo-

rithms are shown in Fig. 4.7. Figs. 4.7(a)-4.7(c) are the ITO results of MBB beam I. Figs. 4.7(b)-

4.7(d) are the ITO results of MBB beam II. Figs. 4.7(b)-4.7(d) are the ITO results of the Can-

tilever beam. The first row represents the stress distribution, the second row represents the

topology optimization structures. The color bar of stress distribution ranges from 0 GPa to 358

GPa. The color bar of topology structures ranges from 0 to 1. As can be seen from the figure,

(a) MBB beam I design (b) MBB beam II design (c) Cantilever beam design

Fig. 4.5. Rectangle domain test examples.
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(a) MMA, Niter = 172 (b) GCMMA, Niter = 382 (c) ADMM-MMA, Niter = 160

Fig. 4.6. The convergence curve of three algorithms on MBB beam I.

(a) MMA, σmax = 358GPa, V/V0 =
27.8%

(b) GCMMA, σmax = 358GPa,
V/V0 = 20.73%

(c) ADMM-MMA, σmax = 358GPa,
V/V0 = 24.62%

(d) MMA, σmax = 358GPa, V/V0 =
35.62%

(e) GCMMA, σmax = 358GPa,
V/V0 = 25.13%

(f) ADMM-MMA, σmax = 358GPa,
V/V0 = 28.65%

(g) MMA, σmax = 358GPa, V/V0 =
35.68%

(h) GCMMA, σmax = 358GPa,
V/V0 = 37.36%

(i) ADMM-MMA, σmax = 358GPa,
V/V0 = 33.37%

Fig. 4.7. Comparison results on rectangle domain with MMA, GCMMA and ADMM-MMA.
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our algorithm optimization results are stable and similar to MMA results, while GCMMA opti-

mization results are relatively not stable (see Fig. 4.7(h)). All three algorithms can effectively

avoid the occurrence of stress concentration, and our algorithm performs best. See the white

box in Fig. 4.7. In Fig. 4.6, our algorithm converges faster than the other two algorithms. In

the case of tests in rectangular fields, the iterations are relatively stable. It should be noted that

in the iteration process of the second example MBB beam II, the GCMMA algorithm converges

slowly, and it reaches the maximum iteration step number maxiter = 1000. And then, we stop

the iteration and take the result of iteration 1000 for analysis.

4.4. Discussioin

In this subsection, we have a discussion on four aspects. We first work on the parameters of

the ADMM-MMA solver and illustrate the effectiveness of our algorithm. After that, we study

the preponderance of IGA compared to FEA and show that our algorithm is still applicable

for FEA. Finally, we research on the relationship between a number of design variables and

optimization time and explain the challenge of 3D isogeometric topology optimization.

4.4.1. Discussion on ADMM solver

Firstly, we review the process of the ADMM optimizer. ADMM divides the original problem

into two blocks. We optimize density ρ in the first block and stress σ in the second block. During

the initial iteration, we expected density descending takes precedence over stress constraints.

In subsequent iterations, that is, after the density has decreased to a certain extent, we expect

the optimized structure to meet the stress constraint conditions, in other words, the stress

constraint conditions have higher priority. Therefore, during the iteration, we need to update

not only Lagrange multiplier λ, but also parameter µ. Beyond that, we need to define three

maximum iterations during the iterations. They are the number of outer-iteration Nouter,

the number of inner-iteration N1
inner of the first optimization block, and the number of inner-

iteration N2
inner of the second optimization block. In this paper, we set Nouter = 30, N1

inner = 5

and N2
inner = 20. The condition for iteration termination is the value of the objective function

produced by the ADMM iteration increases.

Secondly, we analyze the number of iteration steps and time-consuming of ADMM solver in

Table 4.5. The second row to the fourth row of Table 4.5 shows a number of iteration steps.

The average number of iteration steps of ADMM is 14.72% of the total number of iteration

steps. The fifth row to the seventh row of Table 4.5 shows that the ADMM optimizer is time-

consuming. ADMM time consumption accounts for 16.89% of the total optimization time.

Table 4.5: The data statistics on ADMM iteration steps and total steps, iteration time and the total
time of the five examples.

Examples Quarter annulus L-shape design MBB beam I MBB beam II Cantilever beam

NADMM 30 30 16 26 32

Ntol 143 178 160 235 189

NADMM/Ntol 20.98% 16.85% 10.00% 11.06% 16.93%

tADMM (s) 1584 1130 1131 447 1923

ttol(s) 4856 6891 8759 7941 8233

tADMM/ttol 32.62% 16.40% 12.91% 5.63% 23.36%
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Finally, for each example, the objective function optimization curves of the three algorithms

are drawn in Fig. 4.8 so as to see the iterative process more clearly. As you can see from

these figures, ADMM declines most rapidly during the initial iteration. In a later iteration, we

adopted the MMA algorithm with the STM stability scheme. It can also achieve convergence

results.

(a) Quarter annulus structure design (b) L-shape design (c) MBB beam I design

Fig. 4.8. Comparison of iterative curves for three algorithms (MMA, GCMMA and ADMM-MMA).

4.4.2. Applicability of FEA

IGA is a special finite element because the basis function is NURBS basis. Therefore, our

algorithm is still applicable to FEA. It is worth noting that NURBS parameterization can

provide exact geometry representation, that is, there is no approximation error for the geometric

modeling at all levels of discretization. The comparisons of computational time using IGA and

FEA are introduced in paper [31] in detail. The computational efficiency of IGA is higher

under the same accuracy. Furthermore, paper [31] shows that IGA is more suitable for stress

analysis. Since this paper focuses on IGA, we give the following example in order to illustrate

the applicability of the algorithm on FEA.

Fig. 4.9 shows the optimized results tested on MBB beam I by MMA, GCMMA and ADMM-

MMA. As can be seen from Table 4.6, the number of iterations is much higher than that of the

iteration number based on IGA. Our algorithm has the least number of iteration steps. When

the number of iteration steps of GCMMA reaches 10000, it still does not converge completely,

but it has the lowest target function value. From the above, our algorithm still has advantages

in optimization time and a number of iteration steps.

Table 4.6: Comparison results on MBB beam I based on FEA by MMA, GCMMA and ADMM-MMA.

Methods MMA GCMMA ADMM-MMA

Niter 1542 10000 863

V/V0 38.68% 32.15% 35.89%

t(s) 876 13310 758

(a) MMA (b) GCMMA (c) ADMM-MMA

Fig. 4.9. Topology optimization of MMB beam I based on MMA, GCMMA, and ADMM-MMA.
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Fig. 4.10 shows the iterative process by three algorithms. It is consistent with the conclusion

of topology optimization algorithm based on IGA. Our algorithm drops fast at first loops and

has a good convergence.

(a) MMA (b) GCMMA (c) ADMM-MMA

Fig. 4.10. Comparisons of iterative curves of three algorithms (MMA, GCMMA, ADMM-MMA).

4.4.3. Relationship between the number of design variables and optimization time

We calculate the relationship between the number of independent variables and iteration time

to determine the possibility of generalization to 3D. We use NQA, NRD, NL to represent number

of variables, tQA, tMBBI , tMBBII , tCB and tL to represent optimization time. We analyze the

number of variables and optimization time in the test examples under different elements in

Tables 4.7 and 4.8, respectively.

Table 4.7: The number of variables of five examples on a different number of elements.

Nele 30× 20 50× 30 60× 40 70× 50 80× 60 100× 70 120 × 80

NQA 704 1664 2604 3744 5084 7344 10004

NRD 759 1749 2709 3869 5229 7519 10209

Nele 30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 100× 100

NL 1024 1764 2704 3844 5184 6724 10404

Table 4.8: The optimization time of five examples on a different number of elements.

Nele 30× 20 50× 30 60× 40 70× 50 80× 60 100 × 70 120× 80

tQA 194 837 1543 2476 3218 4856 6893

tMBBI 379 1398 2812 3692 4783 5984 8759

tMBBII 312 1876 2365 3292 4193 5494 7941

tCB 420 1196 2175 3688 4988 6078 8333

Nele 30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 100 × 100

tL 194.7854 473.1793 819.4591 1234.2001 2765.1942 4187.3762 6891.2561

We take the number of variables as the horizontal coordinate (x) and the optimization time

as the vertical coordinate (y) to establish the relationship between the number of variables and

time and display it in Fig. 4.11. We use polynomial functions fi (i=1,2,3,4,5) to fit each curve.

An average fitting curve f̄ is obtained by weighting

f̄ =
1

5
(f1 + f2 + f3 + f4 + f5) (4.1)

= a · x2 + b · x1 + c,
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Fig. 4.11. The trend of several design variables and optimization time.

where a =1.87e−5 , b = 0.94626, c = -472.08. When the topology optimization problem rises to

3D, the degree of freedom is increased in the z-direction. Let us take 30×20×30 on the rectangle

domain as an example. The number of variables is approximate 21120. We plug it into Eq. (4.1).

The results show that the approximate estimated optimization time is 27856 s. Therefore, it

is still a challenge to raise the problem of topology optimization with stress constraints in 3D

situations.

5. Conclusion and Future Work

This paper presents a hybrid optimization method to solve the problem of isogeometric

topology optimization based on stress-limited. We first use ADMM to get a feasible point be-

cause of its fast convergence at the beginning loops; after that, MMA is adopted to get final

optimal results. To further verify the effectiveness of the proposed algorithm, we compare our

algorithm with the classical algorithm MMA and GCMMA. GCMMA proved to be globally

convergent. But in the practical test, it convergences slowly due to the iterative oscillation.

The MMA algorithm is iteratively stable. So we use ADMM to accelerate it in the initial stage

further. Because topology optimization with stress constraints is highly nonlinear, iterative

oscillation cannot be avoided strictly in the optimization process. Despite this, several bench-

mark numerical examples are presented to demonstrate the proposed approach’s robustness,

stability, and effectiveness.

Although our algorithm has better efficiency in numerical examples, it still suffers from

some deficiencies. Since topology optimization with stress constraints is a highly nonlinear

problem, it is difficult for an algorithm that avoids iterative oscillations completely. Due to the

high complexity of this problem, topology optimization with stress constraints in 3D still faces

challenges such as inefficiency calculation, slow convergence, and so on. Parameterization of 3D

models will also be an important but complex problem. In the following work, we will study

the acceleration algorithm of 3D topology optimization and try to find a better algorithm.
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