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1. Introduction

Over the past several decades, the Crandall-Rabinowitz local bifurcation theorem [4]
and the global bifurcation theorem [24] have been widely utilized to understand the
solution set of nonlinear equations and to reveal critical roles played by physical or
biological parameters (see, e.g., [5,17] for a class of nonlocal elliptic equations, [1,13,
19, 33, 34] for the two-species reaction-diffusion competition models and [18, 28, 31]
for the predator-prey-taxis models). For more investigations, we refer the interested
readers to [16,20,21,29,30,35,39] (to mention but a few).

In this paper, we are mainly interested in the following general competitive
parabolic system including both diffusion and advection

ut = L1u+ u[r1(x)− u− bv], x ∈ Ω, t > 0,

vt = L2v + v[r2(x)− cu− v], x ∈ Ω, t > 0,

B1u = B2v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, 6≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, 6≡ 0, x ∈ Ω,

(1.1)

where Ω is a bounded and smooth domain in RN with 1 6 N ∈ Z, u(x, t) and
v(x, t) represent the population density of two competing species at location x ∈ Ω
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and time t > 0, respectively, ri(x) (i = 1, 2) is a bounded and positive function
accounting for the intrinsic growth rate, and the positive constants b and c measure
the inter-specific competition intensities (note that the intra-specific competition
coefficients have been normalized by 1). The linear differential operator Li is defined
by

Liw := div
(
di∇w − αiw∇Pi(x)

)
, i = 1, 2, (1.2)

with di > 0 denoting the rate of random diffusion, Pi(x) ∈ C1(Ω) specifying the
advective direction and αi ∈ R measuring the advection speed. The boundary
operator Bi is defined by

Biw = di
∂w

∂ν
− αiw

∂Pi
∂ν

= 0, i = 1, 2, (1.3)

where ν denotes the outward unit normal vector on the boundary ∂Ω. The no-flux
boundary conditions imposed in (1.3) mean that no individuals can cross over the
boundary of the habitat, i.e., the environment is closed.

Recently, system (1.1)-(1.3) has been systematically investigated by Zhou et al.,
[37,38], where the competition coefficients b and c are chosen as bifurcation/variable
parameters, and the global dynamics is determined in a certain range of b and c on
the b-c plane. Specifically, the authors first gave a clear picture of the local stability
around the two semi-trivial steady states in terms of critical competition coefficients
by the principal eigenvalue theory, then established an important estimate on the
linear stability of any positive steady state via an analytic argument (see also a
similar result by Guo, He and Ni [9]), and finally obtained the global dynamics
in a certain range of b and c by appealing to the theory of monotone dynamical
systems [10,11,14]. The main result suggests that either one of the two semi-trivial
steady state is globally asymptotically stable (competitive exclusion) or there is a
unique positive steady state which is globally asymptotically stable (coexistence),
depending on the competition intensities (see details in [37, Theorems 4 and 5]).

To some extent, the works [37, 38] can be seen as a study on the parameter
region of b and c where the global dynamics of system (1.1)-(1.3) can be completely
determined. In the current paper, as a further development of [37, 38], we pursue
further to understand the complicated dynamics of system (1.1)-(1.3), especially the
structure of positive steady states. To this end, we primarily employ the bifurcation
approach to present a global result on the structure of positive steady states.

Here, we mention several bifurcation results by considering some special cases
or variants of system (1.1)-(1.3). For example, system (1.1)-(1.3) with d1 = d2 = 1,
α1 = α2 = 0, r1 = r2 = a > 0 and b, c > 1 (the strong competition case) and
with zero Dirichlet boundary conditions (as well as Neumann and Robin boundary
conditions) have been investigated by Gui and Lou [8], where the existence and
multiplicity of positive steady states are carefully examined by both bifurcation
approach and degree method. A spatially one-dimensional case of system (1.1)-(1.3)
together with Danckwerts boundary conditions, modeling the competition between
two aquatic species in a free-flow environment, was studied by Wang, Tian, and
Nie [32], where among other things, a picture on the structure of positive steady
states is given by bifurcation approach. Moreover, Cantrell et al., [3] investigated
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the following slightly different model from (1.1)-(1.3)
ut = ∇ ·

(
α(x)∇ u

m

)
+ u
[
m(x)− u− bv

]
, x ∈ Ω, t > 0,

vt = ∇ ·
(
β(x)∇v

)
+ v
[
m(x)− cu− v

]
, x ∈ Ω, t > 0,

∇ u
m · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

(1.4)

where one species (i.e., u) uses an ideal free dispersal strategy with a positive
coefficient α(x), the other one (i.e., v) adopts a fickian-type diffusion with a positive
rate β(x), and the two species are supposed to compete for the same resource as
measured by a positive function m(x). Again, by employing the bifurcation theory,
the authors obtained a global bifurcation result for the positive steady states of
system (1.4).

Motivated by the above mentioned works, in the sequel, we shall consider the
general competitive system (1.1)-(1.3) and utilize the global bifurcation theory for
a C1 Fredholm mapping developed by Pejsachowicz and Rabier [22] to present a
global bifurcation result (see Theorem 4.1 in Section 4). Also, some results on the
phenomenon of multiple positive steady states are included in Section 5.

The remainder of this paper is organized as follows. In Section 2, we give
some fundamental results that are useful in later analysis. Section 3 is devoted
to the analysis of boundary behaviors of positive steady states. Based on this, we
then present the main global bifurcation result in Section 4, and finally discuss the
multiple solutions phenomenon in Section 5.

2. Preliminaries

In this section, we mainly give some fundamental results which will be used later.

2.1. Bifurcation theory

First, we recall some standard bifurcation theories.
Let X1 and Y be two Banach spaces, U be an open connected subset of R×X1

with (%0, x0) ∈ U , and let F be a continuously differentiable mapping from U into
Y , i.e., F ∈ C1(U, Y ). Assume that

(H1) F
(
%, x0

)
= 0 for

(
%, x0

)
∈ U ;

(H2) DxF , D%F , D%xF exist and are continuous in U ;

(H3) DxF
(
%0, x0

)
is a Fredholm operator with index 0, and for some θ0 ∈ X1,

Ker
(
DxF

(
%0, x0

))
= span{θ0};

(H4) D%xF
(
%0, x0

)
[θ0] 6∈ Range

(
DxF

(
%0, x0

))
.

The following local bifurcation result follows from [4].

Theorem 2.1. Let Z be any complement of Ker
(
DxF

(
%0, x0

))
in X1 and assume

that (H1)-(H4) hold. Then, there exists an open interval I = (−ε, ε) and continuous
functions

% : I → R and f : I → Z
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such that %(0) = %0, f(0) = 0, and if x(s) = x0 + sθ0 + sf(s) for s ∈ I, then
F
(
%(s), x(s)

)
= 0. Moreover, F−1

(
{0}
)

near
(
%0, x0

)
consists precisely of the curves{(

%, x
)

: x = x0

}
and Γ :=

{(
%(s), x(s)

)
: s ∈ I

}
.

If, in addition, DxF
(
%, x
)

is a Fredholm operator for all
(
%, x
)
∈ U , then the curve

Γ is contained in C, which is a connected component of Ē, where

E :=
{(
%, x
)
∈ U : F

(
%, x
)

= 0, x 6= x0

}
,

and either C is not compact in U , or C contains a point
(
%1, x0

)
with %1 6= %0.

In many nonlinear biological systems, people are particularly interested in pos-
itive solutions. Therefore, we further present an unilateral version of the above
theorem (see below). The proof can be found in [26].

Theorem 2.2. In addition to (H1)-(H4), we further assume that

(H5) the norm function x 7−→ ‖x‖ in X1 is continuously differentiable for any
x 6= 0;

(H6) for κ ∈ (0, 1), if both
(
%, x0

)
and

(
%, x
)

are in U , then (1 − κ)DxF
(
%, x0

)
+

κDxF
(
%, x
)

is a Fredholm operator.

Define

Γ+ :=
{(
%(s), x(s)

)
: s ∈ (0, ε)

}
and Γ− :=

{(
%(s), x(s)

)
: s ∈ (−ε, 0)

}
.

Let C be defined as in Theorem 2.1, and C+ (resp. C−) be the connected component
of C \Γ− (resp. C \Γ+) which includes Γ+ (resp. Γ−). Let Z be any complement of
Ker(DxF

(
%0, x0

)
) in X1, then C+ or C− satisfies one of the following alternatives:

(i) it is not compact;

(ii) it contains a point
(
%1, x0

)
with %1 6= %0;

(iii) it contains a point
(
%, x0 + z

)
with z ∈ Z \ {0}.

2.2. Some notations and definitions

Concerning system (1.1)-(1.3), here and hereafter, we fix the operators Li,Bi (i =
1, 2), the domain Ω, the functions r1(x), r2(x) and the parameter c > 0, and choose
b > 0 as a bifurcation parameter to study the bifurcation diagram.

Let us set

X1 =
{(
m,n

)
∈W 2,p(Ω)×W 2,p(Ω) : B1m = B2n = 0 on ∂Ω

}
,

Y = Lp(Ω)× Lp(Ω), p > N,

and
U = R+ ×

{(
u, v
)
∈ X1 : u > 0, v > −δ in Ω

}
, (2.1)

for some small δ > 0.



724 Q. Li, L. Zhang & P. Zhou

Define the map F : U −→ Y by

F :
(
b, (u, v)

)
7→

L1u+ u
[
r1(x)− u− bv

]
L2v + v

[
r2(x)− cu− v

]
 .

Clearly, for fixed c > 0,
(
b,
(
u, v
))

is a stationary solution of system (1.1)-(1.3) if

and only if F
(
b,
(
u, v
))

= 0. Note that F
(
b,
(
0, ṽ
))

= 0 for all b > 0.

Given any c > 0, let
(
b,
(
u, v
))

be a steady state of system (1.1)-(1.3). Then,
0 = L1u+ u

[
r1(x)− u− bv

]
, x ∈ Ω,

0 = L2v + v
[
r2(x)− cu− v

]
, x ∈ Ω,

B1u = B2v = 0, x ∈ ∂Ω.

(2.2)

Let us denote all possible steady states of system (1.1)-(1.3) in U by Sc, namely,

Sc :=
{(
b,
(
u, v
))
∈ U : F

(
b,
(
u, v
))

= 0
}
,

and the positive ones by

S+
c :=

{(
b,
(
u, v
))
∈ U : u > 0, v > 0 for x ∈ Ω, and F

(
b,
(
u, v
))

= 0
}
. (2.3)

Note that the set S+
c remains unchanged if the strict inequalities are relaxed to

u >, 6≡ 0 and v >, 6≡ 0 in Ω due to the strong maximum principle [6].
Denote by

(
ũ, 0
)

and
(
0, ṽ
)

respectively, the two semi-trivial steady states of
system (1.1)-(1.3), where ũ and ṽ are positive solutions of0 = L1u+ u

[
r1(x)− u

]
, x ∈ Ω,

B1u = 0, x ∈ ∂Ω,

and 0 = L2v + v
[
r2(x)− v

]
, x ∈ Ω,

B2v = 0, x ∈ ∂Ω,

respectively. The existence and uniqueness of ũ and ṽ are standard [2, 36], and
clearly they are independent of the competition coefficients b and c.

Linearizing system (1.1)-(1.3) at
(
ũ, 0
)

and
(
0, ṽ
)

respectively, one sees0 = L2ϕ+
[
r2(x)− cũ

]
ϕ+ λϕ, x ∈ Ω,

B2ϕ = 0, x ∈ ∂Ω,
(2.4)

and 0 = L1ψ +
[
r1(x)− bṽ

]
ψ + µψ, x ∈ Ω,

B1ψ = 0, x ∈ ∂Ω.
(2.5)
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It is well-known (see, e.g., [12,27]) that problem (2.4) (resp. (2.5)) admits a principal
eigenvalue, denoted in the sequel by λ1 (resp. µ1), which is simple and real, and its
corresponding eigenfunction ϕ1 (resp. ψ1) can be chosen strictly in Ω. Moreover,
similar to [15, Corollary 2.10], one can show that the linear stability of (ũ, 0), and
(0, ṽ) can be determined respectively by the sign of λ1 and µ1. Taking (0, ṽ) as an
example, it is linearly stable, neutrally stable and linearly unstable provided µ1 > 0,
µ1 = 0 and µ1 < 0, respectively.

Regarding λ1 and µ1, we recall a result from [37, Proposition 16] as below.

Proposition 2.1. Regard λ1 as a function of c and µ1 as a function of b. Then,

(i) there exists a critical value c∗ > 0 such that

sign(λ1) = sign (c− c∗);

(ii) there exists a critical value b∗ > 0 such that

sign(µ1) = sign (b− b∗).

Based on the above result, we can define ϕ̄ as the principal eigenfunction corre-
sponding to λ1|c=c∗ = 0, namely,

0 = L2ϕ̄+
[
r2(x)− c∗ũ

]
ϕ̄, x ∈ Ω,

B2ϕ̄ = 0, x ∈ ∂Ω,

ϕ̄ > 0, ‖ϕ̄‖L∞ = 1.

(2.6)

Furthermore, we define θ̄ as the unique positive solution ofL1θ̄ +
[
r1(x)− 2ũ

]
θ̄ = −ϕ̄ũ, x ∈ Ω,

B1θ̄ = 0, x ∈ ∂Ω,
(2.7)

where the positivity of θ̄ in Ω is due to the strong maximum principle [6]. Note
that θ is well defined since −L1 − [r1 − 2ũ]I is invertible (the spectrum lies in
{z ∈ C : Re z > 0}).

In a similar way, we define ψ̄ to be the principal eigenfunction corresponding to
µ1|b=b∗ = 0, i.e., 

0 = L1ψ̄ +
[
r1(x)− b∗ṽ

]
ψ̄, x ∈ Ω,

B1ψ̄ = 0, x ∈ ∂Ω,

ψ̄ > 0, ‖ψ̄‖L∞ = 1,

(2.8)

and ψ̃ to be the unique negative solution ofL2ψ̃ +
[
r2(x)− 2ṽ

]
ψ̃ = cṽψ̄, x ∈ Ω,

B2ψ̃ = 0, x ∈ ∂Ω,
(2.9)

where, again, the maximum principle [6] is used.
Finally, we define a critical value as follows

L̄ :=

∫
Ω
ϕ̄3 · e−

α2
d2
P2(x)dx∫

Ω
ϕ̄2 · θ̄ · e−

α2
d2
P2(x)dx

> 0. (2.10)
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2.3. Local bifurcation

For system (1.1)-(1.3), by Theorem 2.1, we have the following local bifurcation

result at
(
b∗,
(
0, ṽ
))

.

Proposition 2.2. For any M > 1, there are δ, η > 0 such that for each c ∈ [0,M ],

there exist smooth functions b̂(s), û(s) and v̂(s) defined in s ∈ (−δ, δ) such that

(i)
(
b̂(s),

(
û(s), v̂(s)

))∣∣∣
s=0

=
(
b∗,
(
0, ṽ
))

;

(ii) in the neighborhood

Nη :=
{(
b,
(
u, v
))
∈ U : |b− b∗|+ ‖

(
u, v
)
−
(
0, ṽ
)
‖ < η

}
,

the set Sc = F−1(0) is exactly determined by the trivial solution curve

C0 =
{(
b,
(
0, ṽ
))

: b ∈ R+
}
,

and the nontrivial one

C1 =
{(
b̂(s),

(
û(s), v̂(s)

))
: s ∈ (−δ, δ)

}
,

and that is,
Sc ∩Nη = (C0 ∪ C1) ∩Nη;

(iii) in the neighborhood Nη, the curve of positive solutions is determined by

S+
c ∩Nη = C+

1 :=
{(
b,
(
u, v
))
∈ C1 : u > 0 in Ω

}
;

(iv) the curve C1 is contained in C∗ which is a connected component of E1 with

E1 :=
{(
b,
(
u, v
))
∈ U : F

(
b,
(
u, v
))

= 0,
(
u, v
)
6=
(
0, ṽ
)}
.

Remark 2.1. Set θ0 =
(
ψ̄, ψ̃

)
, where ψ̄ and ψ̃ are defined in (2.8) and (2.9),

respectively. Then,

Ker
(
D(u,v)F

(
b∗,
(
0, ṽ
)))

= span
{
θ0

}
. (2.11)

The complement of Ker
(
D(u,v)F

(
b∗,
(
0, ṽ
)))

can be conveniently chosen as

Z :=
{(
u′, v′

)
∈ X1 :

∫
Ω

[
u′ψ̄ + v′ψ̃

]
dx = 0

}
, (2.12)

so that X1 = span
{
θ0

}
⊕ Z.

Similar to the above C+
1 , we can define

C−1 :=
{(
b,
(
u, v
))
∈ C1 : u < 0 in Ω

}
.

Let C+
∗ be the connected component of C∗\C−1 which includes C+

1 . Clearly, Theorem
2.2 is applicable to C+

∗ . Therefore, we have the following result.
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Proposition 2.3. C+
∗ must satisfy one of the following alternatives:

(i) it is not compact;

(ii) it contains a point
(
b1,
(
0, ṽ
))

with b1 6= b∗;

(iii) it contains a point
(
b,
(
0, ṽ
)

+ z
)

with z =
(
u′, v′

)
∈ Z \ {0}.

Proof. It suffices to verify that the following two cases hold:

(H5) the norm function
(
u, v
)
7−→ ‖

(
u, v
)
‖ in X1 is continuously differentiable for

any
(
u, v
)
6=
(
0, 0
)
;

(H6) for κ ∈ (0, 1), if both
(
b,
(
0, ṽ
))

and
(
b,
(
u, v
))

are in U , then

(1− κ)DxF
(
b,
(
0, ṽ
))

+ κDxF
(
b,
(
u, v
))

is a Fredholm operator.

Clearly, (H5) is satisfied for ‖·‖ in X1, because (u, v) 7→
∫

Ω
|(u, v)|p dx is differen-

tiable in Lp(Ω) for all p ∈ (1,∞) (see also [25]). For (H6), one should notice that for

any
(
b,
(
0, ṽ
))

and
(
b,
(
u, v
))

in U , (1−κ)D(u,v)F
(
b,
(
0, ṽ
))

+κD(u,v)F
(
b,
(
u, v
))

can be written as the sum of an isomorphism (the linear elliptic operator minus
identity) and a multiplication operator (which is a compact operator from W 2,p to
Lp). Hence, it is Fredholm of index zero [22].

3. Boundary behaviors

To better understand the geometric structure of the positive solution set S+
c , we

need to do some qualitative analysis on the boundary behaviors.
First, we discuss the possibility of positive steady states converging to (ũ, 0).

Proposition 3.1. Assume that there is a sequence of positive solutions of system

(1.1)-(1.3) denoted by
{(
bn, cn, un, vn

)}∞
n=1

with bn, cn > 0 and un, vn > 0 in Ω for

each n. Then the following statements are valid:

(i) if lim sup
n→∞

cn−c∗
‖vn‖L∞ ≤ 0, un ⇀ ũ in H1, and vn → 0 in L∞, then lim sup

n→∞
bncn ≤

L̄;

(ii) if lim inf
n→∞

cn−c∗
‖vn‖L∞ ≥ 0, un ⇀ ũ in H1, and vn → 0 in L∞, then lim inf

n→∞
bncn ≥

L̄,

where c∗ is determined in Proposition 2.1, and L̄ is defined in (2.10).

Proof. Since
(
un, vn

)
→
(
ũ, 0
)

as n→∞,
(
ũ, 0
)

must be neutrally stable. There-
fore, cn → c∗ as n→∞ (see Proposition 2.1).

Let wn = vn
‖vn‖L∞ . Then for each n > 0, we have

0 = L2wn + wn

[
r2(x)− cnun − vn

]
, x ∈ Ω,

B2wn = 0, x ∈ ∂Ω,

‖wn‖L∞ = 1, wn > 0 in Ω.

(3.1)
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Using the elliptic regularity and imbedding theorem [7], we may assume, passing to
a subsequence if necessary, that

wn −→ w∗ in C1(Ω) as n→∞,

where w∗ satisfies 
0 = L2w

∗ + w∗
[
r2(x)− c∗ũ

]
, x ∈ Ω,

B2w
∗ = 0, x ∈ ∂Ω,

‖w∗‖L∞ = 1, w∗ > 0 in Ω.

(3.2)

Hence, w∗ = ϕ̄ (recall ϕ̄ is the principal eigenfunction of (2.6)).
Set zn = un− ũ. Obviously, zn 6 0 for all n, zn → 0 as n→∞, and zn satisfies

L1zn +
[
r1(x)− 2ũ

]
zn = un

[
un + bn‖vn‖L∞wn − 2ũ

]
+ ũ2

=
[
u2
n − 2ũun + ũ2

]
+ bn‖vn‖L∞unwn

= z2
n + bn‖vn‖L∞wnzn + bn‖vn‖L∞wnũ.

(3.3)

By the standard Lp theory for elliptic equations [7], there exists a constant C > 0,
which is independent of n such that

‖zn‖W 2,p 6 C ·
[
‖z2
n‖Lp + bn‖vn‖L∞‖wnzn‖Lp + bn‖vn‖L∞‖wnũ‖Lp

]
.

Set θn = zn
bn‖vn‖L∞ . Then,

‖θn‖W 2,p 6 C ·
[
‖znθn‖Lp + ‖wnzn‖Lp + ‖wnũ‖Lp

]
. (3.4)

Due to the boundedness of wn and ũ as well as the fact that ‖zn‖L∞(Ω) → 0 as
n → ∞, one sees from (3.4) that θn is actually uniformly bounded in W 2,p (and
thus in C1). Passing to a sequence, we may assume that θn converges weakly in
W 2,p(Ω), and satisfiesL1θn +

[
r1(x)− 2ũ

]
θn = znθn + wnzn + wnũ, x ∈ Ω,

B1θn = 0, x ∈ ∂Ω,

which, together with zn → 0 and wn → w∗ = ϕ̄, further implies that θn ⇀ −θ̄,
where θ̄ > 0 is uniquely determined by (2.7).

Now, rewrite (3.1) as

L2wn +
[
r2(x)− c∗ũ

]
wn =

[
cnun + vn − c∗ũ

]
wn

=
[(
cn − c∗

)
ũ+ cnbn‖vn‖L∞θn + ‖vn‖L∞wn

]
wn,

(3.5)

and recall that for each n,

B2wn = 0 for x ∈ ∂Ω, ‖wn‖L∞ = 1, and wn > 0 in Ω.
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Multiplying (3.2) by e−
α2
d2
P2(x)wn and (3.5) by e−

α2
d2
P2(x)w∗, subtracting the result-

ing equations and integrating over Ω, one then observes that for each n,

‖vn‖L∞
∫

Ω

[
bncnwnθnϕ̄+ w2

nϕ̄
]
e−

α2
d2
P2(x)dx

+

∫
Ω

[
cn − c∗

]
wnϕ̄ũe

−α2
d2
P2(x)dx = 0.

(3.6)

Dividing both sides of (3.6) by ‖vn‖L∞ and taking n → ∞, one then finds that
statements (i) and (ii) hold.

Now, we talk about several other cases.

Proposition 3.2. Assume that there is a sequence of positive steady states of sys-

tem (1.1)-(1.3) denoted by
{(
bn, cn, un, vn

)}∞
n=1

with bn, cn > 0 and un, vn > 0 in

Ω for each n. Then the following statements hold true:

(i) if
(
un, vn

)
→
(
0, ṽ
)

in [L∞(Ω)]2 as n → ∞ and supn bn < ∞, then bn → b∗

as n→∞;

(ii) if un ⇀ ũ in H1(Ω), vn → 0 in L∞(Ω) as n→∞ and cn ≡ c∗ for all n > 0,

then bn → L̄
c∗ as n→∞;

(iii) if bn →∞ as n→∞, then cn > c∗ for n� 1;

(iv) if bn → 0, cn → c ∈ [0,∞] as n→∞ and cn 6≡ c∗, then c ∈ [0, c∗]. Moreover,
if c ∈ [0, c∗), then

(
un, vn

)
→
(
ũ, vc

)
as n → ∞, where vc is the unique

positive solution ofL2v +
[
r2(x)− cũ− v

]
v = 0, x ∈ Ω,

B2v = 0, x ∈ ∂Ω,
(3.7)

and if c = c∗, then
(
un, vn

)
→
(
ũ, 0
)

as n→∞.

Proof. First, we prove statement (i). If the sequence of {bn}∞n=1 is uniformly
bounded and does not converge to b∗, then (after passing to a subsequence if nec-
essary) there exists a small number ε0 > 0 such that bn > b∗ + ε0 or bn 6 b∗ − ε0
for all large n > 0. This in view of Proposition 2.1 implies that for all large n > 0,(
0, ṽ
)

is either linearly stable or linearly unstable, contradicting
(
un, vn

)
→
(
0, ṽ
)
.

For statement (ii), we apply Proposition 3.1 to conclude

L̄ ≤ lim inf
n→∞

bncn ≤ lim sup
n→∞

bncn ≤ L̄, i.e., bncn → L̄.

Since cn → c∗ > 0, we have bn → L̄/c∗.
Statement (iii) is a direct consequence of Lemma 3.1 (given later).
Finally, we prove statement (iv). Note that

(
bn, cn, un, vn

)
satisfies

0 = L1un + un

[
r1(x)− un − bnvn

]
, x ∈ Ω,

0 = L2vn + vn

[
r2(x)− cnun − vn

]
, x ∈ Ω,

B1un = B2vn = 0, x ∈ ∂Ω.
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Since bn → 0 as n → ∞, it follows from [37, Theorems 4, 5] that cn ∈ (0, c∗) for
all large n. Hence, c = lim

n→∞
cn ∈ [0, c∗]. Also, it is easy to see that ‖un‖W 2,p(Ω) is

uniformly bounded, and thus un should converge to some function u∗ in C1 which
satisfies (weakly) 0 = L1u+ u

[
r1(x)− u

]
, x ∈ Ω,

B1u = 0, x ∈ ∂Ω.

Hence, u∗ = ũ or u∗ = 0. If u∗ = 0, one can integrate the equation of un over Ω to
deduce a contradiction for large n. Therefore, u∗ = ũ, i.e., un → ũ as n→∞. This
fact, together with c = lim

n→∞
cn ∈ [0, c∗], further implies that vn also converges in

C1 to some function v∗ satisfying (3.7) in the weak sense.
If c = c∗, then it is easy to see

(
un, vn

)
→
(
ũ, 0
)

as n → ∞, as it is the only
nonnegative solution of (3.7). If c ∈ [0, c∗), we claim that vn → vc. Indeed, passing
to a convergent subsequence, we may assume either vn → 0 or vn → vc in L∞(Ω).

Suppose to the contrary that vn → 0. Multiplying the equation of vn by e−
α2
d2
P2(x)ϕ̄

and (2.6) by e−
α2
d2
P2(x)vn, subtracting the resulting equations and integrating over

Ω, one then sees∫
Ω

[
c∗ũ− cnun − vn

]
e−

α2
d2
P2(x)ϕ̄vndx = 0 for any n > 0,

which is impossible for large n since cnun + vn → cũ < c∗ũ.

Remark 3.1. Proposition 3.2 (iv) excludes the possibility of positive steady states
(un, vn) when bn → 0 and cn ↘ c∗ as n → ∞. Indeed, it also includes the special
situation when cn ≡ c∗ for each n > 0 and bn → 0 as n→∞.

Next, we exhibit the boundedness of S+
c .

Lemma 3.1. S+
c is uniformly bounded in c ∈ [0, c∗] with respect to the topology in

(0,∞)×X1.

Proof. This result follows directly from [37, Proposition 19].

Finally, we give a description on how S+
c is connected to

S0
c :=

{(
0,
(
u, v
))
∈ U : u > 0, v > 0 for x ∈ Ω and F

(
0,
(
u, v
))

= 0
}
.

Lemma 3.2. Let c > 0. The following statements on S+
c and S0

c are true:

(i) S+
c ∩ S0

c 6= ∅, if and only if c ∈ (0, c∗);

(ii) for each c ∈ (0, c∗), S+
c ∩S0

c =
{(

0,
(
ũ, vc

))}
, where vc is the unique positive

solution of problem (3.7);

(iii) for each c ∈ (0, c∗), there exist δ, η > 0 and C1 functions
(
b1(s),

(
u1(s), v1(s)

))
such that

(
b1(0),

(
u1(0), v1(0)

))
=
(

0,
(
ũ, vc

))
and

S+
c ∩N ′η =

{(
b1(s),

(
u1(s), v1(s)

))
: s ∈ [0, δ)

}
, (3.8)

where
N ′η :=

{(
b,
(
u, v
))
∈ U : |b|+ ‖

(
u, v
)
−
(
ũ, vc

)
‖ < η

}
.
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Proof. By the Proposition 3.2 (iv), one sees that S0
c 6= ∅, if and only if problem

(3.7) admits a unique positive solution vc. This fact, together with c > 0, further
yields c ∈ (0, c∗). Hence, statements (i) and (ii) are proved.

For statement (iii), linearizing system (1.1)-(1.3) at
(
u(x), v(x)

)
, one obtains

the following linear eigenvalue problem
L1ϕ+

[
r1(x)− u− bv

]
ϕ− u

[
ϕ+ bψ

]
+ λϕ = 0, x ∈ Ω,

L2ψ +
[
r2(x)− cu− v

]
ψ − v

[
cϕ+ ψ

]
+ λψ = 0, x ∈ Ω,

B1ϕ = B2ψ = 0. x ∈ ∂Ω.

(3.9)

Restricting problem (3.9) at
(
b,
(
u, v
))

=
(

0,
(
ũ, vc

))
, one easily sees that λ > 0.

That is, the principal eigenvalue of the linearized operator D(u,v)F
(

0,
(
ũ, vc

))
is

positive, which implies that the operator D(u,v)F
(

0,
(
ũ, vc

))
is invertible. Then

by employing the implicit function theorem, one can obtain the solution curve(
b1(s),

(
u1(s), v1(s)

))
satisfying (3.8).

Remark 3.2. Lemma 3.2 (iii) shows that nearby the point
(

0,
(
ũ, vc

))
, and S+

c

is a simple curve as given in (3.8). Indeed, if we assume α2

d2
P2(x) ≡ α1

d1
P1(x) in Ω,

then S+
c (0 < c < c∗) is a simple curve in the following sense

S+
c

∣∣∣
b∈
[
0, min{b∗, 1c }

) =
{(
b1(s),

(
u1(s), v1(s)

))
: s ∈ [0, δ)

}
, for some δ > 0. (3.10)

To see (3.10), one needs to combine the existence of a connected component of S+
c

that connects
(
b∗,
(
0, ṽ
))

and
(

0,
(
ũ, vc

))
(see Theorem 4.1 (i) given later) with

the linear stability (non-degeneracy) of any positive steady state (see [38, Theorem

1.1]) together. In particular, if 0 < c < c∗ and b∗ 6 1
c , then S+

c

∣∣∣
b∈
[
0,b∗
) is a simple

curve connecting
(
b∗,
(
0, ṽ
))

and
(

0,
(
ũ, vc

))
, and if 0 < c� 1, then S+

c is totally

a simple curve (this is because S+
c is a bounded set in b (see Lemma 3.1). We also

note here that if, instead, one uses the weaker condition α2

d2
P2(x) 6 α1

d1
P1(x) in Ω,

similar results to the above can be obtained but one needs to shrink the range of
parameter b (see [37]).

4. Global bifurcation

Let us define

Uc :=
{(
b,
(
u, v
))
∈ U : u > 0, v > 0 for x ∈ Ω

}
, (4.1)

where U is defined in (2.1).
Now, we are in a position to present the main result of this paper, which provides

a complete understanding on the global structure of S+
c .

Theorem 4.1. The following statements on S+
c are valid:
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(i) for 0 < c < c∗, S+
c remains bounded in U ,

S+
c ∩ ∂Uc =

{(
b∗,
(
0, ṽ
))
,
(

0,
(
ũ, vc

))}
, (4.2)

and S+
c has a connected component containing

(
b∗,
(
0, ṽ
))

and
(

0,
(
ũ, vc

))
;

(ii) for c = c∗, S+
c remains bounded in U ,

S+
c ∩ ∂Uc =

{(
b∗,
(
0, ṽ
))
,
( L̄
c∗
,
(
ũ, 0
))}

, (4.3)

and S+
c has a connected component containing

(
b∗,
(
0, ṽ
))

and
(
L̄
c∗ ,
(
ũ, 0
))

;

(iii) for c > c∗, S+
c is unbounded in U ,

S+
c ∩ ∂Uc =

{(
b∗,
(
0, ṽ
))}

, (4.4)

and S+
c has an unbounded connected component emanating from

(
b∗,
(
0, ṽ
))

.

Proof. We prove statement (i) by the following three steps (i.1)-(i.3).

(i.1): The boundedness of S+
c in U for c ∈ (0, c∗) is guaranteed by Lemma 3.1.

(i.2): Validity of (4.2). Let
(
b′,
(
u′, v′

))
be any element of S+

c ∩ ∂Uc. Then,(
b′,
(
u′, v′

))
is a solution of system (2.2), and clearly, b′ > 0 and u′, v′ > 0 in Ω. If

b′ = 0, then u′ = ũ or u′ = 0. We claim that u′ = 0 is impossible, because (0, 0) is
always linearly unstable, and (0, ṽ) is linearly unstable for b′ > 0 small. Therefore,
u′ = ũ > 0. Furthermore, v′ = 0 is also impossible, as (ũ, 0) is linearly unstable
for c ∈

(
0, c∗

)
. Hence, if b′ = 0, then u′ = ũ, and v′ > 0 for x ∈ Ω in view of the

maximum principle [23], i.e.,
(
u′, v′

)
=
(
ũ, vc

)
due to Lemma 3.2 (ii). If b′ > 0,

then
(
u′, v′

)
could be one of

(
0, 0
)
,
(
ũ, 0
)

and
(
0, ṽ
)
. Using the linear instability of(

0, 0
)

and
(
ũ, 0
)

again, we see
(
u′, v′

)
=
(
0, ṽ
)

and b′ = b∗, since b = b∗ is the unique

point where there is a branch of positive steady states emanating from
(
0, ṽ
)
. Such

an analysis shows that

S+
c ∩ ∂Uc ⊂

{(
b∗,
(
0, ṽ
))
,
(

0,
(
ũ, vc

))}
.

On the other hand, by Proposition 2.2,(
b∗,
(
0, ṽ
))
∈ S+

c ∩ ∂Uc,

and by Lemma 3.2 (iii), (
0,
(
ũ, vc

))
∈ S+

c ∩ ∂Uc.

This establishes (4.2).

(i.3): Now, we verify that C∗∩Uc is a connected component of S+
c whose closure

contains
(
b∗,
(
0, ṽ
))

and
(

0,
(
ũ, vc

))
(recall that C∗ and C+

∗ are defined in subsection

3.2). Clearly,
(
b∗,
(
0, ṽ
))
∈ C∗ ∩ Uc. It remains to verify

(
0,
(
ũ, vc

))
∈ C∗ ∩ Uc. By
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definition,
(
C∗ ∩ Uc

)
⊂ C+

∗ . It follows from Proposition 2.3 that C+
∗ must satisfy

one of those three alternatives given in Theorem 2.2. We claim that alternative (i)
holds. Otherwise,

C+
∗ ∩ Uc ⊆

{(
b,
(
u, v
))

: 0 < b < M
}
,

for some large M > 0, and at least one of the alternatives (ii) or (iii) holds.
However, the boundedness of C+

∗ and the non-degeneracy of
(
0, 0
)
,
(
ũ, 0
)

and
(
0, ṽ
)

for b 6= b∗ imply that

C+
∗ ∩ ∂Uc =

{(
b∗,
(
0, ṽ
))}

.

Therefore, C+
∗ intersects the trivial branch at a single point, i.e., alternative (ii)

is impossible. In fact, alternative (iii) can also be ruled out, since u remains non-

negative as
(
b,
(
u, v
))

varies in C+
∗ ∩ Uc. Hence, C+

∗ satisfies alternative (i), which is

equivalent to stating that either the closure of C+
∗ intersects ∂Uc or C+

∗ is unbounded

in the norm of U = (0,∞)×X1. By the uniform boundedness of S+
c in c ∈ [0, c∗],

C+
∗ cannot be unbounded in the norm of (0,∞)×X1. Therefore, the closure of C+

∗

contains a point
(

0,
(
ū, v̄
))
∈ ∂Uc. Since

(
0, 0
)

and
(
0, ṽ
)

are linearly unstable for

small b′ > 0 and since
(
ũ, 0
)

is linearly unstable for given c ∈ (0, c∗),
(
ū, v̄
)

is a

nonnegative steady state. By Lemma 3.2 (ii),
(

0,
(
ū, v̄
))

=
(

0,
(
ũ, vc

))
, and one

can further use Lemma 3.2 (iii) to conclude
(

0,
(
ũ, vc

))
∈ C+
∗ ∩ Uc. This finishes

(i.3).

Statement (ii) is verified by the following three aspects (ii.1)-(ii.3).

(ii.1): The boundedness of S+
c for c = c∗, again, is due to Lemma 3.1.

(ii.2): Validity of (4.3). For any
(
b1,
(
u1, v1

))
∈ S+

c ∩ ∂Uc, by continuity, it is

a solution of system (2.2) with b1 > 0 and u1, v1 > 0 in Ω. We claim that b1 = 0 is
impossible. If b1 = 0, then u1 = 0 is impossible in view of the above (i.2), and so
u1 = ũ > 0. Now, since c = c∗, we have v1 = 0. However, by Proposition 3.2(ii),
for c = c∗, there are no positive steady states converging to

(
ũ, 0
)

as b→ 0. Hence,

b1 = 0 is impossible. Next, we consider b1 > 0. Then,
(
u1, v1

)
could be one of(

0, 0
)
,
(
ũ, 0
)

and
(
0, ṽ
)
. Clearly,

(
0, 0
)

is impossible due to its linear instability. If(
u1, v1

)
=
(
0, ṽ
)
, then b1 = b∗. If

(
u1, v1

)
=
(
ũ, 0
)
, by Proposition 3.2 (ii), we see

b1 = L̄
c∗ . This indicates

S+
c ∩ ∂Uc ⊂

{(
b∗,
(
0, ṽ
))
,
( L̄
c∗
,
(
ũ, 0
))}

.

Moreover, it is easy to see
(
b∗,
(
0, ṽ
))
∈ S+

c ∩ ∂Uc. The relation
(
L̄
c∗ ,
(
ũ, 0
))
∈

S+
c ∩ ∂Uc is guaranteed by the next step. Hence, (4.3) is finished.

(ii.3): Similar to (i.3), now we verify that C∗ ∩ Uc is a connected component of

S+
c whose closure contains

(
b∗,
(
0, ṽ
))

and
(
L̄
c∗ ,
(
ũ, 0
))

. By construction, we only

need to show
(
L̄
c∗ ,
(
ũ, 0
))
∈ C∗ ∩ Uc

(
⊂ C+
∗
)
. By the above reasoning,

C+
∗ ∩ Uc ⊆

{(
b,
(
u, v
))

: 0 < b < M
}
,
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for some M > 0. Therefore, we may repeat the argument in (i.3) to prove that C+
∗

should satisfy alternative (i) in Theorem 2.2, and due to the boundedness of S+
c

for c = c∗, the closure of C+
∗ contains a point

(
b′,
(
u′, v′

))
other than

(
b∗,
(
0, ṽ
))

.

By the maximum principle [23], either u′ = 0 or v′ = 0. Since
(
0, 0
)

is linearly

unstable and since b = b∗ is the unique bifurcation point at
(
0, ṽ
)
, we see u′ 6= 0,

and thereby
(
u′, v′

)
=
(
ũ, 0
)
. By Proposition 3.2 (ii), we further have b′ = L̄

c∗ .

Hence,
(
L̄
c∗ ,
(
ũ, 0
))
∈ C∗ ∩ Uc, as desired.

Finally, we finish statement (iii) by the following (iii.1)-(iii.3).

(iii.1): Unboundedness of S+
c . It suffices to show that C+

∗ is unbounded. Suppose
to the contrary that it is bounded. If C+

∗ satisfies alternative (i) in Theorem 2.2,

then the closure of C+
∗ should contain a point

(
b1,
(
u1, v1

))
∈ ∂Uc other than(

b∗,
(
0, ṽ
))

. We claim that b1 > 0, since
(
0, 0
)

and
(
0, ṽ
)

are linearly unstable

for small b1 ≥ 0, and since
(
ũ, 0
)

is linearly stable for c > c∗. Moreover,
(
u1, v1

)
cannot be a positive steady state due to Lemma 3.2 (i). Hence, there is a point(
b1,
(
u1, v1

))
∈ C∗ ∩ Uc ∩ ∂Uc different from

(
b∗,
(
0, ṽ
))

such that
(
b1,
(
u1, v1

))
is

a non-negative solution of system (2.2) with b1 > 0, and either u1 = 0 or v1 = 0.
Using the linear instability of

(
0, 0
)
, the linear stability of

(
ũ, 0
)

and the fact that

b1 = b∗ is the unique bifurcation point at
(
0, ṽ
)
, one derives a contradiction. Having

excluded alternative (i) and noting that alternative (ii) is also impossible, C+
∗ must

satisfy alternative (iii). Then, one can use the same idea as in step (i.3) to derive

a contradiction. Hence, for c > c∗, S+
c is unbounded.

(iii.2): Validity of (4.4). The proof is very similar to the above (i.2) or (ii.2),
and thus is omitted.

(iii.3): We prove that C∗ ∩ Uc is an unbounded connected component of S+
c

whose closure contains
(
b∗,
(
0, ṽ
))

. By construction,
(
b∗,
(
0, ṽ
))
∈ C∗ ∩ Uc. It

remains to show the unboundedness of the connected component C∗ ∩ Uc. By care-
ful reading, step (iii.1) indeed shows that C+

∗ is unbounded in U = (0,∞) × X1.
Therefore, to finish the proof, we only need to verify C∗ ∩ Uc = C+

∗ . To this end,
we turn to illustrate that there are no positive solutions in C+

∗ converging to a

point
(
b2,
(
u2, v2

))
∈ ∂Uc with u2 = 0 or v2 = 0 and

(
b2,
(
u2, v2

))
6=
(
b∗,
(
0, ṽ
))

.

Clearly, such
(
b2,
(
u2, v2

))
should be one of

(
b2,
(
0, 0
))
,
(
b2,
(
ũ, 0
))

and
(
b2,
(
0, ṽ
))
,

for which, there are clearly no positive solutions converging to them, because
(
0, 0
)

is linearly unstable,
(
ũ, 0
)

is linearly stable and
(
0, ṽ
)

is linearly unstable for small
b2 > 0. Therefore, the desired result follows.

Remark 4.1. We make some discussion on the connection between Theorem 4.1
and the main results in [37], which may help readers get a better understanding.
Theorem 4.1 (i), in particular, implies that positive steady states do exist for both
small b and c, which biologically means that coexistence of two populations occurs
when the competition is weak. Such a result is consistent with the observation
in [37, Figure 2, R1 and R8] or [37, Figure 3, I]. Theorem 4.1 (ii), compared with
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(i), indicates that c = c∗ is a critical value such that the branch S+
c cannot be

close to b = 0 anymore, which is in line with [37, Theorems 4(3) and 5(3)] (see
also [37, Figures 2 and 3]). Theorem 4.1 (iii) shows that there are always positive
steady states for the strong competition case. A tough issue is to determine further
the bifurcation direction nearby the critical point (b∗, c∗), so that one may achieve
a more clear understanding on the dynamics near the degenerate point (b∗, c∗). We
leave it for future investigation.

5. Multiple solutions

In this subsection, we aim to investigate the multiple solutions phenomenon (ab-
breviated by “MSP” in the sequel) for system (1.1)-(1.3).

First, we give a definition of “MSP” as follows.

Fix all parameters in system (1.1)-(1.3) except the competition coefficient b.
We say “MSP” occurs, if there are b0 > 0 and

(
ui, vi) ∈ X1 with ui, vi > 0

in Ω (i = 1, 2) and
(
u1, v1

)
6=
(
u2, v2

)
such that both

(
b0,
(
u1, v1

))
and(

b0,
(
u2, v2

))
satisfy the elliptic system (2.2).

Recall the connected component C∗ ∩Uc of S+
c in the proof of Theorem 4.1. For

notation brevity, we define
Γc := C∗ ∩ Uc.

Note that Γc makes sense for all c ∈ (0,∞), and is quite different for c ∈ (0, c∗),
c = c∗ and c ∈ (c∗,∞) in view of Theorem 4.1.

Now, we state the main result on “MSP” as below.

Theorem 5.1. Fix all parameters in system (1.1)-(1.3) except the competition co-
efficient b. Then, “MSP” always happens in a small neighborhood of the point
(b∗, c∗).

Proof. Note that Γc∗ is a connected component of S+
c that connects

(
b∗,
(
0, ṽ
))

and
(
L̄
c∗ ,
(
ũ, 0
))

(see Theorem 4.1 (ii)), where b∗ and c∗ are determined in Propo-

sition 2.1, and L̄ is defined in (2.10).
We proceed with this proof by considering the following three cases

(1)
L̄

c∗
= b∗; (2)

L̄

c∗
> b∗; (3)

L̄

c∗
< b∗.

For case (1), if Γc∗ ⊂
{(
b,
(
u, v
))
∈ U : b ≡ b∗

}
, then fixing the parameter

b = b∗, there is a branch of positive steady states connecting
(
0, ṽ
)

and
(
ũ, 0
)
, and

thus “MSP” occurs. If Γc∗ contains a point
(
b1,
(
u1, v1

))
with b1 > b∗, due to

the connectedness of Γc∗ and L̄
c∗ = b∗, “MSP” must occur for all b ∈ (b∗, b1). The

same conclusion holds provided Γc∗ contains a point
(
b,
(
u, v
))

with b < b∗. This

finishes case (1).
For case (2), taking cn ↗ c∗, then using the property of Γc∗ , one finds that Γcn

connects
(
b∗,
(
0, ṽ
))

to
(
b1,
(
u1, v1

)) (
≈
(
L̄
c∗ ,
(
ũ, 0
)))

, and then to
(

0,
(
ũ, vc

))
.
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Since b∗ < b1 and b1 > 0, we deduce that “MSP” must occur for b ∈ (b∗, b1). This
finishes case (2).

Case (3) can be dealt with in a similar way to case (2). Here, we only note that
in a certain situation, one needs to consider Γcn with cn ↘ c∗ instead of the one in
case (2) and also needs to use the property of Γcn described in Theorem 4.1 (iii).

As a consequence of the above theorem, we have the following dynamics of
system (1.1)-(1.3) nearby the degenerate point

(
b, c
)

=
(
b∗, c∗

)
(where both semi-

trivial steady states are neutrally stable).

Corollary 5.1. Fix all parameters in system (1.1)-(1.3) except the competition

coefficients b and c. Then, there exists a positive sequence
{(
bn, cn

)}∞
n=1

with(
bn, cn

)
→
(
b∗, c∗

)
such that for each n > 0, system (1.1)-(1.3) with

(
b, c
)

=
(
bn, cn

)
has at least two different positive steady states. (note that it could happen that(
bn, cn

)
≡
(
b∗, c∗

)
for any n > 0.)

Proof. By slightly modifying the above definition of “MSP”, we may define
“MSP” at a particular value of

(
b, c
)

(two variables). In this sense, this corollary
is equivalent to saying that “MSP” always happens in a small neighborhood of(
b∗, c∗

)
.

We prove this result by discussing the three cases in the proof of Theorem 5.1.

For case (1), if Γc∗ ⊂
{(
b,
(
u, v
))
∈ U : b ≡ b∗

}
, then “MSP” occurs at a

sequence of
{(
bn, cn

)}∞
n=1

with
(
bn, cn

)
≡
(
b∗, c∗

)
, for any n > 0. If Γc∗ contains a

point
(
b,
(
u, v
))

with b > b∗, thanks to the connectedness of Γc∗ and L̄
c∗ = b∗, Γc∗

can decrease (in the value of b) continuously to two different points
(
b1,
(
u1, v1

))
and

(
b2,
(
u2, v2

))
with b1 = b2 = b∗ (note that ui or vi may be zero, i = 1, 2). This

fact allows us to choose a sequence of
{(
bn, cn

)}∞
n=1

with bn ↘ b∗ as n → ∞ and

cn ≡ c∗ for any n > 0 such that “MSP” occurs at each
(
bn, cn

)
. If Γc∗ contains a

point
(
b,
(
u, v
))

with b < b∗, then we can choose a sequence of
{(
bn, cn

)}∞
n=1

with

bn ↗ b∗ as n → ∞ and cn ≡ c∗ for any n > 0 such that “MSP” occurs at each(
bn, cn

)
.

For cases (2) and (3), following the same idea as the above, one can demonstrate

that “MSP” always occurs along a sequence of
{(
bn, cn

)}∞
n=1

with bn → b∗ and

cn → c∗ as n → ∞. The key point is the connectedness of Γc∗ or Γcn (when
necessary). We leave the proof for the interested readers.
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