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Abstract. A Nitsche-based element-free Galerkin (EFG) method for solving semilinear
elliptic problems is developed and analyzed in this paper. The existence and unique-
ness of the weak solution for semilinear elliptic problems are proved based on a con-
dition that the nonlinear term is an increasing Lipschitz continuous function of the
unknown function. A simple iterative scheme is used to deal with the nonlinear in-
tegral term. We proved the existence, uniqueness and convergence of the weak solu-
tion sequence for continuous level of the simple iterative scheme. A commonly used
assumption for approximate space, sometimes called inverse assumption, is proved.
Optimal order error estimates in L2 and H1 norms are proved for the linear and semi-
linear elliptic problems. In the actual numerical calculation, the characteristic distance
h does not appear explicitly in the parameter β introduced by the Nitsche method. The
theoretical results are confirmed numerically.

AMS subject classifications: 65N15, 65N30

Key words: Meshless method, element-free Galerkin method, Nitsche method, semilinear elliptic
problem, error estimate.

1 Introduction

Numerical methods are requisite and useful for the study of semilinear partial differen-
tial equations (PDEs) [1]. The nonlinearity of the semilinear problems only involves the
unknown function, not its derivative. Many works have been devoted to the numerical
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solutions of semilinear elliptic problems such as finite element method (FEM) [2, 3], fi-
nite difference method [4], finite volume element method [5] and discontinuous Galerkin
method [6]. Recently, some collocation meshless (or meshfree) methods [7, 8], Galerkin-
type meshless method [8] and generalized finite difference method [9, 10] have been de-
veloped to solve the semilinear PDEs. Unlike mesh-based numerical methods, the shape
functions used in the meshless methods [11–14] are linkage with nodes (or particles) scat-
tered in the underlying computational domain, which reduces the dependence on the
mesh. The meshless methods have greatly developed in the last three decades.

The element-free Galerkin (EFG) [14] method is a global Galerkin-type meshless dis-
cretization technique for PDEs. The EFG shape functions are derived from the moving
least-squares (MLS) approximation [15]. The difficulty with the imposition of essential
(or Dirichlet) boundary conditions stems from the fact that the MLS shape functions are
not interpolating. That is, the shape function associated with a node does not vanish
at other nodes. Recently, some variants of the MLS approximation have been devel-
oped to regain interpolating properties, e.g., interpolating MLS method [15], simplified
interpolating MLS method [18, 19], and improved interpolating MLS method [20], and
smoothed MLS approximation [21]. On the other hand, the EFG method have been de-
veloped for solving solute transport problems [22], tumor growth model [23] and heat
transport equation [24], as well as some nonlinear models, such as magnetohydrodynam-
ics(MHD) [25] and Korteweg-de Vries-Rosenau-regularized long-wave equations [26].

In addition to adopting the interpolating shape functions, some mandatory methods,
such as the Lagrange multiplier method [12–14], the penalty method [12,13,16,17,27,28]
and Nitsche method [29–33, 35], can straightforwardly use the non-interpolating shape
functions by modifying the original weak form. The Nitsche method was first introduced
in early 70’s in FEM context [29]. This approach seems to be more promising because of its
ease of implementation, its smaller parameter-value compared with the penalty method,
its maintenance in terms of the number of unknown variables and the symmetry positive
definiteness of the resulting system. Therefore, the Nitsche method is seen as a consistent
improvement of the penalty method [31], and these potential advantages bring some
conveniences for numerical analysis.

There are a few theoretical results in the Nitsche-based meshless method. In Ref. [32],
the approximation errors of the Galerkin meshless method for linear elliptic problem are
analyzed based on the nonsymmetric Nitsche method and an inverse assumption, and
the effect of the numerical integration are discussed. The error estimates combined with
the effect of numerical integration are also developed in [33, 34] based on the reproduc-
ing kernel gradient smoothing integration method. Using the Nitsche method, a fast
time discrete EFG method is analyzed for the fractional diffusion-wave equation [35].
In these currently reported works, however, the parameter β introduced by the Nitsche
method is empirical rather than rational, meanwhile, an unproven inverse assumption
is required in the Nitsche-based meshless numerical analysis. Moreover, the analysis
presented in [32, 33, 35] addresses only the linear PDEs.

A Nitsche-based element-free Galerkin method is presented in this paper for semi-
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linear elliptic problems. The modified weak form for semilinear elliptic problems is ana-
lyzed, and the presented simple iterative scheme is also interpreted. In addition, based on
EFG discretization, a commonly-used assumption in the Nitsche method is proven, and
optimal orders of convergence in H1 and L2 norms for the linear and semilinear elliptic
problems are derived. Finally, the value of the Nitsche parameter and the convergence
condition of the iterative scheme are discussed in detail in numerical examples.

The rest of the paper is organized as follows. First we introduce the Nitsche method
for semilinear elliptic problem in Section 2, and give a simple iterative scheme and related
convergence results in Section 3. We focus on the H1 and L2 error estimates of the EFG
discretization in Section 4. Finally the theoretical results are tested by numerical examples
in Section 5 and conclusions are summarized in Section 6.

Throughout this paper, we use C, with or without subscript, to denote a general pos-
itive constant which is independent of characteristic distance h and could take different
values at different appearances.

2 The Nitsche method for semilinear elliptic problem

Consider the following semilinear elliptic problem
−∇·a∇u+bu+c(u)= f in Ω,
u= g1 on Γ1,
a∇u·n= g2 on Γ2,

(2.1)

in which Ω⊂Rn(n≥ 1) be a nonempty bounded domain with a Lipschitz boundary
Γ=Γ1∪Γ2. u=u(x), g1= g1(x)∈H1/2(Γ1), g2= g2(x)∈ L2(Γ2), f = f (x)∈ L2(Ω) and n is
the unit outward normal to Γ. Besides, the non-decreasing Lipschitz continuous function
c(u)= c(u(x)) depends on the unknown u and satisfies the following conditions [2, 36]:

(A1) (c(u1)−c(u2))(u1−u2)≥0, ∀u1,u2∈R.

(A2) There is a positive constant L such that

|c(u1)−c(u2)|≤L|u1−u2|, ∀u1,u2∈R.

Moreover, b= b(x) is a bounded function, i.e., 0≤ b0≤ b≤ b1. Furthermore, a= a(x) =(
aij (x)

)
n×n is a symmetric matrix-valued function satisfying

a0xTx≤xTax, ∀x∈Rn,
∥∥aij
∥∥

L∞(Ω)
≤ a1,

for two positive constants a0 and a1.
A variational formulation of (2.1) is to find u∈H1(Ω) such that

a0(u,v)=F0(v), ∀v∈H1(Ω), (2.2)
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where

a0(u,v)=(a∇u,∇v)−(a∇u·n,v)Γ1
+(bu,v)+(c(u),v),

F0(v)=( f ,v)+(g2,v)Γ2
.

The Nitsche method at the continuous level is based on a modification of (2.2) by adding
some boundary integral terms at both sides of (2.2), that is

a0(u,v)−(a∇v·n,u)Γ1
+β(u,v)Γ1

=F0(v)+β(g1,v)Γ1
−(a∇v·n,g1)Γ1

, ∀v∈H1(Ω), (2.3)

in which β is a large enough positive constant parameter in order to impose the essential
boundary conditions and

(v1,v2)Γ1
=
∫

Γ1

v1v2dx.

The second term on the left-hand side of the above equation ensures the symmetry and
adjoint consistency of the formulation. The terms with β compensate for the departure of
interpolation of approximate solution and render stability. For the sake of convenience,
(2.3) can be abbreviated as

a(u,v)=F(v),

where

a(u,v)=(a∇u,∇v)−(a∇u·n,v)Γ1
+(bu,v)+(c(u),v)−(a∇v·n,u)Γ1

+β(u,v)Γ1
.

In [30, 31], a necessary assumption is

‖a∇v·n‖L2(Γ1)
≤C‖∇v‖L2(Ω)

for all v in the approximate space to ensure the coercivity of the bilinear form a(·,·) at the
discrete level. We put forward a same assumption in the continuous meaning based on a
similar purpose, namely

(A3) ‖a∇w·n‖L2(Γ1)
≤C0‖∇w‖L2(Ω) , ∀w∈H1(Ω).

For fixed u∈H1(Ω), a(u,·)∈H−1(Ω) (the dual space of H1(Ω)), we define an operator
A : H1(Ω)→H−1(Ω) by Au= a(u,·). 〈Au,v〉 denotes the value of the continuous linear
functional Au∈H−1(Ω) applied to v∈H1(Ω), i.e., 〈Au,v〉= a(u,v).
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From (A1) and (A3), we have

|〈Au−Av,u−v〉|
=|a(u,u)−a(u,v)−a(v,u)+a(v,v)|

=

∣∣∣∣ (a∇(u−v),∇(u−v))−2(a∇(u−v)·n,(u−v))Γ1

+(b(u−v),(u−v))+(c(u)−c(v),(u−v))+β(u−v,u−v)Γ1

∣∣∣∣
≥a0‖∇(u−v)‖2

L2(Ω)−ε‖u−v‖2
L2(Γ1)

− 1
ε
‖a∇(u−v)·n‖2

L2(Γ1)

+b0‖u−v‖2
L2(Ω)+β‖u−v‖2

L2(Γ1)

≥
(

a0−C2
0

ε

)
‖∇(u−v)‖2

L2(Ω)+b0‖u−v‖2
L2(Ω)+(β−ε)‖u−v‖2

L2(Γ1)

≥C1

(
‖∇(u−v)‖2

L2(Ω)+‖u−v‖2
L2(Ω)+β‖u−v‖2

L2(Γ1)

)
, (2.4)

for any ε>0, in which

C1=min
(

a0−C2
0

ε
,
β−ε

β
,b0

)
>0

implies

β> ε>
C2

0
a0 .

Now we define ‖·‖β as

‖w‖2
β =‖∇w‖2

L2(Ω)+‖w‖
2
L2(Ω)+β‖w‖2

L2(Γ1)
. (2.5)

Clearly, ‖·‖β is a norm. The strong monotonicity of operator A is determined as,

|〈Au−Av,u−v〉|≥C1‖u−v‖2
β . (2.6)

On the other hand,

|〈Au1,v〉−〈Au2,v〉|

=

∣∣∣∣ (a∇(u1−u2),∇v)−(a∇(u1−u2)·n,v)Γ1
−(a∇v·n,u1−u2)Γ1

+(b(u1−u2),v)+(c(u1)−c(u2),v)+β(u1−u2,v)Γ1

∣∣∣∣
≤‖∇(u1−u2)‖L2(Ω)

(
a1

2
‖∇v‖L2(Ω)+C0‖v‖L2(Γ1)

)
+β‖u1−u2‖L2(Γ1)

‖v‖L2(Γ1)

+C0‖∇v‖L2(Ω)‖u1−u2‖L2(Γ1)
+(b1+L)‖u1−u2‖L2(Ω)‖v‖L2(Ω)

+‖∇v‖L2(Ω)

a1

2
‖∇(u1−u2)‖L2(Ω)

≤C2‖u1−u2‖β‖v‖β , (2.7)



T. Zhang and X. Li / Adv. Appl. Math. Mech., 16 (2024), pp. 24-46 29

in which

C2=max
(

C0,
a1

2
,L+b1,1

)
.

Hence the operator A is Lipschitz continuous. Furthermore, we define 〈l,v〉=F(v),

|〈l,v〉|≤
(
‖ f ‖L2(Ω)+‖g2‖L2(Γ2)

+
(√

β+1
)
‖g1‖H1/2(Γ1)

)
‖v‖β . (2.8)

Then, l∈H−1(Ω) and 〈Au,v〉= 〈l,v〉 has a unique solution u∈H1(Ω) [36], namely, (2.3)
has a unique solution u.

3 Simple iterative scheme

Due to the existence of the nonlinear integral term (c(u),v), the weak solution u cannot
be directly obtained from (2.3). We apply a simple iterative scheme to derive the weak
solution and prove the convergence of this format.

Simple iterative scheme: choose an initial value u0∈H1(Ω) and acquire uk+1 by solv-
ing the linear system

a1

(
uk+1,v

)
=F(v)−

(
c
(

uk
)

,v
)

, ∀v∈H1(Ω), k=0,1,2,··· , (3.1)

where

a1

(
uk+1,v

)
=
(

a∇uk+1,∇v
)
−
(

a∇uk+1 ·n,v
)

Γ1
+
(

buk+1,v
)

−
(

a∇v·n,uk+1
)

Γ1
+β
(

uk+1,v
)

Γ1
.

Theorem 3.1. For given initial value u0∈H1(Ω), there exists a unique weak solution sequence{
uk} generated by (3.1) that converges to the weak solution u of (2.3) if q= L

C1
∈ (0,1), and

∥∥∥uk−u
∥∥∥

j
≤ qk

1−q

∥∥∥u1−u0
∥∥∥

j
, (3.2)

where j can be β, L2(Ω) or H1(Ω) to represent different norms.

Proof. The coercivity of a1(·,·) comes from a derivation similar to (2.4),

a1(v,v)≥C1‖v‖2
β .

Similar to (2.7), the continuity of a1(·,·) follows

a1(w,v)≤C2‖w‖β‖v‖β .
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Since c(u) is a continuous function, then l1(·)=F(·)−
(
c
(
uk),·

)
: H1(Ω)→R is a bounded

linear functional. According to Lax-Milgram theorem, there has a unique weak solution
uk+1∈H1(Ω) for (3.1).

Let uk,uk+1∈H1(Ω) be weak solutions derived from (3.1),

a1

(
uk+1−uk,v

)
=−

(
c
(

uk
)
−c
(

uk−1
)

,v
)

, ∀v∈H1(Ω). (3.3)

Since uk+1−uk∈H1(Ω), again by Lax-Milgram theorem, the above equality has a unique
solution and∥∥∥uk+1−uk

∥∥∥
β
≤ 1

C1
sup

v∈H1(Ω)

∣∣(c(uk)−c
(
uk−1),v

)∣∣
‖v‖β

≤q
∥∥∥uk−uk−1

∥∥∥
L2(Ω)

, (3.4)

where q= L
C1

. In a general way, using∥∥∥uk+1−uk
∥∥∥

L2(Ω)
≤
∥∥∥uk+1−uk

∥∥∥
H1(Ω)

≤
∥∥∥uk+1−uk

∥∥∥
β

yields ∥∥∥um−uk
∥∥∥

j
≤
(

m−1

∑
i=k

qi

)∥∥∥u1−u0
∥∥∥

j
, m> k, (3.5)

where j is β, L2(Ω) or H1(Ω). Since
{

uk} is a Cauchy sequence in H1(Ω) when q∈(0,1),
by the completeness, there exists a unique ū such that uk→ ū(k→∞). On the other hand,
applying the continuity of c(uk) and a1

(
uk+1,v

)
obtains

lim
k→∞

(
c
(

uk
)

,v
)
=(c(ū),v), lim

k→∞
a1

(
uk+1,v

)
=a1(ū,v).

Let k→∞ in (3.1), we get

a1(ū,v)=F(v)−(c(ū),v), ∀v∈H1(Ω).

Therefore ū=u a.e. in Ω and let m→∞ in (3.5) implies (3.2). At this point, we complete
the proof.

4 EFG error analysis

To approximate the solutions of the iterative formulation (3.1), we need to give the finite-
dimensional subspace Vh⊂H1 as

Vh =span{Φi (x), 1≤ i≤N},
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in which {xi}N
i=1 be a set of N nodes in Ω̄=Ω∪Γ and the MLS shape functions Φi (x) are

Φi(x)=


m

∑
j=1

pj(x)
[
A−1(x)B(x)

]
jI

, i=λI∈∧(x),

0, i /∈∧(x),

i=1,2,··· ,N, (4.1)

in which pj (x) denote the shifted and scaled monomial basis functions [17],
∧(x)={λ1,λ2,··· ,λnx} indicates the global sequence numbers of nodes whose support
domains cover the point x. The support domain of x is <(x) with radius r(x),

<(x)={y∈Rn : |y−x|≤ r(x)}.

Others,

A(x)=PTW(x)P, B(x)=PTW(x),

with

P=
[
p(xλ1),··· ,p

(
xλnx

)]T ,

p(xi)=(p1(xi),··· ,pm (xi))
T ,

W(x)=diag
(
wλ1 (x),··· ,wλnx

(x)
)

.

Assume that the distribution of discrete nodes {xi}N
i=1 meets the following conditions:

(B1) Define the characteristic distance h as

h≤hi≤Ch, hi = min
1≤j≤N, j 6=i

∣∣xi−xj
∣∣.

(B2) To ensure the invertibility of A(x),

card{∧(x)}≥dim
{

pj (x)
}
=

(m̂+n)!
m̂!n!

,

where m̂ represents the largest degree of the used monomial basis functions.

In addition, assume that the derivatives of weight function wi(x) up to order γ are
bounded and continuous such that wi(x)∈Cγ

0 (<(xi)). Then, MLS shape functions Φi(x)
are bounded and γ-times continuously differentiable, i.e., Φi(x)∈Cγ

0 (<(xi)).

Lemma 4.1 ([16, 17]). Suppose that w∈Hm̂+1(Ω), conditions (B1) and (B2) are satisfied,Mw
denotes the MLS approximation of w, then

‖w−Mw‖Hk(Ω)≤Chm̂+1−k‖w‖Hm̂+1(Ω) , 0≤ k≤min{m̂+1,γ}.



32 T. Zhang and X. Li / Adv. Appl. Math. Mech., 16 (2024), pp. 24-46

The EFG method for the simple iterative scheme follows. Set k = 0 and choose a
tolerance τ. The initial value u0

h∈H1(Ω) is the solution of the following linear system,

a1
(
u0

h,v
)
=F(v), ∀v∈Vh. (4.2)

1. Obtain uk+1
h by solving

a1

(
uk+1

h ,v
)
=F(v)−

(
c
(

uk
h

)
,v
)

, ∀v∈Vh. (4.3)

2. Update k to k+1 and go to 1 if |uk+1
h −uk

h|> τ|uk
h|. Otherwise, stop the iterative

algorithm.

Theorem 4.1. The sequence of iterative solutions {uk
h} generated by (4.3) converges to uh when

q= L
C1
∈ (0,1), and ∥∥∥uk

h−uh

∥∥∥
j
≤ qk

1−q

∥∥∥u1
h−u0

h

∥∥∥
j
, (4.4)

where j means β, L2(Ω) or H1(Ω).

Proof. Let uk
h,uk+1

h ∈Vh be solutions obtained from (4.3),

a1

(
uk+1

h −uk
h,v
)
=−

(
c
(

uk
h

)
−c
(

uk−1
h

)
,v
)

, ∀v∈Vh. (4.5)

Similar to (3.4), ∥∥∥uk+1
h −uk

h

∥∥∥
j
≤q
∥∥∥uk

h−uk−1
h

∥∥∥
j
, (4.6)

where j can be β, L2(Ω) or H1(Ω) implies different norms. Therefore, {uk
h} is still a

Cauchy sequence in H1(Ω) because Vh ⊂ H1(Ω), so there exists a unique uh ∈ H1(Ω)
such that uk

h→uh(k→∞). From the continuity of c(uk
h) and a1(uk+1

h ,v), let k→∞ in (4.3),

a1(uh,v)=F(v)−(c(uh),v), ∀v∈Vh.

Finally, (4.6) implies (4.4).

To estimate the errors, let Rh : H1→Vh be the orthogonal projection of H1 on Vh such
that

a1

(
Rhuk+1,v

)
= a1

(
uk+1,v

)
, ∀v∈Vh, k=0,1,2,··· . (4.7)

Since Rhuk+1 is the best approximation of uk+1 in Vh with respect to ‖·‖β,∥∥∥Rhuk+1−uk+1
∥∥∥

β
≤
∥∥∥Muk+1−uk+1

∥∥∥
β

.
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In order to derive the L2 norm error of the projection Rh, we define the auxiliary problem
−∇·a∇ψ+bψ=uk+1−Rhuk+1 in Ω,
ψ=0 on Γ1,
a∇ψ·n=0 on Γ2,

the weak form of which is

a1(ψ,v)=
(

uk+1−Rhuk+1,v
)

, ∀v∈H1.

Assume that Ω is a convex domain or the boundary Γ of Ω is smooth, then

‖ψ‖H2(Ω)≤C
∥∥∥uk+1−Rhuk+1

∥∥∥
L2(Ω)

.

According to (4.7) and the fact thatMψ∈Vh, we have a1
(
Mψ,Rhuk+1)= a1

(
Mψ,uk+1).

Then, a1
(
Mψ,uk+1−Rhuk+1)=0. Hence,∥∥∥uk+1−Rhuk+1

∥∥∥2

L2(Ω)
=
(

uk+1−Rhuk+1,uk+1−Rhuk+1
)

=a1

(
ψ,uk+1−Rhuk+1

)
= a1

(
ψ−Mψ+Mψ,uk+1−Rhuk+1

)
=a1

(
ψ−Mψ,uk+1−Rhuk+1

)
≤C2‖ψ−Mψ‖β

∥∥∥uk+1−Rhuk+1
∥∥∥

β
. (4.8)

From the trace inequality and Lemma 4.1, we have

‖ψ−Mψ‖2
L2(Γ1)

≤C‖ψ−Mψ‖L2(Ω)‖ψ−Mψ‖H1(Ω)≤Ch3‖ψ‖2
H2(Ω) , (4.9a)

‖∇(ψ−Mψ)·n‖2
L2(Γ1)

≤Ch‖ψ‖2
H2(Ω) . (4.9b)

Then

‖ψ−Mψ‖β≤‖ψ−Mψ‖H1(Ω)+‖∇(ψ−Mψ)·n‖1/2
L2(Γ1)

‖ψ−Mψ‖1/2
L2(Γ1)

+
√

β‖ψ−Mψ‖L2(Γ1)

≤C
(

h‖ψ‖H2(Ω)+
√

βh1+1/2‖ψ‖H2(Ω)

)
. (4.10)

Combining (4.8) and (4.10) gains∥∥∥uk+1−Rhuk+1
∥∥∥

L2(Ω)
≤C

(
h+
√

βh1+1/2
)∥∥∥uk+1−Rhuk+1

∥∥∥
β

. (4.11)

Lemma 4.2. For q= L
C1
∈ (0,1), we have∥∥∥Rhuk+1−uk+1

h

∥∥∥
H1(Ω)

≤
∥∥∥Rhuk+1−uk+1

h

∥∥∥
β
≤q
∥∥∥uk−uk

h

∥∥∥
H1(Ω)

, (4.12a)∥∥∥Rhuk+1−uk+1
h

∥∥∥
L2(Ω)

≤q
∥∥∥Rhuk−uk

h

∥∥∥
L2(Ω)

. (4.12b)
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Proof. Subtracting (3.1) from (4.3) yields

a1

(
uk+1−uk+1

h ,v
)
=−

(
c
(

uk
)
−c
(

uk
h

)
,v
)

, ∀v∈Vh. (4.13)

Since Rhuk+1−uk+1
h ∈Vh,∥∥∥Rhuk+1−uk+1

h

∥∥∥2

β
≤ 1

C1
a1

(
Rhuk+1−uk+1

h ,Rhuk+1−uk+1
h

)
=

1
C1

a1

(
Rhuk+1−uk+1+uk+1−uk+1

h ,Rhuk+1−uk+1
h

)
=

1
C1

a1

(
uk+1−uk+1

h ,Rhuk+1−uk+1
h

)
=

1
C1

(
c
(

uk
h

)
−c
(

uk
)

,Rhuk+1−uk+1
h

)
≤q
∥∥∥Rhuk+1−uk+1

h

∥∥∥
L2(Ω)

∥∥∥uk−uk
h

∥∥∥
L2(Ω)

. (4.14)

The inequality relation

‖Rhuk+1−uk+1
h ‖L2(Ω)≤‖Rhuk+1−uk+1

h ‖H1(Ω)≤‖Rhuk+1−uk+1
h ‖β

implies (4.12a) and (4.12b).

Theorem 4.2. Let uk+1 and uk+1
h be the solutions of (3.1) and (4.3), respectively. Then∥∥∥uk+1−uk+1

h

∥∥∥
H1(Ω)

≤C
(

hm̂+
√

βhm̂+1/2
)

A+qk+1∥∥u0−u0
h

∥∥
H1(Ω)

, (4.15a)∥∥∥uk+1−uk+1
h

∥∥∥
L2(Ω)

≤C
(

hm̂+1+
√

βhm̂+3/2+βhm̂+2
)

A+qk+1∥∥u0−u0
h

∥∥
L2(Ω)

, (4.15b)

where

A=
k+1

∑
i=1

qi−1
∥∥∥uk+2−i

∥∥∥
Hm̂+1(Ω)

.

Proof. From the triangle inequality, we have∥∥∥uk+1−uk+1
h

∥∥∥
H1(Ω)

≤
∥∥∥uk+1−Rhuk+1

∥∥∥
H1(Ω)

+
∥∥∥Rhuk+1−uk+1

h

∥∥∥
H1(Ω)

,∥∥∥uk+1−uk+1
h

∥∥∥
L2(Ω)

≤
∥∥∥uk+1−Rhuk+1

∥∥∥
L2(Ω)

+
∥∥∥Rhuk+1−uk+1

h

∥∥∥
L2(Ω)

.

Combining the errors of the projection operator Rh and Lemma 4.2, summing k implies
(4.15a) and (4.15b).

Since u0
h is the numerical solution for linear system (4.2), it seems that the most rea-

sonable and straightforward option is to choose u0 as the weak solution for the following
linear system

a1
(
u0,v

)
=F(v), ∀v∈H1(Ω). (4.16)
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Lemma 4.3. Let u0 and u0
h be the solutions of (4.2) and (4.16), respectively. Then∥∥u0−u0

h

∥∥
H1(Ω)

≤C
(

hm̂∥∥u0∥∥
Hm̂+1(Ω)

+
√

βhm̂+1/2∥∥u0∥∥
Hm̂+1(Ω)

)
. (4.17)

In particular, when β=Ch−1>
C2

0
a0 , an optimal error estimate in H1 norm can be derived,∥∥u0−u0

h

∥∥
H1(Ω)

≤Chm̂∥∥u0∥∥
Hm̂+1(Ω)

.

Proof. Using (4.2) and (4.16) andMu0−u0
h∈Vh∥∥u0−u0

h

∥∥2
β
≤ 1

C1
a
(
u0−u0

h,u−uh
)
=

1
C1

a
(
u0−u0

h,u0−Mu0+Mu0−u0
h
)

=
1

C1
a
(
u0−u0

h,u−Mu0)≤ C2

C1

∥∥u0−u0
h

∥∥
β

∥∥u0−Mu0∥∥
β

. (4.18)

Similar to (4.9a) and (4.9b), we have∥∥u0−Mu0∥∥2
L2(Γ1)

≤Ch2m̂+1∥∥u0∥∥2
Hm̂+1(Ω)

,
∥∥∇(u0−Mu0)·n∥∥2

L2(Γ1)

≤Ch2m̂−1∥∥u0∥∥2
Hm̂+1(Ω)

. (4.19)

Substituting (4.18) and (4.19) into the following formula,∥∥u0−u0
h

∥∥
H1(Ω)

≤
∥∥u0−u0

h

∥∥
β
≤ C2

C1

∥∥u0−Mu0∥∥
β

,

the proof is finished.

The following estimate, sometimes regarded as an inverse assumption, plays an
important role to establish the error of u0 in L2 norm in the analysis of the Nitsche
method [29, 30, 32].

Lemma 4.4. For any v∈Vh,

h‖a∇v‖2
L2(Γ1)

≤C‖∇v‖2
L2(Ω) . (4.20)

Proof. Since v∈Vh,

v=
N

∑
i=1

Φi (x)vi,

where vi =v(xi). Then

∫
Γ1

(a∇v)2 dx≤
∫

Γ1

(
a1

N

∑
i=1

vi∇Φi (x)

)2

dx

≤C
N

∑
i=1

v2
i

∫
(<(xi)∩Ω)∩Γ1

(∇Φi (x))
2 dx≤C

N

∑
i=1

v2
i hn−3. (4.21)
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On the other hand,∫
(<(xi)∩Ω)∩Γ2

dx=Chn−1,
∫
<(xi)∩Ω

dx=Chn and C4h−1≤∇Φi≤C5h−1,

then

∫
Ω
(∇v)2 dx=

∫
Ω

(
N

∑
i=1

vi∇Φi (x)

)2

dx

≥C
N

∑
i=1

v2
i

∫
<(xi)∩Ω

(∇Φi (x))
2 dx≥C

N

∑
i=1

v2
i hn−2. (4.22)

Combining (4.21) and (4.22) yields (4.20).

An error bound of u0 in terms of the L2 norm can be obtained using a duality argu-
ment.

Lemma 4.5. Let u0 and u0
h be the solutions of (4.2) and (4.16), respectively. Assume that Ω is a

convex domain or the boundary Γ of Ω is smooth, meanwhile, Cb1h2 <1 and β=Ch−1 based on
Lemma 4.3, then ∥∥u0−u0

h

∥∥
L2(Ω)

≤Chm̂+1∥∥u0∥∥
Hm̂+1(Ω)

. (4.23)

Proof. Define the error e=u0−u0
h, the dual problem of (4.16)
−∇·a∇w+bw= e in Ω,
w=0 on Γ1,
a∇w·n=0 on Γ2.

(4.24)

Assume that Ω is a convex polygon or convex polyhedron, or the boundary Γ of Ω is a
smooth curve, then the solution of (4.24) satisfies

‖w‖H2(Ω)≤C‖e‖L2(Ω) . (4.25)

We arrive at
(e,e)=(a∇e,∇w)+(bw,e)−(a∇w·n,e)Γ1

. (4.26)

Subtracting (4.2) from (4.16) gives

(a∇e,∇v)+(be,v)−(a∇e·n,v)Γ1
−(a∇v·n,e)Γ1

+β(e,v)Γ1
=0, ∀v∈Vh, (4.27)

Choosing v=Mw in (4.27) and inserting (4.26),

(e,e)=(a∇e,∇(w−Mw))+(be,w−Mw)−(a∇(w−Mw)·n,e)Γ1

−(a∇e·n,w−Mw)Γ1
+β(e,w−Mw)Γ1

. (4.28)
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Applying Lemma 4.4,

‖a∇e·n‖L2(Γ1)
≤
∥∥a∇

(
u0−Mu0)·n∥∥L2(Γ1)

+
∥∥a∇

(
Mu0−u0

h
)
·n
∥∥

L2(Γ1)

≤Chm̂−1/2∥∥u0∥∥
Hm̂+1+Ch−1/2

(∥∥∇(Mu0−u0)∥∥
L2(Ω)

+‖∇e‖L2(Ω)

)
≤Chm̂−1/2∥∥u0∥∥

Hm̂+1+Ch−1/2‖∇e‖L2(Ω) . (4.29)

Hence, for any ε1>0

(a∇e·n,e)Γ1
≤‖e‖L2(Γ1)

(
Chm̂−1/2∥∥u0∥∥

Hm̂+1+Ch−1/2‖∇e‖L2(Ω)

)
≤ε1h−1‖e‖2

L2(Γ1)
+Ch2m̂∥∥u0∥∥2

Hm̂+1+
C

2ε1
‖∇e‖2

L2(Ω)

≤C
(

h2m̂∥∥u0∥∥2
Hm̂+1+‖∇e‖2

L2(Ω)

)
+ε1h−1‖e‖2

L2(Γ1)
. (4.30)

Inserting the above formula into the following formula,

a1(e,e)=(a∇e,∇e)−2(a∇e·n,e)Γ1
+(be,e)+β(e,e)Γ1

≥C
(
‖∇e‖2

L2(Ω)+‖e‖
2
L2(Ω)−h2m̂∥∥u0∥∥2

Hm̂+1

)
+
(

β−2ε1h−1
)
‖e‖2

L2(Γ1)
. (4.31)

From (4.18),

‖e‖2
β≤
(

C2

C1

)2∥∥u0−Mu0∥∥2
β

. (4.32)

Combining (4.31) and (4.32),

C
(
‖∇e‖2

L2(Ω)+‖e‖
2
L2(Ω)−h2m̂∥∥u0∥∥2

Hm̂+1

)
+
(

β−2ε1h−1
)
‖e‖2

L2(Γ1)

≤C2

(
C2

C1

)2∥∥u0−Mu0∥∥2
β

.

Moreover,

C
(
‖∇e‖2

L2(Ω)+‖e‖
2
L2(Ω)−h2m̂∥∥u0∥∥2

Hm̂+1

)
+
(

β−2ε1h−1
)
‖e‖2

L2(Γ1)

≤C
(

h2m̂∥∥u0∥∥2
Hm̂+1(Ω)

+βh2m̂+1∥∥u0∥∥2
Hm̂+1(Ω)

)
.

Choosing an appropriate ε1 ensures β−2ε1h−1>0 when β=Ch−1 comes from Lemma 4.3,(
β−2ε1h−1

)
‖e‖2

L2(Γ1)
≤C

(
h2m̂∥∥u0∥∥2

Hm̂+1(Ω)
+βh2m̂+1∥∥u0∥∥2

Hm̂+1(Ω)

)
.

Then,
‖e‖2

L2(Γ1)
≤Ch2m̂+1∥∥u0∥∥2

Hm̂+1(Ω)
. (4.33)
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Therefore,

(e,e)=(a∇e,∇(w−Mw))+(be,w−Mw)−(a∇(w−Mw)·n,e)Γ1

−(a∇e·n,w−Mw)Γ1
+Ch−1(e,w−Mw)Γ1

=I1+ I2+ I3+ I4+ I5, (4.34)

where

I1=(a∇e,∇(w−Mw))≤ a1‖∇e‖L2(Ω)‖∇(w−Mw)‖L2(Ω)

≤Ca1h
(

hm̂∥∥u0∥∥
Hm̂+1(Ω)

+C
√

h−1hm̂+1/2∥∥u0∥∥
Hm̂+1(Ω)

)
‖w‖H2(Ω) ,

I2=(be,w−Mw)≤Cb1h2‖e‖L2(Ω)‖w‖H2(Ω) ,

I3=−(a∇(w−Mw)·n,e)Γ1
≤ a1Chm̂+1/2∥∥u0∥∥

Hm̂+1(Ω)
h1/2‖w‖H2(Ω) ,

I4=−(a∇e·n,w−Mw)Γ1
≤Ca1h3/2

(
hm̂−1/2‖u‖Hm̂+1+h−1/2‖∇e‖L2(Ω)

)
‖w‖H2(Ω) ,

I5=β(e,w−Mw)Γ1
≤Ch−1hm̂+1/2∥∥u0∥∥

Hm̂+1(Ω)
h3/2‖w‖H2(Ω) ,

which together with (4.25) and (4.33) imply that (4.23) holds.

The following theorem is a direct consequence of Lemmas 4.3, 4.5 and Theorem 4.2.

Theorem 4.3. Let uk+1 and uk+1
h be the solutions of (3.1) and (4.3), respectively. Then for

q= L
C1
∈ (0,1) ∥∥∥uk+1−uk+1

h

∥∥∥
H1(Ω)

≤C
(

hm̂+
√

βhm̂+1/2
)

A0, (4.35)

where

A0=
k+1

∑
i=0

qi
∥∥∥uk+1−i

∥∥∥
Hm̂+1(Ω)

.

Particularly, when β=Ch−1>
C2

0
a0 , we obtain the optimal error in H1 norm∥∥∥uk+1−uk+1

h

∥∥∥
H1(Ω)

≤Chm̂ A0. (4.36)

Furthermore, when Cb1h2 < 1 and Ω is a convex domain or the boundary Γ of Ω is smooth, the
optimal error in L2 norm can be derived∥∥∥uk+1−uk+1

h

∥∥∥
L2(Ω)

≤Chm̂+1A1. (4.37)

The following theorem is the limiting case of Theorem 4.3.
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Theorem 4.4. Let uk+1 and uk+1
h be the solutions of (3.1) and (4.3), respectively. Then, uk+1 and

uk+1
h converge to u and uh, respectively. Besides, under the conditions of Theorem 4.3, the optimal

error in H1 and L2 norms are

‖u−uh‖H1(Ω)≤Chm̂, ‖u−uh‖L2(Ω)≤Chm̂+1. (4.38)

In proving that the operator A (or the coercivity of the a1(·,·)) is strongly monotonic,

an indispensable condition is β>
C2

0
a0 . According to Theorems 4.3 and 4.4, the choice of

β=Ch−1 >
C2

0
a0 can obtain the optimal convergence order. However, the exact value of C0

is difficult to obtain. According to the assumption (A3), a feasible choice may be to con-
sider the approximation of C0 from the maximum eigenvalue of the following eigenvalue
matrix equation [30, 31]

Ax=µBx, x∈RN , (4.39)

in which

A=
(

Aij
)

N×N , Aij =
∫

Γ1

(a∇Φi ·n)
(
a∇Φj ·n

)
dx,

B=
(

Bij
)

N×N , Bij =
∫

Ω
∇Φi∇Φjdx.

Clearly,

C2
0≈µmax implies β=Ch−1>

µmax

a0 ,

where µmax is the maximal (by moduli) eigenvalue of (4.39). Therefore, if taking

C= θh
µmax

a0 , (θ>1),

in β, then
β= θ

µmax

a0 , θ>1. (4.40)

For the semilinear elliptic problem, the condition q= L
C1
∈ (0,1) in Theorems 4.3 and 4.4

can be obtained as follows. The Lipschitz constant L can be taken as the maximum of the
absolute value of the first derivative of c(u) with respect to u, and

C1=min
(

a0 θ−1
θ+1

,
θ−1
2θ

,b0

)
comes from choosing

ε=
β+

C2
0

a0

2
in the expression of

C1=min
(

a0−C2
0

ε
,
β−ε

β
,b0

)
.
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5 Numerical examples

In this section, we present numerical examples to investigate the influence of the value of
β on precision and the order of convergence, and to illustrate the performance of the error
estimates that have been proposed earlier. For semilinear elliptic problem, we set toler-
ance τ=1E−12 as the termination condition of iteration. When the iteration is terminated
at the kth step, we use uh to represent uk

h if no ambiguity happens.

5.1 Linear elliptic case

For the first example, we consider linear elliptic case (2.1) with c(u)= 0. Besides, a is a
constant identity matrix, b=1 and Γ1=Γ. The exact solution is

u=sin(πx1)sin(πx2), (x1,x2)∈Ω=[−2,2]×[−2,2].

Fig. 1 displays the exact and the EFG solutions. The solutions are obtained using
41×41 equidistant nodal arrangement and the linear basis function is chosen in the MLS
approximation (i.e., m̂=1). In computation, the radius of support domain is r(x)=1.5h,
and β=θ

µmax
a0 =2µmax by a0=1. Clearly, it can be found that the EFG numerical solutions

with the Nitsche method are in good agreement with the exact solutions.
The log-log plots of the errors ‖u−uh‖L2(Ω) and ‖u−uh‖H1(Ω) with respect to θ =

2,5,10,15 are depicted in Figs. 2 and 3. In these figures, linear basis and quadratic basis are
used respectively. The radius of support domain are 2.5h for quadratic basis. Obviously,
the optimal convergence order can be obtained in the H1 and L2 norms, which matches
the theoretical error estimates in Lemmas 4.3 and 4.5, and the value of θ in β does not
have a significant impact on the accuracy and the order of convergence. For comparison,
the errors of linear FEM and quadratic FEM using triangular elements are also shown in
these figures. Clearly, the errors of the EFG method are much less than those of the FEM.
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Figure 1: Graphs of (a) exact solutions and (b) EFG solutions with β=2µmax for linear elliptic case.
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Figure 2: Errors of (a) ‖u−uh‖L2(Ω) and (b) ‖u−uh‖H1(Ω) for different θ with the linear basis (m̂= 1) for

linear elliptic case.
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Figure 3: Errors of (a) ‖u−uh‖L2(Ω) and (b) ‖u−uh‖H1(Ω) for different θ with the quadratic basis (m̂=2) for

linear elliptic case.

On the other hand, Fig. 4 exhibits the graph of the condition numbers of the coefficient
matrix for the variable θ=2,5,10,15,20,··· ,45,50 with the quadratic basis. The condition
numbers increase with the increase of the θ, hence, a smaller θ, such as θ = 2, is a better

Table 1: Errors and convergence orders with β=2µmax for linear elliptic case.

h Linear basis (m̂=1) Quadratic basis (m̂=2)
‖u−uh‖L2(Ω) Order ‖u−uh‖H1(Ω) Order ‖u−uh‖L2(Ω) Order ‖u−uh‖H1(Ω) Order

4/10 6.876E-2 1.271 3.760E-2 5.958E-1
4/20 1.986E-2 1.79 7.048E-1 0.85 5.735E-3 2.71 1.801E-1 1.72
4/40 5.114E-3 1.95 3.602E-1 0.97 6.391E-4 3.16 3.842E-2 2.22
4/80 1.288E-3 1.99 1.810E-1 0.99 6.561E-5 3.28 6.859E-3 2.48
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Figure 4: Condition numbers of the coefficient matrix for the variable θ with the quadratic basis (m̂= 2) for
linear elliptic case.

choice for linear elliptic problem. Additionally, Table 1 gives the errors for linear basis
(m̂=1) and quadratic basis (m̂=2). Conspicuously, the numerical results agree well with
the derived theoretical analysis.

5.2 Semilinear elliptic case

For the second example, we consider the semilinear elliptic case with c(u)= 1
4 sinu and

the exact solution

u= x2
1x2+sin(πx1)sin(πx2), (x1,x2)∈Ω=[0,1]×[0,1],

and

a=
[

a11 a12
a21 a22

]
=

[
x2

2+1 −x1x2
−x1x2 x2

1+1

]
, b= x2

1+x3
2+2,

Γ1={(x1,x2)∈Ω : x1=0}∪{(x1,x2)∈Ω : x2=0}.

In this case, a0=1 and b0=2. The Lipschitz constant L= 1
4 is the maximum of the ab-

solute value of the first derivative of c(u) with respect to u, and C1=
θ−1
2θ , so q= L

C1
∈(0,1)

when θ>2. Fig. 5 depicts the EFG solutions and the absolute errors between the exact and
numerical solutions. The obtained numerical solution is based on 21×21 uniformly dis-
tributed nodes, quadratic basis (m̂=2) and β=4µmax. Evidently, the Nitsche method can
effectively impose essential boundary conditions in the EFG method. The log-log plots
of the errors ‖u−uh‖L2(Ω) with linear basis (m̂= 1) and quadratic basis (m̂= 2) for vari-
ous θ are shown in Fig. 6. At the same time, the log-log plots of the errors ‖u−uh‖H1(Ω)

are drawn in Fig. 7 based on the same configuration. These convergence trends keep
in line with theoretical analysis, and again demonstrate that a smaller parameter θ can
obtain more satisfactory numerical solutions. The numerical results of linear FEM and
quadratic FEM are also given in these figures. It can be found that the EFG method has
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Figure 5: Graphs of (a) EFG solutions uh and (c) errors |u−uh| with quadratic basis (m̂=2) and β=4µmax for
semilinear elliptic case.
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Figure 6: Errors ‖u−uh‖L2(Ω) with (a) m̂=1 and (b) m̂=2 for semilinear elliptic case.

much better accuracy than the FEM. In addition, the numerical errors and convergence
orders for linear basis and quadratic basis have been tabulated and revealed in Table 2.
Apparently, these numerical results are still in good accordance with theoretical results.

Table 2: Errors and convergence orders with β=4µmax for semilinear elliptic case.

h Linear basis (m̂=1) Quadratic basis (m̂=2)
‖u−uh‖L2(Ω) Order ‖u−uh‖H1(Ω) Order ‖u−uh‖L2(Ω) Order ‖u−uh‖H1(Ω) Order

1/10 1.108E-3 8.392E-2 3.101E-4 1.209E-2
1/20 2.761E-4 2.00 4.208E-2 1.00 3.440E-5 3.17 2.333E-3 2.37
1/40 6.894E-5 2.00 2.106E-2 1.00 4.387E-6 2.97 5.439E-4 2.10
1/80 1.722E-5 2.00 1.053E-2 1.00 5.926E-7 2.89 1.467E-4 1.89
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Figure 7: Errors ‖u−uh‖H1(Ω) with (a) m̂=1 and (b) m̂=2 for semilinear elliptic case.

6 Conclusions

In this paper, the stability and error estimates of the Nitsche-based EFG method are de-
rived for linear and semilinear elliptic problems. The Nitsche method allows the non-
interpolating shape functions to be directly used for trial and test functions by adding
some boundary integral terms in the original weak form. The convergence of a simple it-
erative scheme for semilinear elliptic problem is analyzed, and a frequently-used inverse
assumption for the EFG numerical discretization space is proved. The optimal conver-
gence orders in the H1 and L2 norms are obtained for linear elliptic problem and semilin-
ear elliptic problem with the condition q= L

C1
∈(0,1). In numerical calculations, by solving

an eigenvalue matrix equation, the Nitsche parameter β can be taken as β= θ
µmax

a0 (θ>1),
which shows that β is not explicitly dependent on h. Meanwhile, the convergence con-
dition q is also provided and verified for semilinear problem. Numerical experiments
confirm the theoretical results, and show that better numerical solutions can be obtained
with a small parameter θ.
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