J. Math. Study Vol. 57, No. 1, pp. 84-100
doi: 10.4208 /jms.v57n1.24.05 March 2024

Non-Regular Pseudo-Differential Operators on
Matrix Weighted Besov-Triebel-Lizorkin Spaces

Tengfei Bai! and Jingshi Xu?*

L School of Mathematics and Statistics, Hainan Normal University, Haikou,

Hainan 571158, China;

2 Center for Applied Mathematics of Guangxi, Guangxi Colleges and Universities
Key Laboratory of Data Analysis and Computation, School of Mathematics and
Computing Science, Guilin University of Electronic Technology, Guilin 54100, China.

Received April 5, 2023; Accepted October 16, 2023;
Published online March 21, 2024.
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1 Introduction

The pseudo-differential operators have been widely used in plenty of mathematical areas;
see [1,11,14,16,17,28,31-33,36,38]. The boundedness of pseudo-differential operators
on Triebel-Lizorkin and Besov spaces has been considered in [6,22-25,27,30]. The au-
thors of the paper proved the boundedness of the Hormander classes pseudo-differential
operators on matrix-weighted Besov spaces and Triebel-Lizorkin spaces in [2].

In [18,21], Marschall obtained the boundedness of non-regular pseudo-differential
operators corresponding to symbols in the class SBY'(r,u,v;N,A) (see Definition 2.5) on
Triebel-Lizorkin spaces and Besov spaces. Then Sato obtained the boundedness of non-
regular pseudo-differential operators on the weighted Triebel-Lizorkin spaces in [29], and
Drihem and Hebbache obtained the boundedness of non-regular pseudodifferential op-
erators on variable Triebel-Lizorkin spaces in [7].

In the last three decades, inspired by the applications of matrix-weighted functions,
many matrix-weighted function spaces have appeared, such as matrix-weighted Lebesgue
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spaces [13,35], matrix weighted Besov and Triebel-Lizorkin spaces [4,9,10,26,37], matrix-
weighted Besov type spaces and Triebel-Lizorkin type spaces [3]. In [37], Wang, Yang
and Zhang obtained the characterizations of matrix-weighted Triebel-Lizorkin spaces
in terms of the Peetre maximal function, the Lusin area function, and the Littlewood-
Paley ¢3-function. They also proved the boundedness of Fourier multipliers on matrix-
weighted Triebel-Lizorkin spaces under the generalized Hormander condition. In [3],
Bu, Hytonen, Yang, Yuan proposed a new concept of A,-dimension of matrix weights.
Then they obtained the boundedness of ¢-transform, pseudo-differential operators, trace
operators, and Calderén-Zygmund operators on matrix-weighted Besov type spaces and
Triebel-Lizorkin type spaces. In particular, the symbols of their pseudo-differential oper-
ators are in the classical Hérmander class S7;.

Since the class S Bg”(r, u,v;N,A) includes some Hormander classes as special cases, in
this paper, we consider the boundedness of non-regular pseudo-differential operators
with symbols in S Bgl(r,y,v;N ,A) on matrix-weighted Besov spaces and Triebel-Lizorkin
spaces.

This paper is organized as follows. In Section 2, we give some convenient notations
and recall several concepts about matrix weights and function spaces. Some key lem-
mas and basic tools are given in Section 3. The boundedness of non-regular pseudo-
differential operators on matrix-weighted Besov spaces and Triebel-Lizorkin spaces are
described in Section 4.

2 Preliminaries

Let xr be the characteristic function of the set E C R". Let Np:=INU{0}. The Fourier
transform of f is defined by F(f):=f:= [, f(x)e~¥"*¢dx and the inverse Fourier trans-
form of f by F~1(f):=f:= [, f(x)e¥™*¢dx. Let #(R") denote the Schwartz space, and
let ./ (IR") be its dual.

Definition 2.1. Let ¢¢ be a Schwartz function such that supp(@o) C {¢ € R":|¢| <2} and

qoo((j) =1 for || gl. Moreover, put ¢;() =@0(277&) — o (277H1E) for j€IN. Then supp(¢;) C
{¢:271<|¢| <2/} forall j€N and

i@j(s’):l
=0

for ¢ € R". Hence {@;}ien, is a partition of unity on R" subordinated to the dyadic rings
{E:2171<|¢| <21}, jeN, and B(0,2).

We also set $o:=q@o~+ @1, and ¢j:=@;_1+@;+@j1 for jEN. Note that, ¢;¢;=@; for €Ny
and

supp((ﬁj)C{CGJR”:Zj_2§|§\§2j+2} forj>2,
supp(¢;) C{EeR":|§| <277} forj=0,1.
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For a Schwartz function ¢, We define ¢(D) f:=F ~1[¢(&)F (f)(&)].

Definition 2.2. Let 0<p,q<oo. Let { fc}3>, be a sequence of measurable functions on R". Then
we define

1 ko llimun = ( g ufknzp) |

where there is a usual modification for q = co.

Definition 2.3. Let {¢;}icN, be a partition of unity on R" as in Definition 2.1. Let s€R,0 <
p,q < oo. The classical Besov spaces By, , is set of all functions with finite quasi-norm

e, = (iﬂllflef)uzp)?
e

Definition 2.4. Let meR, n €N, p,é € [0,1]. The Hormander class Sg s(R" xR") is the set of
all smooth functions o :R" x R" — C such that

102950 (x,8)| < Cop (1-+ ||l +16

holds for all a,p €INjj, where Cy g is independent of x, €R" and |a| and |B| are their index sum.
The function o is called a pseudo-differential symbol and m is called the order of .

The following notion was introduced by Marschall in [18,21]. Let {F¢;}en, be a
resolution of unity as in Definition 2.1. For a function a: R2" - C, let

aj(x,8) =F, - (Foj(y) Fa(y.0)).

Definition 2.5. The space B/, (BA\{OO) consists of all distributions a € .7 (R*") such that

v

lallgy my ) = 1427 2N} jemy vy <o

ov (L
where p,v € (0,00], r€[n/p,0), Ac[l,00], Ne(n/A,0).

Let me R, 6 €[0,1], p,v € (0,00], r € (n/p,00), and N € (n/A,00]. Then a symbol a €
SBJ'(r,u,v;N,A) if

2”"”” a(x,2) F g (2 <00,
slliP la( )F il )HBf\\{w [(d)
sup2 kmp=kor\| g (x,25) F oy (2 < 00,
1p (x,2%) F i (2%) b (5

Choosing y =v =N = A = oo, we see that the classical Hérmander classes S]’f(; C
SBJ(r,u,v;N,A). If 0 € SBY' (r,i1,v;N,A) is a symbol, then

o(xD)f(x)= [ ™ Eo(x,2)f()de

n
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is called the pseudo-differential with the symbol ¢, which is initial defined for suitable
functions f, for example the Schwartz functions.

For a fixed positive integer d, if vector-valued functions ]? =(f,....f4)T on R" satisfy
that each component f; belongs to .#/(IR") where T denotes the transpose of the row
vector, then we denote f €.7”(R"). The Fourier transform on vector-valued spaces is
denoted by F(f):=(f1,...,f1)T. If ¢ is a symbol, then

o(xD)f(x)= [ ™ Eo(x0)F(f)(e)d2

-

defines the associated pseudo-differential operator where o'(x,&) F(f)(&)=(c f1,...,0f4)".

2.1 Matrix weights

Let d € N. A matrix weight W is a map on R” such that W(x) is a non-negative definite
d x d matrix for each x €R", where W is almost everywhere invertible and the entries of
W are measurable functions on R". The operator norm of a matrix A is defined by
|AZ]
[ A]l:=sup NEE
7]=1

where 7€ C? and |Z| = (2?:1 |zl-|2)

For p € (1,00), a matrix weight W € A,(IR") if and only if

su 1/ (1/ WP (x)W=VP(y)||”'d )p/p,dx<oo
& 1QlJe\Ial Ja P '

where p'=p/(p—1) is the conjugate index of p, and the supremum is taken over all cubes
QCRR™.
For p € (0,1], a matrix weight W € A, (R") if and only if

supesssup / WP (x)W=YP(y)||Pdx < co.
yeQ |Q|

We write Aj:= A, (R") for brevity.

Let £(Q) denote the side length of any cube Q CR". For j € Z and k= (ky,...,k,) €Z",
let Qjx =TT, [277k;,27/ (ki+1)] be the dyadic cube of side length £(Q, ) =277 with the
lower left corner xg = 277k. Let D= {Q]-,k} jezkezr denote the family of all dyadic cubes
inR", and let D;={QeD:{(Q)=2"}.

Given any matrix weight W and p € (0,00), there exists (see, e.g., [13, Proposition 1.2])
for p>1 and [10, p.1237] for 0 < p <1) a sequence {Ag}gep of positive definite d x d
matrices such that

L1 Y _
e1lAgfl < (17 [, I @)iFdx) " < ealAcgl,
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with positive constants c1, ¢ independent of i € C? and Q € D. In this case, we call
{Ag}oep a sequence of reducing operators of order p for W.

Definition 2.6. A matrix weight W is called a doubling matrix weight of order p >0 if the scalar
measures wy(x) = (WP (x)ij|P, for ij € C?, are uniformly doubling: there exists ¢ >0 such that
for all cubes Q CR" and all ij € C¥,

/Zwa(x)dxgc/ wy(x)dx.

Q
If ¢ = 2P is the smallest constant for which this inequality holds, we say that B is the doubling
exponent of W. From [15, Proposition 2.10], we know that B is always not less than n.
2.2 Function spaces

For se R, p € (0,00), g € (0,00], and W a matrix weight, let F;’q(W) be the set of all fe
&' (R") such that

<09,
Lr

1
5 x© N q
Il 0=| <232f5q|w1/P¢j<D>f|q)
]:

and let B, (W) be the set of all f €.#/(R") such that

1
. . . q
Il = (Z2IW o)7L ) <o0

j=0

In the sequel, let £(Q) denote side length of a cube Q. We will use the symbol A <B
to denote that there exists a positive constant ¢ such that A <cB. If A <B and B A, then
we denote A~ B. The letter ¢ will denote various positive constants and may change in
different lines.

3 Key Lemmas and basic tools

In this section, for p € (0,c0), we always suppose that W € A, with the doubling exponent
B and that { Ag}ep is a sequence of reducing operators of order p for W.

Definition 3.1. Let {Ag}oep be a sequence of positive definite matrices and let B,p € (0,00).
We say that { Ag}qenp is strongly doubling of order (B, p) if there exists ¢ >0 such that

el <emax{ (5i0) " (5i3y) ) (% g iiay)

B
P
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for all dyadic cubes P,Q € D. We say that {Aq}qep is weakly doubling of order r >0 if there
exists ¢ >0 such that
lAguAg! Il <c(i+lk—1])"

forallk,l € Z" and all j € Z.
Note that a strongly doubling sequence of order (B,p) is weakly doubling of order r =B/ p.

Lemma 3.1 (Lemma 2.2 of [9]). For p€(0,00), let W be a doubling matrix weight of order p>0
with doubling exponent B and suppose that { Aq } gep is a sequence of reducing operators of order
p for W. Then {Aq}qenp is strongly doubling of order (B, p).

Lemma 3.2 (Eq. (2.8) of [9]). Let {¢;}ien, be as in Definition 2.1. Suppose that { Ag}gep is
a weakly doubling sequence of order r > 0 of positive definite matrices. Then, for any A € (0,1]
and R € (0,00), there exists a positive constant c, depending on {Aq}oep, A and R, such that,

forany jeZ, ke Z", and f € ' (R"),
sup | Ag, 9 (D)f (DI <¢ ¥ (14 k—1)®2" [ |Aq g;(D)F(2)] dz
x€Qjk lezn Qi

Lemma 3.3 (Lemma 3.7 of [37]). Let n >n. Then there exists a positive constant c such that for
any j € Z and any complex-valued measurable function ¢ on R"

Y ¥ (k=127 [ [g(s)ldsxo, <cM(g),
kezrlcznr Qi
where and what follows M is the Hardy-Littlewood maximal operator.

The following lemma is the Fefferman-Stein vector-valued maximal inequality; see

[8].
Lemma 3.4. Let p € (1,00) and q € (1,00]. Then there exists a positive constant ¢ such that for
any sequence { f; } jcz of measurable functions on R"
1
q
(Z i)

jez

<c

()

L? LP

Lemma 3.5 (Theorem 6.1 of [9]). Suppose that s € R, p € (0,00), g € (0,00, WeE Ay, and
{Ao}qep is a sequence of reducing operators of order p for W. For f € .5 (R™), then

—

If

EA(W) ~ ||f||F;"7(AQ)'

where

-

If

1
ad . - q
sao= | (L X 291400/(D)f"x0)

]:0 QGD] Lr
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We define a class of -functions on IR"” by
2111)
Hom(x) 1= W

with v € Ny and m > 0. Note that 77, , € L' when m >n and ||#ym||;1 = ¢ is independent
of v. Therefore 1, * f S M(f) for ve€Ng when m >n by Theorem 2.1.10 in [12].

Lemma 3.6 (Lemma A.1 of [5]). Let v1 >vg, m>n, and y €R". Then

Hoon (V) <2 o, m(y) — if [y] <277

Horm(Y) <2 oo m(y)  if [y| =277,

Lemma 3.7 (Lemma 3.1 of [7]). Let a >0 and 0<q<oco. Let {xy }xen, be a sequence of positive
numbers such that {xy }r € (7. Let

Ok :ZZ_”“k_ﬂx]-, k € No.

Then there exists a constant c depending on a and q such that

{0k bl en <cl[{xx }il oa-

Lemma 3.8 (Lemma 14 of [2]). Let A€ (0,1], €Ny, 0<p<oo, We Ay, and {Ag}oep is
a sequence of reducing operators of order p for W. Let B be the doubling exponent of W. For any
R>0, there exists a constant ¢ >0 such that for all f €.&'(R") with supp F f C {&:]¢| <2°t1},
we have

A
( T 140f@e®) <emoan pme( L Mofixe) ), vreR”
QeDy, QeD,

Furthermore, if R>B/p+n/ A, then

1
- - A
¥ 140/ @ixom<em( ¥ 1Aofi*ro) (), vxeR"
QeD, QeD,

Lemma 3.9. Let A,B>0,s€RR, 0<p<oo, 0<q<o0, and W e A, with the doubling exponent p.
Let { Ag}oep be a sequence of reducing operators of order p for W. Then there exists a constant
c such that

<cll{2 fidell o ag) o) (3.1)
F(Ag)

< CH{stﬁf}kHM(LP(AQ))z (3.2)
By7(Aq)

ka
k=0
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for any sequence of functions { fi }re, stch that

supp Ffo C {&:]¢| <A},
supp Ffy C {€:B2"1 <|g| < A2}, fork>1.

Proof. We only prove (3.1) because the proof of (3.2) is similar. Let { F¢;}jcN, be a reso-

lution of unity as in Definition 2.1. In the view of the support properties of F fk and F¢;,
then

o] - K2 o
Pi*) fr=Y, ¢i*fiu
k=0

lszl

for some «1,xp € INg. We suppose simply s =0. By Lemma 3.8, for [ = —xj,...,x,

) |AQ§0j*J[]'+l’AXQSC”j,A(Rfﬁ/p)* ( ) AijHAXQ)
QeD; QeD;

for any R >0 and any A € (0,1]. Therefore, with A € (0,min{1,p,q}), R>n/A+p/p, and
by Lemmas 3.4 and 3.8, we obtain

‘ (i )N |AQ(Pj*I§)ﬁ<‘qXQ>}]

j=0Q€D; Lp
K2 (o] . %
<Y (X X 1Aoefil"xo)
l==1 Il "j=0QeD; Lr
K2 [} 9.1
< M( Y 1Aofiul*xa))" )
[EK] <]ZO( <Q€ZD] R Q>> ) Lr
Ko 00 . %
Y (Z )3 ‘AQf]'H’qXQ)
1=, | \jZ00eD, Ly
SIL2™ fidll o ({ag ) (e0)- O

Lemma 3.10. Let p€(0,00), WE A, with the doubling exponent B, and A€ (0,1]. Let a:R*"—C
be a bounded and measurable symbol such that supp a(x,-) C{&:|&| <c2k} for some c>0. Suppose

that supp Ff C {&:|&| <c2F}. Let { Ag}gep be a sequence of reducing operators of order p for
W. Then for R >0 we have

1

A(x))A

-

Z AQk,/a(x/D)f(x)XQk,z (x)

lez"

Y. Aofxa

QeDy

S a2 g, (mon-aprr

or each x €IR", where the implicit constant is independent of f and x.
p P
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Proof. Let Fp €. (R) be supported in {¢:1/2<|¢| <2} and such that ),z Fp(277¢) =1
for all #0. For veZ, let i, (x) =2""¢(2°x). Then Fip, (&) = Fp(279F).

Let
K(x,x—vy):= /IR" a(x,@’)ezm(x’y)'édéz Fe(a(x,))(x—y)

be the kernel of a(-,D). Observe that
K(x,x=y) Fpo(x—y) =FeF. (FpoFea(x, ) (x—y)-
Therefore,

[K(x,x—y) Fipo (x—y)| < | P~ (FpoFralx, )|
=29 F (FposnFea(x,25)) .

Applying the Plancherel-Polya-Nikol’skii inequality (see p.18 in [34]), we obtain
|4g,a(x,D)F(0)| 27040 ([ 1Ag,K(xx—y)f(w)"dy)
for x € Qi . Raising the power A, we have

|Ag,,a(x,D)f(x)|4 <2014 (8, +5,),

where
—k—1 A - A
Sl ::v:Z—OOSI;p‘K(x’x_y)fgov<x_y)‘ 2v-1 g\x—y\Szz;H ‘Alef(]/)‘ dy’
Spi=Y sup|K(xx—y)Foolx—y)|* | [Ag,, f(y)|dy.
Sy 207 <[a—y| <20

Then 2"(1=4)S, is dominated by

20y 1F (FoonFealx,2)) |17k

v=—k
x{ ) (1—|—|w—l!)Al3/F’/
{wezZ":|w—1|<1 Q
k+ov+1

+ Y y (1+|w—z\)Aﬁ/P/Q

m=1 {wezZ":2m-1<|w-1|<2m}

2 Y N F  (FporrFea(x,25) 11
v=—k

{ L[ @y Mg, fw)l iy

{wezZ™:|w—-11<1

| Ao, f(y)[Ady

k,

|Agk,wf<y>|/*dy}

k
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Hat Rm—k k A R 7 A
vy 2 (12— /7 Kl dg, )l dy |
=1

m {wezn2m—1<|w—]|<2m} <kw

0 o A
S Zszv||~F,§_1(f(/’v+kf§a(x/2k'))||fl77k,RfAﬁ/p* QZ;,) AQfXQ‘ (x)
v=— €Dy

N A
<lla(x2%) 15 mor-ap/p*| ¥ Aofxa| ().
’ QeDy

And 2F1-4) 8, is bounded by

k-1
2 Y F (FoonFeax 2 [

v=—c0 201 <Jr—y|<2oi
k=1
27 Y I F N (ForFea(x,29)) 17

V=—00

142k — xNAB/P—R| 4 7, A4
s P22 2, Fy) Ay

|AQk,lf(y) |Ady

—k-1

o A
S XI5 FooFraled Dl asn] T Aofxa| )
V=—00 €Dx

N A
Sllae2) % ner-apr*| ¥ Aofxo| ()
’ QeDy

- A
Slax25) I8 mor-apsp*| ¥ Aofxa| ().
’ QeDy

Thus, the proof is finished. O
Lemma 3.11. Let B>0,s> (B—n)/p, 0<p<oco, 0<q< 0o, and W € A, with the doubling

exponent B. Let { Ag} gep be a sequence of reducing operators of order p for W. Then there exists
a constant c such that

YAl <l {25 fikill o (ag) (@), (3.3)
k=0 11F"(4)
3 i <cl{2" fikllener(ag)) (3.4)
k=0 11B;"(Ag)

for any sequence of functions { fi }rew, with supp F fr C {&:|&| < B2k+1}.

Proof. We only prove (3.3). The proof of (3.4) is similar. Let { F¢;}en, be a resolution of
unity as in Definition 2.1. Using the support properties of { f;}, we have

Zq’j*fk: Z Gl’j*]?lczzq’j*fjﬁ,
k=0 =0

k=j+o
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for some 0 € R. Then

[ee]
—

e

k=0

min(1,p,q) © min(1,p,4)

{ ) 2jS|AQ¢j*J?j+i|XQ}
JENo

QeD;

F(Ag) i=c

<(z+1)

Lp (61
min(1,p,9)

{ ) st!AQ¢j*ﬁ+i\XQ}
jG]No

QeD;

Lr ()

It is understood that the first sum is zero if o > 0. We just consider the second sum since

the first sum has finite items. For A€ (0,1], R> AB/p+pB+n, from Lemmas 3.1, 3.6 and
3.10,

Y [Agej=firi(x)|xo(x)

QeD;

=

. A
L Aofiu| (]
QEDj

1
. a
| B gy el

SIFe1llgr, {ﬂj,R—A/s/p*

QeD;
1
. 1 . , . v
< 2" : 2IB=mA/P (1420 | x—y|)P| Ag fivi(y)]|Ad }
1
" 1 . . a
< 2 (j+i)nyR—AB/p—p _ 2iB=m)A/P| AL F L (1)]Ad }
Sy ramyease Al
. LA\ %
Szl(ﬁn)/Pz(RAﬁ/Pﬁ)/AM< Z Agfiri > (x)
Q€Djy,
. IEAN
521(5")/’7M< Y. Aofi+i > (x). (3.5)
QE€Djy;

Since s > (B—n)/p, then

0 , . min(Lp,q)

L |{ £ 21400 Tbre

=01l L QeD; JENQ HLP(£9)

0 N min(1,p,q)
SZ {zjszi(ﬁ—ﬂ)/PM< Z AQ]?].H > }

i=0 Q€eDjy; JEN ILP(£7)

0 min(1,p,q)
SZzi((ﬁ—n)/P—S)min(llrbo/) {21'521'5 ) |AQJ?j+i|XQ}

i=0 Q€Djyi JENQ LP ()
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k (1,
SIS Flpnsre

Hence, the proof is finished. O

Remark 3.1. The most difference between Lemmas 3.9 and 3.11 is the support of the
Fourier transform of fi for k>1. The support of the Fourier transform of f; in Lemma 3.9
is a ring, but the support of the Fourier transform of f; in Lemma 3.9 is a ball.

4 Boundedness of pseudo-differential operators

Theorem 4.1. Let 0 <p < oo, 0 <g<oo, We A, with the doubling exponent B. Let a &
SB! (r,1u,v;N,A) with =00, v=00, r € (s,00), 6 €[0,1), and A=1.

(i) Let N>min(1,p,q)B/p+n and (B—n)/p <s<r. Then a(-,D) is a continuous linear
mapping from F;+m’q(W) to FyT(W).

(ii) Let N >min(1,p)B/p+n and (B—n)/p <s <r. Then a(-,D) is a continuous linear
mapping from B, "™ (W) to ByT(W).

Proof. We only prove (i). The proof of (ii) is similar. Let {F @i }ren, be a resolution of
unity as in Definition 2.1. We set

aj(x,8) =F " (Foj(n) Fra(-,5)) F x(2)-

We decompose the symbol into three parts:

3
=Y aW(x
i=1

where

oo k—4
V(i)=Y Y aj(x0),

k=4j=0
o  k+3

(8 =Y Y ax(x),
k=0j=k—3
Vg)i=Y Y a0

k=4j=k+4

Let fi = gi* f Let {AQ}QGD be a sequence of reducing operators of order p for W. Since
HfHqu ~ HfHqu , it suffices to prove that

l2(-. D) Fllgaag) S IF N psmaag).
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Firstly, we consider the symbol a(!). For every f€.7”(R"),
a0, D)Fl s agy Sl pma

Indeed, Z] 0ik(+ D) fi has its spectrum in {&:¢;2% < |&| < ¢,2F} where ¢1,¢, >0 are inde-
pendent of k. Then we can apply Lemma 3.9,

oo k—4

ZZ”Jk

k=4j=0 F(Aq)

S H{ZkSI;Z:a]’,k(‘/D)f}k

Let us show the last norm is bounded by c|| f st . By Lemma 3.10, the right hand
y B ag) P &

e (D) fll g (ag) =

LP(AQ)(tn)

side does not exceed

T agiva| )1

QeDy

<szsq2||]-“ (Fo;Fal:, ))|\B§A<77k,RAﬂ/P*

k>4 j=0

Lp

1
q

IA
s

Lr

(ZZ"“’ZHJ—" (FojFal, ))|‘BR+E(77’<R ap*l Y Aafixal )

k>4 j=0 QeDy
A4

>)

where A<min(1,p,q), R>AB/p+n, N:=R+e >min(1 p.9)B/p+n.
Secondly, we consider the symbol a?). Since Z k 3ik(-,D) fk has its spectrum in
{&:|&| <2k} where ¢, >0 is independent of k, then by Lemma 3.11 (s> (B—n)/p),

. ka3 .
Ef(Ag) = H{zs )3 “j,k(vD)fk}
j=k—3 k

Since a € SB}'(r,,v;N,A), we obtain

Y Aofixo

QeDy

k>4

5”](”1:;*”’/‘1(,4

Lp

la®(-,D)f

Lr(AQ)(tr)

+3

Y. Ag 2 ajx(-, )fkm'

QeDy ':k—3
k+3 ) . A A
<sup|| Y ajx(x,2 )H (ﬂk,R—Aﬁ/p* Y Agfixo (x))
k lj=k-3 BRA QeDy
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A

(x))

1
Y. Aofixa !

QEeDy

S2km (Uk,RfAﬁ/p *

Let R> AB/p-+n. Then we obtain

Y. Aofixo

QeDy

H“(Z)("D)JF

@)},

FY(W) S H {zkmm) (kaRAﬁ/P*
Lp(19)

S[25Em Y A fexo

QeDy

LP (1)

<|f

F;er'q(AQ) .

Finally, we consider the symbol a®). Applying Lemma 3.9, we obtain

Ha(B)(.,D)J?

LP(Ag)(47)

]

s -
E(Ag) S H {2fsgaj,k<-,D>fk}
Let R> AB/p-+n. Then by Lemma 3.10, we have

Y AQa]-,k<-,D>f7<<x>m\
QeDy

A(x))}*

Y. Agfixo

QEeDy

Y Aofixo

QEDy

SJHaj,k(X,Zk-) HB{%A <7]k,R—A;3/p*
A N4
<x>)
LA x
Y Aofixo <x>)

Q€D 1
A) ! (x).

Let gi(x):=25 M(| Coep, Aofixal?)/4(x). Let r>s> (B—n)/p. Applying Lemmas 3.4
and 3.7, set N =R+¢, and we conclude that

§2_rjsgp 12 a; g (x,2) [ <’7k'RA5/” *

1

=272 supl|2"a; (x,2%) || gr 2 <77k,R—Aﬁ/p *

1

Y. Aofixo

<272 M sup |27 a;  (x,25) || gri e 2 M (
j b QeDy

1

. 00 ‘]'—4 ' ) ay 7
Ha<3><-,D>qu;,q(AQ)sH{z(zfs zzwzkssupuzwai,k(.,zk.)HBfggk) }
j=0 /

k=0 i LP

=

oo sj—4 ' ' q
LTz bsupizian. 2l 0) |
; i ,00

j=>0 \Nk=0 Ly
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S I {sup 12" a;x (x,2") |\B§V/°°2_krgk}k||m(ea)

1

U204 sup 2705, 25) [ om2 72 ) g

| "

5 H {2—k72k(m+5r)2ksM< 2 AQﬁcXQ

QeDy Ly ([fl)
< H {2"("”5) ) AkaXQ}
QED; k!l Lp(en)
~ Hf”}:;*’”'q(AQ)'
Thus, we have
0(D)Fllgaag) Sl s ag
Hence, we finish the proof. O

Remark 4.1. Marschall obtained the boundedness of non-regular pseudo-differential with
double symbols on weighted L? spaces in [19]. The symbols in [19] are different with
Theorem 4.1.

Let0<p<oo,0<g< o0, acSBJ(r,u,00,N,A) withmeR ,0<u<oo, (1-0)r>n/u,
1<A<oo, N>n/A. Suppose that N >nmax{1/2,1/A,1/p,1/q}, and n(max{1,1/u+
1/p}—1)—(1-6)r<s<r—nmax{1l/mu—1/p,0}. Then Marschall proved that a(-,D) is
a bounded operator from F;/Zm to Fgfq in [20].

However for y = co in Theorem 4.1, we can not get the Theorem 7 in [20] if let d =
1L,W=1.
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