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Abstract. In this note, we study the Cauchy problem of the linear spatially homoge-
neous Landau equation with soft potentials. We prove that the solution to the Cauchy
problem enjoys the analytic regularizing effect of the time variable with an L2 initial
datum for positive time. So that the smoothing effect of Cauchy problem for the lin-
ear spatially homogeneous Landau equation with soft potentials is similar to the heat
equation.
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1 Introduction

The Cauchy problem of spatially homogenous Landau equation reads{
∂tF = Q(F, F),
F|t=0 = F0,

(1.1)

where F = F(t, v) ≥ 0 is the density distribution function at time t ≥ 0, with the velocity
variable v ∈ R3. The Landau bilinear collision operator is defined by

Q(G, F)(v) =
3

∑
j,k=1

∂j

( ∫
R3

ajk(v− v∗)[G(v∗)∂kF(v)− ∂kG(v∗)F(v)]dv∗

)
(1.2)

with

ajk(v) = (δjk|v|2 − vjvk)|v|γ, γ ≥ −3,
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is a symmetric non-negative matrix such that

3

∑
j,k=1

ajk(v)vjvk = 0.

Here, γ is a parameter which leads to the classification of the hard potential if γ > 0,
Maxwellian molecules if γ = 0, soft potential if −3 < γ < 0 and Coulombian potential if
γ = −3.

The Landau equation was introduced as a limit of the Boltzmann equation when the
collisions become grazing in [6, 18]. In the hard potential case, the existence, and the
uniqueness of the solution to the Cauchy problem for the spatially homogeneous Landau
equation have been addressed by Desvillettes and Villani in [7,19]. Meanwhile, they also
proved the smoothness of the solution is C∞(]0, ∞[;S(R3)). The analytic and the Gevrey
regularity of the solution for any t > 0 have already been studied in [1, 2].

We shall study the linearization of the Landau equation (1.1) near the Maxwellian
distribution

µ(v) = (2π)
3
2 e−

|v|2
2 .

Considering the fluctuation of the density distribution function

F(t, v) = µ(v) +
√

µ(v) f (t, v),

since Q(µ, µ) = 0, the Cauchy problem (1.1) takes the form{
∂t f + L f = Γ( f , f ),
f |t=0 = f0,

with F0 = µ +
√

µ f0, where

Γ( f , f ) = µ−
1
2 Q(
√

µ f ,
√

µ f ),
L = L1 + L2 with L1 f = −Γ(

√
µ, f ), L2 f = −Γ( f ,

√
µ).

The spatially homogeneous Landau equation and non-cutoff Boltzmann equation in
a close-to-equilibrium framework have been studied in [10] and the Gelfand-Shilov
smoothing effect has been proved in [11, 15]. Guo [8] constructed the classical solution
for the spatially inhomogeneous Landau equation near a global Maxwellian in a periodic
box. The smoothness of the solutions has been studied in [3, 9, 12]. In addition, the ana-
lytic smoothing effect of the velocity variable for the nonlinear Landau equation has been
treated in [13,16]. The variant regularity results under a close-to-equilibrium setting have
been considered in [4, 5, 17].

In this work, we consider the Cauchy problem of the linear Landau equation, such as{
∂t f + L f = g,
f |t=0 = f0,

(1.3)
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where g is a analytic function with respect to the variable t and v. The diffusion part L1
is written as follows

L1 f = −∇v · [A(v)∇v f ] +
(

A(v)
v
2
· v

2

)
f −∇v ·

[
A(v)

v
2

]
f (1.4)

with A(v) = (ājk)1≤j,k≤3 is a symmetric matrix, and

ājk = ajk ∗ µ =
∫

R3

(
δjk|v− v′|2 − (vj − v′j)(vk − v′k)

)
|v− v′|γµ(v′)dv′.

We say that u ∈ A(Ω) is an analytic function, where Ω ⊂ Rn is an open domain, if
u ∈ C∞(Ω) and there exists a constant C such that for all multi-indices α ∈Nn,

‖∂αu‖L∞(Ω) ≤ C|α|+1α!.

Remark that, by using the Sobolev embedding, we can replace the L∞ norm by the L2

norm, or norm in any Sobolev space in the above definition.
We study the linear Landau equation (1.3), with −3 < γ < 0, and show that the

solution to the Cauchy problem (1.3) with the L2(R3) initial datum enjoys the analytic
regularizing effect of the time variable. The main result reads as follows.

Theorem 1.1. For the soft potential −3 < γ < 0, for any T > 0 and the initial datum f0 ∈
L2(R3). Let f be the solution of the Cauchy problem (1.3), then there exists a constant C > 0
such that for any k ∈N, we have

‖∂k
t f (t)‖L2(R3) ≤

Ck+1

tk k!, ∀t ∈ [0, T]. (1.5)

For the linear operator with only the diffusion part of L1, the paper [14] prove that
the Cauchy problem (1.3) admits a unique weak solution, and the solution satisfies for
any α ∈N3, t̃ = min(t, 1),

‖t̃
|α|
2 〈·〉

γ|α|
2 ∂α f (t)‖L2(R3) ≤ C|α|+1α!, ∀t > 0.

With the similar computation, one can obtain the same analytical results as above, then
using again the equation of (1.3), on have

f ∈ C∞([0,+∞]A(R3)).

So that we just need to prove (1.5) for the smooth solution of Cauchy problem (1.3).

2 Analysis of the Landau linear operator

In the following, the notation A . B means there exists a constant C > 0 such that
A ≤ CB. For simplicity, with γ ∈ R, we denote the weighted Lebesgue spaces

‖〈·〉γ f ‖Lp(R3) = ‖ f ‖p,γ, 1 ≤ p ≤ ∞,
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where we use the notation 〈v〉 = (1 + |v|2) 1
2 . And for the matrix A defined in (1.4), we

denote

‖ f ‖2
A =

3

∑
j,k=1

∫ (
ājk∂j f ∂k f +

1
4

ājkvjvk f 2
)

dv.

From corollary 1 in [8], for γ > −3, there exists a constant C1 > 0 such that

‖ f ‖2
A ≥ C1

(
‖Pv∇ f ‖2

2, γ
2
+ ‖(I− Pv)∇ f ‖2

2,1+ γ
2
+ ‖ f ‖2

2,1+ γ
2

)
, (2.1)

where for any vector-valued function G(v) = (G1, G2, G3) define the projection to the
vector v = (v1, v2, v3) ∈ R3 as

(PvG)j =
3

∑
k=1

Gkvk
vj

|v|2 , 1 ≤ j ≤ 3.

Since
∇ f = Pv∇ f + (I− Pv)∇ f ,

combining the inequality (2.1), we have

‖ f ‖A ≥ C1

(
‖∇ f ‖2, γ

2
+ ‖ f ‖2,1+ γ

2

)
. (2.2)

For later use, we need the following results for the coefficients to the linear Landau oper-
ator, which have been proved in [14].

Lemma 2.1 ([14]). For any β ∈ R3 with |β| ≥ 1 and ājk was defined in (1.4) with−3 < γ < 0,
then we have

|∂β ājk(v)| . 〈v〉γ+1
√

β!. (2.3)

Moreover, for any β ∈ R3,∣∣∣∣∣∂β

( 3

∑
j,k=1

∂jajk ∗ (vkµ)

)∣∣∣∣∣ . 〈v〉γ+1(|β|+ 1)
√

β!, (2.4a)∣∣∣∣∣∂β

( 3

∑
j,k=1

ājkvjvk

)∣∣∣∣∣ . 〈v〉γ+1(|β|+ 1)
√

β!. (2.4b)

Lemma 2.2 ( [14]). Let f1, f2 ∈ S(R3), ājk was defined in (1.4) with −3 < γ < 0. For any
β ∈ R3, we have ∣∣∣∣∣ 3

∑
j,k=1

(∂β ājk∂k f1, ∂j f2)L2(R3)

∣∣∣∣∣ .√β!‖ f1‖A‖ f2‖A. (2.5)

By using the results of the coefficients to the linear Landau operator in [14], we can
obtain the following estimates. Firstly, for any γ > −3 and δ > 0, we have∫

R3
|v− w|γe−δ|w|2 dw . 〈v〉γ. (2.6)
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Lemma 2.3. Let f ∈ S(R3), and −3 < γ < 0, then for any 0 < ε1 < 1, there exists a constant
Cε1 > 0 such that

(1− ε1)‖ f ‖2
A ≤ (L1 f , f )L2 + Cε1‖ f ‖2

2, γ
2
.

Proof. By using the representation (1.4), and integrating by parts, we have

−(L1 f , f )L2 =−
∫

R3

(
ājk∂j f ∂k f +

1
4

ājkvjvk f 2
)
− 1

2

∫
R3

∂j(ājkvk) f 2

=− ‖ f ‖2
A + R0.

Since
∑

j
ajkvj = ∑

k
ajkvk = 0, (2.7)

we have
∂j(ājkvk) = ∂j(ajk ∗ (vkµ)) = ∂jajk ∗ (vkµ).

Therefore from (2.4) and the Cauchy-Schwarz inequality, it follows that

|R0| .
∫

R3
〈v〉γ+1 f 2(v)dv . ‖ f ‖2, γ

2
‖ f ‖2,1+ γ

2
,

then by using (2.2) and the Cauchy-Schwarz inequality, for any 0 < ε1 < 1, we have

|R0| ≤ C2‖ f ‖2, γ
2
‖ f ‖A ≤ ε1‖ f ‖2

A +
4C2

2
ε1
‖ f ‖2

2, γ
2
.

Let Cε1 =
4C2

2
ε1

, then we can conclude

(1− ε1)‖ f ‖2
A ≤ (L1 f , f )L2 + Cε1‖ f ‖2

2, γ
2
.

This completes the proof.

Proposition 2.1. Let f1, f2 ∈ S(R3) and −3 < γ < 0, then there exists a constant C2 > 0
such that

|(L1 f1, f2)L2 | ≤ C2‖ f1‖A‖ f2‖A.

Proof. By using the representation (1.4), and integrating by parts, we have

(L1 f1, f2)L2 =
∫

R3
ājk∂j f1∂k f2 +

1
4

∫
R3

ājkvjvk f1 f2

+
1
2

∫
R3

∂j(ājkvk) f1 f2

=R1 + R2 + R3.
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Since −3 < γ < 0, by the inequality (2.5), we obtain

|R1| . ‖ f1‖A‖ f2‖A.

For the term R2 and R3, using (2.7), then from (2.3) and (2.4), it follows that

|R2|+ |R3| .
∫

R3
〈v〉γ+1| f1(v) f2(v)|dv,

then using the Cauchy-Schwarz inequality and (2.2), we have

|R2|+ |R3| . ‖ f1‖2,1+ γ
2
‖ f2‖2,1+ γ

2
. ‖ f1‖A‖ f2‖A.

Finally, combining R1 − R3 to get

|(L1 f1, f2)L2 | ≤ C2‖ f1‖A‖ f2‖A.

This completes the proof.

Now, we shall estimate (L2 f1, f2)L2 . Firstly, we give the representation of the operator
L2. For f ∈ S(R3), from (1.2), it follows that

L2 f =− µ−
1
2 Q(
√

µ f , µ)

=µ−
1
2 ∂j

(∫
R3

ajk(v− v′)
[
µ

1
2 (v′) f (v′)vk + ∂k

(
µ

1
2 f
)
(v′)

]
dv′µ(v)

)
=µ−

1
2 ∂j

[
µ
(

ajk ∗ (vkµ
1
2 f ) + ∂kajk ∗ (µ

1
2 f )
)]

. (2.8)

Proposition 2.2. Let f1, f2 ∈ S(R3) and −3 < γ < 0, then there exists a constant C3 > 0
such that

|(L2 f1, f2)L2 | ≤ C3

(
‖ f1‖2, γ

2
‖ f2‖A + ‖ f1‖A‖ f2‖2, γ

2

)
. (2.9)

Proof. Using integration by parts with (2.8), we have

(L2 f1, f2)L2 =−
(

ajk ∗ (vkµ
1
2 f1), µ

1
2

(
vj

2
f2 + ∂j f2

))
L2

+
(

∂jkajk ∗ (µ
1
2 f1), µ

1
2 f2

)
L2
−
(

∂kajk ∗ (µ
1
2 f1), µ

1
2 vj f2

)
L2

=I1 + I2 + I3.

Since
|∂αajk(v)| ≤ |v|γ+2−|α|, ∀α ∈N3, (2.10)

and
〈v〉βµρ(v) ∈ L∞(R3), ∀β ∈ R, ρ > 0, (2.11)
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by Cauchy-Schwarz inequality, we obtain

∣∣∣ajk ∗ (vkµ
1
2 f1)

∣∣∣ ≤ ∫
R3
|v− v′|γ+2〈v′〉1−

γ
2 µ

1
2 (v′)〈v′〉

γ
2 | f1(v′)|dv′

.
(∫

R3
|v− v′|2(γ+2)µ

1
2 (v′)dv′

) 1
2

‖ f1‖2, γ
2
.

For any−3 < γ < 0, we have 2(γ+ 2) > −3, then by using the inequality (2.6), it follows
that ∣∣∣ajk ∗ (vkµ

1
2 f1)

∣∣∣ . 〈v〉γ+2‖ f1‖2, γ
2
.

Using the Cauchy-Schwarz inequality and the inequality (2.2), we can conclude

|I1| .‖ f1‖2, γ
2

∫
R3
〈v〉γ+3µ

1
2 (v) (| f2(v)|+ |∇ f2(v)|) dv

.‖ f1‖2, γ
2

(
‖ f2‖2,1+ γ

2
+ ‖∇ f2‖2, γ

2

)
. ‖ f1‖2, γ

2
‖ f2‖A.

For the term I2, from (2.10), one has∣∣∣∂jkajk ∗ (µ
1
2 f1)

∣∣∣ . ∫
R3
|v− v′|γµ

1
2 (v′)

∣∣ f1(v′)
∣∣ dv′.

Consider two sets {|v− v′| ≤ 1} and {|v− v′| ≥ 1}, that is

∫
R3
|v− v′|γµ

1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

=
∫
|v−v′|≤1

+
∫
|v−v′|≥1

= A1 + A2.

For the term A1, since −3 < γ < 0, we have

A1 = ∑
j≤0

∫
2j−1≤|v−v′|≤2j

|v− v′|γµ
1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

≤∑
j≤0

(
2j−1

)γ
∫
|v−v′|≤2j

µ
1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

=8 ∑
j≤0

(
2j−1

)γ+3 1
23j

∫
|v−v′|≤2j

µ
1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

≤8 ∑
j≤0

(
2j−1

)γ+3
M(µ

1
2 f1) . M(µ

1
2 f1),



C. Xu and Y. Xu / Anal. Theory Appl., 40 (2024), pp. 22-37 29

where M is the Hardy-Littlewood maximal function. For term A2, from (2.6),

A2 =
∫
|v−v′|≥1

|v− v′|γµ
1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

≤
∫

R3
|v− v′|γ+2µ

1
2 (v′)

∣∣ f1(v′)
∣∣ dv′

.
(∫

R3
|v− v′|2(γ+2)µ

1
2 (v′)dv′

) 1
2

‖ f1‖2, γ
2

.〈v〉γ+2‖ f1‖2, γ
2
.

Combining A1 and A2, using Cauchy-Schwarz inequality to get

|I2| .
∫

R3
|M(µ

1
2 f1)(v)µ

1
2 (v) f2(v)|dv + ‖ f1‖2, γ

2

∫
R3
〈v〉γ+2µ

1
2 (v)| f2(v)|dv

.‖M(µ
1
2 f1)‖L2‖µ

1
2 f2‖L2 + ‖ f1‖2, γ

2
‖ f2‖2, γ

2

.‖µ 1
2 f1‖L2‖µ

1
2 f2‖L2 + ‖ f1‖2, γ

2
‖ f2‖2, γ

2

.‖ f1‖2, γ
2
‖ f2‖2, γ

2
. ‖ f1‖2, γ

2
‖ f2‖A.

For I3, from (2.10), we have∣∣∣∂kajk ∗ (µ
1
2 f1)

∣∣∣ . ∫
R3
|v− v′|γ+1µ

1
2 (v′)| f1(v′)|dv′.

Note that
3
2
(γ + 1) > −3

with −3 < γ < 0. Using Hölder’s inequality, (2.11) and (2.6), we have∣∣∣∂kajk ∗ (µ
1
2 f1)

∣∣∣ .(∫
R3
|v− v′| 32 (γ+1)µ

1
2 (v′)dv′

) 2
3

‖ f1‖3, γ
2

.〈v〉γ+1‖ f1‖3, γ
2
.

Now, we want to show ‖ f1‖3, γ
2

can be bounded by ‖ f1‖A. By applying Hölder’s inequal-
ity, 〈v〉γ/2 f1(v) in L3(R3) can be bounded by(

‖〈·〉γ/2 f1‖L2‖〈·〉γ/2 f1‖L6

) 1
2

,

and Sobolev embedding implies

‖〈·〉γ/2 f1‖L6 . ‖∇[〈·〉γ/2 f1]‖L2 ,

thus we get

‖ f1‖3, γ
2
.
(
‖〈·〉γ/2 f1‖L2‖∇[〈·〉γ/2 f1]‖L2

) 1
2

.
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Notice that
∇[〈v〉γ/2 f1(v)] =

γ

2
〈v〉γ/2−2 f1(v)v + 〈v〉γ/2∇ f1(v),

from (2.2), we have

‖∇[〈·〉γ/2 f1]‖L2 ≤
∥∥∥γ

2
〈v〉γ/2−2 f1v

∥∥∥
L2
+ ‖〈·〉γ/2∇ f1‖L2 . ‖ f1‖A,

which implies
‖ f1‖3, γ

2
. ‖ f1‖A. (2.12)

Finally, using the Cauchy-Schwarz inequality and (2.12) to get

|I3| . ‖ f1‖A

∫
R3
〈v〉γ+2µ

1
2 (v)| f2(v)|dv . ‖ f1‖A‖ f2‖2, γ

2
.

Combining I1 − I3, we obtain

|(L2 f1, f2)L2 | ≤ C3

(
‖ f1‖2, γ

2
‖ f2‖A + ‖ f1‖A‖ f2‖2, γ

2

)
.

This completes the proof.

Remark 2.1.

(1). For f1, f2 ∈ S(R3) and γ > −5/2, we have

|(L2 f1, f2)L2 | . ‖ f1‖2, γ
2
‖ f2‖A.

(2). For −3 < γ < 0, if f1 = f2, then for any ε2 > 0, there exists a constant Cε2 > 0 such
that

|(L2 f1, f1)L2 | ≤ ε2‖ f1‖2
A + Cε2‖ f1‖2

2, γ
2
. (2.13)

(3). From (2.2),
|(L2 f1, f2)L2 | ≤ C4‖ f1‖A‖ f2‖A. (2.14)

3 Energy estimates

In this section, we study the energy estimates of the solution to the Cauchy problem (1.3).

Lemma 3.1. For −3 < γ < 0. Lef f be the solution of Cauchy problem (1.3). Assume f0 ∈
L2(R3). Then there exists a constant C5 > 0 such that for any T > 0 and t ∈ [0, T],

‖ f (t)‖2
L2(R3) +

∫ t

0
‖ f (s)‖2

Ads ≤ (C5)
2 .



C. Xu and Y. Xu / Anal. Theory Appl., 40 (2024), pp. 22-37 31

Proof. Since f is the solution of Cauchy problem (1.3),

1
2

d
dt
‖ f (t)‖2

L2(R3) + (L1 f , f )L2(R3) = (g, f )L2(R3) − (L2 f , f )L2(R3).

Since γ < 0, by using Lemma 2.3 and (2.13), we have

d
dt
‖ f (t)‖2

L2(R3) + 2(1− ε1)‖ f (t)‖2
A

≤2‖ f (t)‖L2‖g(t)‖L2 + 2ε2‖ f (t)‖2
A + 2(Cε1 + Cε2)‖ f (t)‖2

L2(R3).

Applying Cauchy-Schwarz inequality, and choosing ε1 = ε2 = 1
4 , we can get

d
dt
‖ f (t)‖2

L2(R3) + ‖ f (t)‖2
A ≤ c1‖ f (t)‖2

L2 + ‖g(t)‖2
L2 .

Since g is analytic with respect to t and v, for any T > 0 and t ∈ [0, T], there exists a
constant A > 0 such that

‖g(t)‖L2 ≤ A. (3.1)

Therefore by applying Gronwall inequality, for any T > 0 and t ∈ [0, T], taking

C5 ≥ e
1
2 c1T
√
‖ f0‖2

L2 + TA2,

one can obtain

‖ f (t)‖2
L2(R3) +

∫ t

0
‖ f (s)‖2

Ads ≤ ec1T (‖ f0‖2
L2 + TA2) ≤ (C5)

2.

This completes the proof.

Lemma 3.2. For −3 < γ < 0. Lef f be the solution of Cauchy problem (1.3). Assume f0 ∈
L2(R3). Then there exists a constant C6 > 0 such that for any T > 0 and t ∈ [0, T],

‖t∂t f ‖2
L∞(]0,T];L2(R3)) +

∫ T

0
‖t∂t f ‖2

Adt ≤ (C6)
2 . (3.2)

Proof. Since the solution of Cauchy problem (1.3) belongs to C∞(]0, T[;S(R3)), we have
that

∂t(t∂t f ) + L1(t∂t f ) = ∂t f −L2(t∂t f ) + t∂tg,

and for 0 < t ≤ T,

1
2
‖t∂t f ‖2

L2(R3) +
∫ t

0
(L1(s∂s f ), s∂s f )L2(R3)ds

=
∫ t

0
s‖∂s f ‖2

L2(R3)ds−
∫ t

0
(L2(s∂s f ), s∂s f )L2(R3) +

∫ t

0
(s∂s f , s∂sg)L2(R3)ds

=S1 + S2 + S3.
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Firstly, since γ < 0, by Lemma 2.3 for all 0 < t ≤ T, we can conclude∫ t

0
(L1(s∂s f ), s∂s f )L2(R3)ds

≥(1− ε1)
∫ t

0
‖s∂s f ‖2

Ads− Cε1

∫ t

0
‖s∂s f ‖2

2, γ
2
ds

≥(1− ε1)
∫ t

0
‖s∂s f ‖2

Ads− TCε1

∫ t

0
s‖∂s f ‖2

L2(R3)ds.

For the term S1, since f is the solution of (1.3), using Proposition 2.1 and (2.14), for all
0 < t ≤ T, we have∫ t

0
s‖∂s f ‖2

L2(R3)ds

=
∫ t

0
(g, s∂s f )L2(R3)ds−

∫ t

0
(L1 f , s∂s f )L2(R3)ds−

∫ t

0
(L2 f , s∂s f )L2(R3)ds

≤
∫ t

0
‖g(s)‖L2(R3)‖s∂s f ‖L2(R3)ds + C2

∫ t

0
‖ f (s)‖A‖s∂s f ‖Ads

+ C4

∫ t

0
‖ f (s)‖A‖s∂s f ‖Ads.

For all 0 < t ≤ T, by Cauchy-Schwarz inequality, it follows that∫ t

0
‖g(s)‖L2(R3)‖s∂s f ‖L2(R3)ds

≤T
1
2

∫ t

0
‖g(s)‖L2(R3)s

1
2 ‖∂s f ‖L2(R3)ds

≤1
2

∫ t

0
s‖∂s f ‖2

L2(R3)ds +
T
2

∫ t

0
‖g(s)‖2

L2(R3)ds.

Using Cauchy-Schwarz inequality, since γ < 0, for any 0 < δ < 1, we have∫ t

0
s‖∂s f ‖2

L2(R3)ds

≤δ
∫ t

0
‖s∂s f ‖2

Ads + T
∫ t

0
‖g(s)‖2

L2(R3)ds + Cδ

∫ t

0
‖ f (s)‖2

Ads,

with Cδ depends on C2, C4. Combining (3.1) and Lemma 3.1, for 0 < δ < 1,

S1 =
∫ t

0
s‖∂s f ‖2

L2(R3)ds ≤ δ
∫ t

0
‖s∂s f ‖2

Ads + T2A2 + CδC2
5 . (3.3)

For the term S2, let f1 = s∂s f in (2.13), then for all 0 < t ≤ T,

|S2| ≤ ε2

∫ t

0
‖s∂s f ‖2

Ads + Cε2 T
∫ t

0
s‖∂s f ‖2

L2(R3)ds,
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by using (3.3) with c3Tδ ≤ ε2,

|S2| ≤ 2ε2

∫ t

0
‖s∂s f ‖2

Ads + C̃ε2 ,

with C̃ε2 depends on C2, C4, C5, A and T.
Finally, for the term S3, by Cauchy-Schwarz inequality, it follows that

|S3| ≤
∫ t

0
‖s∂sg‖2

L2(R3) + T
∫ t

0
s‖∂s f ‖2

L2(R3)ds.

Since g is analytic with respect to t and v, for all 0 < t ≤ T, we have

‖t∂tg‖L2(R3) ≤ A2,

applying (3.3) with Tδ ≤ ε2 to get S3 can be bounded by

ε2

∫ t

0
‖s∂s f ‖2

Ads + TA4 + T
(
T2A2 + Cε2 C2

5
)

.

Therefore, combining the results above and using (3.3) with TCε1 δ < ε1, let ε1 = ε2 = 1
16 ,

0 < δ ≤ 1
4 , and taking C6 ≥

√
C̃5, we get

‖t∂t f ‖2
L∞(]0,T];L2(R3)) +

∫ T

0
‖t∂t f ‖2

Adt ≤ C̃5 ≤ (C6)
2 .

with C6 depend on C2, C4, C5, A and T.

4 Analytic smoothing effect for time variable

In this section, we will show the analytic regularity of the time variable for t > 0. We
construct the following estimate, which implies Theorem 1.1 immediately.

Proposition 4.1. For −3 < γ < 0. Let f be the solution of Cauchy problem (1.3), and f0 ∈
L2(R3). Then there exists a constant B > 0 such that for any T > 0, t ∈ [0, T] and k ∈N,

‖tk∂k
t f ‖2

L∞(]0,T];L2(R3)) +
∫ T

0
‖tk∂k

t f ‖2
Adt ≤

(
Bk+1k!

)2
. (4.1)

Proof. We prove this proposition by induction on the index k. For k = 1, it is enough to
take in (3.2). Assume (4.1) holds true, for any 1 ≤ m ≤ k− 1 with k ≥ 2,

‖tm∂m
t f ‖2

L∞(]0,T];L2(R3)) +
∫ T

0
‖tm∂m

t f ‖2
Adt ≤

(
Bm+1m!

)2
. (4.2)

We shall prove (4.1) holds true for m = k.
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Since µ is the function with respect to v, which implies

tk∂k
tL1 f = L1(tk∂k

t f ), tk∂k
tL2 f = L2(tk∂k

t f ).

Then by (1.3), we have

∂t(tk∂k
t f ) + L1(tk∂k

t f ) = ktk−1∂k
t f −L2(tk∂k

t f ) + tk∂k
t g.

Taking the L2(R3) inner product of both sides with respect to tk∂k
t f , we get

1
2

d
dt
‖tk∂k

t f ‖2
L2(R3) + (L1(tk∂k

t f ), tk∂k
t f )L2(R3)

=k(tk−1∂k
t f , tk∂k

t f )L2(R3) − (L2(tk∂k
t f ), tk∂k

t f )L2(R3) + (tk∂k
t g, tk∂k

t f )L2(R3).

For all 0 < t ≤ T, integrating from 0 to t, since γ < 0, by using Lemma 2.3, it follows that∫ t

0
(L1(sk∂k

s f ), sk∂k
s f )L2(R3)ds

≥(1− ε1)
∫ t

0
‖sk∂k

s f ‖2
Ads− Cε1

∫ t

0
‖sk∂k

s f ‖2
2, γ

2
ds

≥(1− ε1)
∫ t

0
‖sk∂k

s f ‖2
Ads− TCε1

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds,

and let f1 = sk∂k
s f in (2.13) to get∫ t

0
|(L2(sk∂k

s f ), sk∂k
s f )L2(R3)|ds ≤ ε2

∫ t

0
‖sk∂k

s f ‖2
Ads + TCε2

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds,

then using Cauchy-Schwarz inequality to get∫ t

0
|(sk∂k

s g, sk∂k
s f )L2(R3)|ds

≤1
2

∫ t

0
‖sk∂k

s g‖2
L2(R3)ds +

1
2

∫ t

0
‖sk∂k

s f ‖2
L2(R3)ds

≤1
2

∫ t

0
‖sk∂k

s g‖2
L2(R3)ds +

T
2

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds.

Combining the results above, and taking ε1 = ε2 = 1
8 , we have for all 0 < t ≤ T,

∥∥tk∂k
t f
∥∥2

L2(R3)
+

3
2

∫ t

0
‖sk∂k

s f ‖2
Ads

≤
∫ t

0
‖sk∂k

s g‖2
L2(R3)ds + C7

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds, (4.3)

with C7 depends on T.
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Since f is the solution of (1.3) and k ≥ 2, we have

∂k
t f = ∂k−1

t g−L1(∂
k−1
t f )−L2(∂

k−1
t f ),

which implies

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds

=
∫ t

0
(sk−1∂k−1

s g, sk∂k
s f )L2(R3)ds−

∫ t

0
(L1(sk−1∂k−1

s f ), sk∂k
s f )L2(R3)ds

−
∫ t

0
(L2(sk−1∂k−1

s f ), sk∂k
s f )L2(R3)ds.

For all 0 < t ≤ T, using Cauchy-Schwarz inequality, we have

∫ t

0
(sk−1∂k−1

s g, sk∂k
s f )L2(R3)ds

≤T
1
2

∫ t

0
‖sk−1∂k−1

s g‖L2(R3)s
2k−1

2 ‖∂k
s f ‖L2(R3)

≤T
2

∫ t

0
‖sk−1∂k−1

s g‖2
L2(R3) +

1
2

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds.

By using Proposition 2.1, (2.14) and Cauchy-Schwarz inequality, for any 0 < δ < 1, there
exists a constant Cδ > 0 such that for all 0 < t ≤ T,

∫ t

0
s2k−1‖∂k

s f ‖2
L2(R3)ds

≤δ
∫ t

0
‖sk∂k

s f ‖2
Ads + T

∫ t

0
‖sk−1∂k−1

s g‖2
L2(R3) + Cδ

∫ t

0
‖sk−1∂k−1

s f ‖2
Ads, (4.4)

with Cδ depends on C2, C4. Let C7δ ≤ 1
2 , substituting (4.4) into (4.3), we get

∥∥tk∂k
t f
∥∥2

L2(R3)
+
∫ t

0
‖sk∂k

s f ‖2
Ads

≤C̃7

(∫ t

0
‖sk−1∂k−1

s g‖2
L2(R3)ds +

∫ t

0
‖sk−1∂k−1

s f ‖2
Ads
)
+
∫ t

0
‖sk∂k

s g‖2
L2(R3)ds,

with C̃7 depends on C2, C4, C7 and T.
Finally, since g is analytic with respect to t and v, for any k ∈N, there exists a constant

A > 0 such that for any 0 < t ≤ T,

‖tk∂k
t g‖L2(R3) ≤ Ak+1k!,
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taking B ≥ max{A,
√

2C̃7}, using the induction hypothesis (4.2), we obtain

∥∥tk∂k
t f
∥∥2

L2(R3)
+
∫ t

0
‖sk∂k

s f ‖2
Ads

≤C̃7

(
(Ak(k− 1)!)2 + (Bk(k− 1)!)2

)
+ (Ak+1k!)2

≤(Bk+1k!)2,

with B depends on C1, C2, C4, A and T. We finish the proof of Proposition 4.1.
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