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Abstract. In this note, we study the Cauchy problem of the linear spatially homoge-
neous Landau equation with soft potentials. We prove that the solution to the Cauchy
problem enjoys the analytic regularizing effect of the time variable with an L? initial
datum for positive time. So that the smoothing effect of Cauchy problem for the lin-
ear spatially homogeneous Landau equation with soft potentials is similar to the heat
equation.
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1 Introduction

The Cauchy problem of spatially homogenous Landau equation reads

{ oF = Q(F,F),

(1.1)
Fli=o = Fo,

where F = F(t,v) > 0 is the density distribution function at time ¢ > 0, with the velocity
variable v € R3. The Landau bilinear collision operator is defined by

3
Q6,F)(e) = 1. 3)( [ aulo =0 (G0 (0) - G (0 (oo, ) (1

=
with
aj(v) = (Oulof* —vjo)[o]?, v > =3,
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is a symmetric non-negative matrix such that

3
2 ajk(v)vjvk =0.
jk=1

Here,  is a parameter which leads to the classification of the hard potential if 7 > 0,
Maxwellian molecules if v = 0, soft potential if —3 < ¢ < 0 and Coulombian potential if
v =-3.

The Landau equation was introduced as a limit of the Boltzmann equation when the
collisions become grazing in [6,18]. In the hard potential case, the existence, and the
uniqueness of the solution to the Cauchy problem for the spatially homogeneous Landau
equation have been addressed by Desvillettes and Villani in [7,19]. Meanwhile, they also
proved the smoothness of the solution is C*(]0, co[; S(IR?)). The analytic and the Gevrey
regularity of the solution for any ¢ > 0 have already been studied in [1,2].

We shall study the linearization of the Landau equation (1.1) near the Maxwellian
distribution

[o[?

H(v) = (2m)e 7.

Considering the fluctuation of the density distribution function

F(t,v) = u(v) + \/ﬁ(v)f(t,v),
since Q(u, #) = 0, the Cauchy problem (1.1) takes the form

{ of+Lf=T(f, f),
fli=o = fo,

with Fy = p + /pfo, where

T(f,f) = n 2 QJif, Vif),
L=Ly+ Ly with Lif = -T(Vi&f), Laf = —T(f, VH)

The spatially homogeneous Landau equation and non-cutoff Boltzmann equation in
a close-to-equilibrium framework have been studied in [10] and the Gelfand-Shilov
smoothing effect has been proved in [11,15]. Guo [8] constructed the classical solution
for the spatially inhomogeneous Landau equation near a global Maxwellian in a periodic
box. The smoothness of the solutions has been studied in [3,9,12]. In addition, the ana-
lytic smoothing effect of the velocity variable for the nonlinear Landau equation has been
treated in [13,16]. The variant regularity results under a close-to-equilibrium setting have
been considered in [4,5,17].

In this work, we consider the Cauchy problem of the linear Landau equation, such as

{ of+Lf =g,

Fleco = fo, (1.3)
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where g is a analytic function with respect to the variable t and v. The diffusion part £,
is written as follows
v v v

Lif = Vo [A@)Vof] + (A@)5 - 5) F = Vo |A@)Z] f (14)

with A(v) = (@jx)1<jk<3 is @ symmetric matrix, and

Tj = Aj* J = /]R3 ((Sjk\v - (vj — v})(vk — vf()) o — 0| Tu(v")dv'.

We say that u € A(Q) is an analytic function, where 3 C R”" is an open domain, if
u € C*(Q) and there exists a constant C such that for all multi-indices « € IN",

0%t || feo o) < ClHH 1,
(®)

Remark that, by using the Sobolev embedding, we can replace the L* norm by the L?
norm, or norm in any Sobolev space in the above definition.

We study the linear Landau equation (1.3), with —3 < 9 < 0, and show that the
solution to the Cauchy problem (1.3) with the L?(IR%) initial datum enjoys the analytic
regularizing effect of the time variable. The main result reads as follows.

Theorem 1.1. For the soft potential —3 < v < 0, for any T > 0 and the initial datum f, €
L%(R®). Let f be the solution of the Cauchy problem (1.3), then there exists a constant C > 0
such that for any k € IN, we have

k CkJrl \
198 f (Dll2ms) < =K, VEE€[0,T]. (1.5)

For the linear operator with only the diffusion part of £;, the paper [14] prove that
the Cauchy problem (1.3) admits a unique weak solution, and the solution satisfies for
any « € N3, f = min(¢t, 1),

~lof )

IF2 ()2 0" ()| 2mey < ClIHat, Wt > 0.

With the similar computation, one can obtain the same analytical results as above, then
using again the equation of (1.3), on have

f € C®(]0, +0] A(R?)).

So that we just need to prove (1.5) for the smooth solution of Cauchy problem (1.3).

2 Analysis of the Landau linear operator

In the following, the notation A < B means there exists a constant C > 0 such that
A < CB. For simplicity, with v € R, we denote the weighted Lebesgue spaces

1 fllergrsy = 11 fllpys T <p <o,
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where we use the notation (v) = (1 + |v[?)2. And for the matrix A defined in (1.4), we
denote

HNA—§:/<%%ﬁu+ s do

jk=1

From corollary 1 in [8], for v > —3, there exists a constant C; > 0 such that

1£13 = €1 (VB + 1A=P)VFI g+ 1£1B ). (2.1)
where for any vector-valued function G(v) = (Gj, Gy, G3) define the projection to the
vector v = (v1,7v,03) € R3 as

3 s
— / ;
G)]_k_zlckka/ 1§]§3

Since
Vf=P,Vf+(1-P,)VY,

combining the inequality (2.1), we have

1£1a = €1 (IVF o+ 1f sz ) (2.2)

For later use, we need the following results for the coefficients to the linear Landau oper-
ator, which have been proved in [14].

Lemma 2.1 ([14]). Forany B € R® with |B| > 1 and aj was defined in (1.4) with =3 < v <0,

then we have
‘aﬁa]k 0)71\/B (2.3)
Moreover, for any B € R3,

3
aﬁ( Y 9k (W)) S (@)"H(1Bl+1) VBl (2.4a)
k=1
3
( )3 ﬂ]kvak> ()" (Bl +1)/BL. (2.4b)
jk=1

Lemma 2.2 ([14]). Let f1, f» € S(R?), @ was defined in (1.4) with =3 < v < 0. For any
B € R3, we have

3
Y. (Papdifr,0if2)12wey| S VBUIfillall falla- (2.5)

jk=1

By using the results of the coefficients to the linear Landau operator in [14], we can
obtain the following estimates. Firstly, for any v > —3 and 4 > 0, we have

/3 lo— w|Te P dw < (v)7. (2.6)
R
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Lemma 2.3. Let f € S(R3), and —3 < 7y < 0, then for any 0 < €, < 1, there exists a constant
Ce, > 0 such that

(1 —e)llfl% < (Laf, iz + CallfIl3 5-

Proof. By using the representation (1.4), and integrating by parts, we have

1
—(Laf, e =— /]R3 (ﬁjkajfakf+ 4ﬁjkvjka2> / i(@ok) f
—IflI% + Ro.
Since

Zﬂjkvj = Zﬂjkvk =0, (2.7)
7 %

we have
8]-(ajkvk) = 8](11],( * (Uk]/l)) = a]'{/'ljk * (Uk]l).
Therefore from (2.4) and the Cauchy-Schwarz inequality, it follows that

[Rol S /]R3<v>7“f2(v)dv S Il g 1l g0
then by using (2.2) and the Cauchy-Schwarz inequality, for any 0 < €; < 1, we have

4c2
[Ro| < Callfllo,z I flla < el flla+—2 Hf”z 7

42
Let C¢, = 6—12, then we can conclude

(1 —e)llfIh < (Lafs iz +Ce I £15,5-

This completes the proof. O

Proposition 2.1. Let fi, f» € S(R3) and —3 < «y < 0, then there exists a constant C; > 0
such that

[(L1f1, f2)12] < Call full all f2]] 4
Proof. By using the representation (1.4), and integrating by parts, we have
1
(L1fi, f2)12 = / ajx0; f10k f2 + 1 /3 ajxvjvrfif2

t3 / i(@pvk) fLfa
=R + Ry + R;.
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Since —3 < ¢ < 0, by the inequality (2.5), we obtain

IR1| S I f1llall f2ll a-

For the term R; and R3, using (2.7), then from (2.3) and (2.4), it follows that
Rl + Ral £ [ (0) 1 Ai(0) ) o,

then using the Cauchy-Schwarz inequality and (2.2), we have

[Ro| +|Rs| S fillzps gl f2ll243 S [ Allallfalla-
Finally, combining R; — R3 to get
[(L1f1, f2)i2] < Cof full all f2l -
This completes the proof. O

Now, we shall estimate (L f1, f2);2. Firstly, we give the representation of the operator
L;. For f € S(R®), from (1.2), it follows that

Lof == w2 QVEf 1)
—bay [ ol — ) [ 5020 (1) ()] do'u(o))

:lf%a]’ [Pl (ajk « (ot f) + Oxalji * (H%f)ﬂ - (2.8)

NI—=

Proposition 2.2. Let fi, fo» € S(R3) and —3 < y < 0, then there exists a constant C3 > 0
such that

|(L2f1, f2)12] < Cs (Hlez,ngZHA + HleAHfZHz,g) : (2.9)

Proof. Using integration by parts with (2.8), we have

o
(Laf1, fo)r2 = — (ﬂjk « (o f1), 2 <2sz + a]'f2>) i
L
+ (ajkﬂjk * (ﬂ%fl)/ﬂ%h)Lz - (akﬂjk * (V%fl)fﬂ%vjﬁ)Lz
=L+ L+ Is.

Since
0% (v)] < |07, Va e N°, (2.10)

and
(0)Puf(v) € L*(R®), VBER, p>0, (2.11)
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by Cauchy-Schwarz inequality, we obtain

e (ot f1)] < [l = o7 (0) () (o) o

R3
< 12(r+2) 3 (o) \do' :
([ lo= o P2 @) ) Al

Forany —3 < 7 < 0, we have 2(y +2) > —3, then by using the inequality (2.6), it follows
that

i (et )] S ()2 full g

Using the Cauchy-Schwarz inequality and the inequality (2.2), we can conclude

11 Slfillag [ @78} @) (10| + VL@ do
SAillg (Illaeg + 19 Al) S 1Al2gllflla

For the term I, from (2.10), one has
daiex ()| < [ o =o' () [ (0] o
Consider two sets {|v — v'| <1} and {|v — ¢/| > 1}, thatis
1
| lo=o 1 @) [A()] do
- +/ = Al + Az.
[v—v'|<1 |[o—v'|>1
For the term A4, since —3 < 7 < 0, we have
A / v—0|" ! )| dv’
t= ];0 1< |o—v/|<2) | "2 (@) }fl( )}
<y (@) E ) A

j<0 v—0'|<2J
Y+3
Sy () [ H ) A
<0 25 Jjo-vi<a ¥

<8 (27)" MG < M(utfo),

j<0
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where M is the Hardy-Littlewood maximal function. For term A;, from (2.6),
A= [ oo b |AW)| v
[o—7'|>1

< [ o= "2 (@) | (@) | dof

1
1 2
S ([ Jo-vPr @) Al
SO filly -

Combining A; and A», using Cauchy-Schwarz inequality to get

Bl S [ MGt )@t (0) (0o + Ifillag [ (o)t (0) fao) o

1 1
SIM G2 f)llezllp2 follz + il gl f2ll2 3
1 1
Sz Allellp? falle + 1 filla g 20,5
SlAllz g2l g S WAl gl f2lla-

For I3, from (2.10), we have
s (W A)| S [ o=/ P @Ao'

Note that 3
5(7 +1) > -3

with —3 < ¢ < 0. Using Holder’s inequality, (2.11) and (2.6), we have

2
3
duaer ()| 5 ([, lo = o BV ) Al
<) Mnflusw

Now, we want to show || f1[[3 3 can be bounded by | f1[| 4. By applying Hélder’s inequal-
ity, (v)7/2f1(v) in L3(R3) can be bounded by

NI

(12 Al 16772 Als)

and Sobolev embedding implies

1Y flle S IV A,

thus we get

1filag S (172 A1IVIG 2 Al )
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Notice that
V[{0)1"2fi(v)] = %(vWHfl (0)0+ (0)7?V fi(v),

from (2.2), we have

IVIEY2Allle < |5 (0)72 2 fro

L IOV Alle S 1Al

which implies
1flls3 < (1 f1lla- (212)

Finally, using the Cauchy-Schwarz inequality and (2.12) to get

B S IAilla [ )72 @) (@)ldo S lIfillal el g

RS

Combining I; — I3, we obtain

((L2fi, fo)izl < Cs (Ifillog I alla+ IAllallfollng)
This completes the proof. O
Remark 2.1.
(1). For f1, f» € S(R®) and y > —5/2, we have

[(L2f1, fa)izl S Ifillo g1 f2]la-

(2). For =3 < v <0, if f; = f,, then for any € > 0, there exists a constant C., > 0 such
that

(L2, fi)ie] < el filll + Call full5 5 (2.13)
(3). From (2.2),
[(L2f1, f2)12| < Call frll all 2]l a- (2.14)
3 Energy estimates

In this section, we study the energy estimates of the solution to the Cauchy problem (1.3).

Lemma 3.1. For —3 < v < 0. Lef f be the solution of Cauchy problem (1.3). Assume fo €
L?(R3). Then there exists a constant Cs > 0 such that for any T > O and t € [0, T),

£ ey + [ 1765)1Pds < (G5
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Proof. Since f is the solution of Cauchy problem (1.3),

S NFO gy + (E1f D) = (8 Prze) — (L, iz

Since v < 0, by using Lemma 2.3 and (2.13), we have

A ooy 20— )l F DI
AUl Ol 2O+ 2Co + GO

Applying Cauchy-Schwarz inequality, and choosing €; = €2 = 1, we can get

%Hf( B E2re) + IFOIE < aall F O + 8011

Since g is analytic with respect to t and v, for any T > 0 and ¢t € [0, T], there exists a
constant A > 0 such that

lg(t)]l2 < A. (3.1)
Therefore by applying Gronwall inequality, for any T > 0 and ¢ € [0, T|, taking

Cs > 2T\ /| foll% + TA?,

one can obtain

t
IF O Bagey + [ IF©)I3ds < T ((1fol + TA2) < (C)2
This completes the proof. O

Lemma 3.2. For —3 < v < 0. Lef f be the solution of Cauchy problem (1.3). Assume fo €
L?(IR3). Then there exists a constant C > 0 such that forany T > 0and t € [0, T},

T
188e £ 117w 0,722 (3 +/0 [£:f|%dt < (Co)*. (3.2)

Proof. Since the solution of Cauchy problem (1.3) belongs to C*(]0, T[; S(IR?)), we have
that

at(tatf) + El(tatf) = atf — £2(tatf) + tatg,
and for0 <t < T,

t
2121+ [ (£1(69.F), 50 aquods

t t
= [ 0uf oo s = [ (£2(59:), 504 )iz + [ (50 )10
=514 53+ Ss3.
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Firstly, since v < 0, by Lemma 2.3 for all 0 < t < T, we can conclude

t
[ (£1(509), 50,
t t
2(1—61)/0 |\sasfuids—c€1/0 Is3sf113 5 ds
£ t
2(1—61)/0 1595 f||%ds — TCe, ; (195 £ 1172 (s s

For the term Sy, since f is the solution of (1.3), using Proposition 2.1 and (2.14), for all
0 <t <T,wehave

[ 101z o
t t
- /0 (2,59f) 12(xo) 5 — /0 (L1f, 595 f) 2qroyds — /0 (Laf, 505 f) 2o ds
t t
< [ 18 iz 1595 12g s + Co [ 1£(6) 41525 L ads
t
+Co [1£6)1al1s3:S | ads.
For all 0 < t < T, by Cauchy-Schwarz inequality, it follows that
t
| 186 12qx0) 159z s
t
<75 [ 13(5)llroys* 10 12 s
<3 [ 510 apoyds + 3 [ 1805 ooy
Using Cauchy-Schwarz inequality, since y < 0, for any 0 < 6 < 1, we have
t
| Sl19:F s g s
t
<6 [ NsaufIds + T [ 19 aquords +Co [ 1F6) s
with Cs depends on C;, C4. Combining (3.1) and Lemma 3.1, for 0 <4 < 1,
t
_ / 5110512 oy s < 5/0 159, f||%ds + T2A2 + C5C2. (3.3)

For the term Sy, let f1 = sosf in (2.13), then forall 0 <t < T,

t t
S2l < €2 [ 150ufIfds + CerT || sl g ds
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by using (3.3) with c3Td < €3,

t ~
S2f < 2€ [ (159 |35 + Ces,

with Cez depends on Cp, C4, C5, Aand T.
Finally, for the term S3, by Cauchy-Schwarz inequality, it follows that

t t
Sal < [ 10:gBzquy + T | sl19cF sz s
Since g is analytic with respect to t and v, for all 0 < t < T, we have
1£9:8 |l 12(we) < A%,

applying (3.3) with Té < e, to get S3 can be bounded by

t
62/0 |50 f |2 ds + TA* + T (T2 A% + C.,C2) .

Therefore, combining the results above and using (3.3) with TC,,0 < €1, lete; = €2 = %,

0<do< %, and taking C¢ > Cs, we get

T ~
Htatf||2°°GO,T],'L2(R3)) +/0 HtatfHZAdt S C5 S (C6>2.

with Cg depend on Cp, C4, C5, Aand T.

4 Analytic smoothing effect for time variable

33

In this section, we will show the analytic regularity of the time variable for t > 0. We

construct the following estimate, which implies Theorem 1.1 immediately.

Proposition 4.1. For —3 < v < 0. Let f be the solution of Cauchy problem (1.3), and fo €

L*(IR®). Then there exists a constant B > 0 such that forany T > 0,t € [0, T] and k € N,

T 2
||tkalt(f||2oo(]0/T],.L2(]R3)) +/0 Htka]t{fﬂi\dt < (Bk+lk!> .

(4.1)

Proof. We prove this proposition by induction on the index k. For k = 1, it is enough to

take in (3.2). Assume (4.1) holds true, forany 1 < m < k —1with k > 2,

T 2
1#"0F Fll T oz ey + [ €707 flladt < (B"tmt)
(o2 *

We shall prove (4.1) holds true for m = k.

(4.2)
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Since y is the function with respect to v, which implies
FOFLLf = La(HF0ff), O Laf = Lo(t0ff).
Then by (1.3), we have
0 (K F) + L1 (95 F) = Kt 19K F — Lo (£F0FF) + tFokg.

Taking the L2(IR?) inner product of both sides with respect to t9f f, we get

N )+ (L1 (), 1495 )
=k(t* 19, tkalff)LZ(R3) - (ﬁz(tkalff)rtkalff)Lz(RS) + (Fofg, tkalt(f)U(JRS)-
Forall 0 < t < T, integrating from 0 to ¢, since y < 0, by using Lemma 2.3, it follows that
[ ), 40k ) 2 s
>(1-e) [ 89 s - Coy || 2130
>(1—en) [ 159 Ids = TCo, [ 1ok oy
and let f; = s*9%f in (2.13) to get
10240 0), 9 ) s < e [ I5F0R s + TCey [ 213K g,
then using Cauchy-Schwarz inequality to get
/ |(s"95g, s f)LZ R?)|ds
<3 | 1508l + 5 [ 15055 s
N e L
Combining the results above, and taking €1 = €; = %, we have forall0 <t < T,
69 g+ 5 [ 5405 s
g/otHskakgH (0 ds+C7/ S50 £ oy (4.3)

with C; depends on T.
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Since f is the solution of (1.3) and k > 2, we have
Af =9 'g— L1(3F ' f) — L2(0f 1),
which implies
[ e
:/0 (s g, Skals(f)LZ(W)dS - /Ot(ﬁl(sk1a§1f)r5ka§f)L2(R3)dS
— [ eals 19 1), 59 )y .

For all 0 < t < T, using Cauchy-Schwarz inequality, we have

t
/0 (s"7105 g, 5"k f) 12 (o) ds
1ot 1k %1
T3 [ 11510k g agrys ™ 106 2

T 1t
—E/ s~ a5 812 R3) 5/0 s 1Ha]s<fH%2(]R3)dS

By using Proposition 2.1, (2.14) and Cauchy-Schwarz inequality, for any 0 < ¢ < 1, there
exists a constant C; > 0 such thatforall0 <t < T,

[ e

t
<5 [ kot s + T /0 I$5105 g B gy + € [ 155105 p s, ()

IN

A

with C; depends on C;, C4. Let C76 < %, substituting (4.4) into (4.3), we get

t
13 oy + [ 115505 s

_ t t
<Cr ([ 155128 gl [ 155105 s )+ [ 150

with C; depends on C;, C4, C7 and T.
Finally, since g is analytic with respect to t and v, for any k € N, there exists a constant
A > 0Osuchthatforany 0 <t <T,

#4058l 2rsy < AR,
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taking B > max{A, v/ 2@7}, using the induction hypothesis (4.2), we obtain

t
13 oy + [ 115505 s
<&, ((Ak(k — 1)) + (BF(k — 1)!)2) + (AFHIRD)2

S(Bk+lk!)2’

with B depends on Cy, C2, C4, A and T. We finish the proof of Proposition 4.1. O

Acknowledgements

This work was supported by the NSFC (No. 12031006) and the Fundamental Research
Funds for the Central Universities of China.

References

[1] H. Chen, W. X. Li and C. J. Xu, Analytic smoothness effect of solutions for spatially homo-
geneous Landau equation, J. Differential Equations, 248 (2009), 77-94.

[2] H. Chen, W. X. Li and C. J. Xu, Propagation of Gevrey regularity for solutions of Landau
equations, Kinet. Relat. Models, 1 (2008), 355-368.

[3] Y. M. Chen, L. Desvillettes and L. B. He, Smoothing effects for classical solutions of the full
Landau equations, Arch. Ration. Mech. Anal., 193 (2009), 391-434.

[4] K. Carrapatoso, I. Tristani adn C. K. Wu, Cauchy problem and exponential stability for the
inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 221 (2016), 363-418.

[5] K. Carrapatoso, S. Mischler, Landau equation for very soft and Coulomb potentials near
Maxwellians, Ann. PDE, 3(1) (2017).

[6] L. Desvillettes, On asymptotics of the Boltzmann equation when the collision become graz-
ing, Transport Theory Statist. Phys., 21 (1992), 259-276.

[7] L.Desvillettes and C. Villani, On the spatially homogeneous landau equation for hard poten-
tials part i: existence, uniqueness and smoothness, Commun. Partial Differential Equations,
25 (2000), 179-259.

[8] Y. Guo, The Landau equation in a periodic box, Commun. Math. Phys., 231 (2002), 391-434.

[9] C. Henderson and S. Snelson, C* smoothing for weak solutions of the inhomogeneous Lan-
dau equation, Arch. Ration. Mech. Anal., 236 (2020), 113-143.

[10] N. Lerner, Y. Morimoto, K. Pravda-Starov and C. J. Xu, Phase space analysis and functional
calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013),
625-648.

[11] H. G. Liand C. ]J. Xu, Cauchy problem for the spatially homogeneous Landau equation with
Shubin class initial datum and Gelfand-Shilov smoothing effect, SIAM ]J. Math. Anal., 51
(2019), 532-564.

[12] S. Liu and X. Ma, Regularizing effects for the classical solutions to the Landau equation in
the whole space, J. Math. Anal. Appl., 417 (2014), 123-143.

[13] H. G. Li and C. J. Xu, The analytic smoothing effect of solutions for the nonlinear spatially
homogeneous Landau equation with hard potentials, Sci. China Math., 64 (2021).



C. Xuand Y. Xu / Anal. Theory Appl., 40 (2024), pp. 22-37 37

[14] H.G. Liand C.]J. Xu, Analytic smoothing effect of linear Landau equation with soft potential,
(2022), arXiv.org.

[15] Y. Morimoto, K. Pravda-Starov and C. ]J. Xu, A remark on the ultra-analysis smoothing
properties of the spatially homogeneous Landau equation, Kinet. Relat. Models, 6 (2013),
715-727.

[16] Y. Morimoto and C. J. Xu, Analytic smoothing effect of the nonlinear Landau equation of
Maxwellian molecules, Kinet. Relat. Models, 13 (2020), 951-983.

[17] R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration.
Mech. Anal., 187 (2008), 287-339.

[18] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.

[19] C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math.
Models Methods Appl. Sci., 8 (1998), 957-983.



