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Abstract. The aim of this paper is to establish the boundedness of bilinear pseudo-
differential operator T, and its commutator [by, by, T,;] generated by T, and by, b, €
BMO(IR") on generalized fractional weighted Morrey spaces LP"%(w). Under as-
sumption that a weight satisfies a certain condition, the authors prove that T, is
bounded from products of spaces LP11-?(wq) x LP212:9(w,) into spaces LP1?(@),
where & = (w1, w2) € Ap, P = (p1,p2), 1 = 1 + 12 and % = % + % with py,p2 €
(1,00). Furthermore, the authors show that the [by, by, Ty] is bounded from products
of generalized fractional Morrey spaces LP1-# (IR") x LP22?(R") into L% (R"). As
corollaries, the boundedness of the T, and [by, by, Tr| on generalized weighted Morrey
spaces L% (w) and on generalized Morrey spaces LP?(IR") is also obtained.
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1 Introduction

In 1967, Hormander first introduced the definition of a pseudo-differential operator
(see [13]), that is, let (Z(x, ¢) be a smooth function defined on R” x R", then the pseudo-
differential operator T; is defined by

()@ = [ o Df @ d for fe§, 1)

where j?represents the Fourier transform of f, and the smooth function ¢ belongs to the

symbol classes 55, which consist of all ¢ with satisfying the differential inequality

195050 (x, &)] < Cop(1+ [y P IPHo
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for multi-indices &, € IN", where m € R and 0 < p,d < 1. Such operators not only
generalize the definition of differential operators with variable coefficients, but also have
a key application in PDE. Therefore, the study of the pseudo-differential operator T, is
widely focused. For example, Calderén and Vaillancourt in [5] proved that T, is bounded
on space L2(R"). In 1988, Cardery and Seeger obtained the boundedness of pseudo-
differential operator T, on spaces LF (see [4]). The more researches about the pseudo-
differential operators T, on various of function spaces can be seen [1,2,10,11,14] and the
references therein.

However, in 1975, Coifman and Meyer obtained the definition of bilinear pseudo-
differential operators and their some properties (see [8]). Namely, let m € R and p,d €
[0,1]. A symbol in BSJ's is a smooth function o(x,¢, 1) defined on R" x R" x R" such
that for all multi-indices a, 8, v € IN", the following inequality

193950707 (x, & 17)| < Cu(1+ 2] + [y PUBI D+l

holds. Respectively, the bilinear pseudo-differential operators T, associated with the
above function o(x,¢, ) € BS™ i is defined by

T @)= [ [ o emA@Ame Eazy for fifes. (2

In this paper, we will mainly consider the symbol ¢(x, &, %) € B 5(1),0, that is,

952970 (x, &)
<Cyupq(1+ 1]+ |y])~ WD for all multi-indices a, 8,7 € N". (1.3)

If we denote «(x,y, z) by the inverse Fourier transform (in the ¢-variable and y-variable)
of the function o(x, ¢, 7) (i.e., x(x,y,z) = ]-"_1]-"_10(3(, ¢, 1)), then

To(f1, f2)(x // (x,y,2) f(x —y) fax — z)dydz. (1.4)

Further, if we set K(x,y,z) = «(x,x — y, x — z), then the bilinear pseudo-differential op-
erators T, defined as in (1.4) is changed into the following standard form

T(f ) = [ Koy, 2)fi0) fa()dyde (15

Since then, the research about T, defined as in (1.5) on various function spaces is
widely focused. For example, Bényi and Torres proved that T, is bounded from the
products of spaces LP(R") x L7(R") into L"(IR"), where 1 = % + % foralll < p,qg < o0
(see[3]). In2012, Xiao et al. [26] showed that T, is bounded on the products of local Hardy
spaces. More researches on the bilinear pseudo-differential operators can be seen [18-20,
25].

Before stating the organization of this paper, we first recall the definition of bound
mean oscillation space = BMO(R")) in [15].
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Definition 1.1. A function f € L} _(R") is said to be in the space BMO(R") if

1
I lovioge = sup o [ 1£(y) — foldy, (1.6

where fg represents the mean value of function f over ball B, that is

1
fB= |B|/Bf(y)dy'

Regard as an important type of non-convolution Calderén-Zygmund operator,
Coifman-Rochberg-Weiss in [9] obtained the definition of commutator defined by

[b, T(f)(x) = b(x)T(f)(x) = T(bf)(x) forany x € R"

Moreover, such operator has key applications in PDE (see [6,7,12]). Given by, by €
BMO(IR"), the commutator [by, by, T,] generated by by, b, and T is defined by

(b1, b2, To| (f1, f2) (x) =b1(x)ba(x) To (f1, f2) (x) — b1 (x) To(f1, b2 f2) (x)

— by (x) T (b1 f1, f2) (x) + To (b1 f1, b f2) (%) (1.7)
Also, the commutators [b1, T,] and [b2, T,] are respectively defined as follows:
(b1, To](f1, £2)(x) = b1(x) To (f1, f2) (x) = To(brfr, f2) (%), (1.8)
and
[b2, To|(f1, f2) (x) = b2(x) T (f1, f2) (x) = To(f1, b2 f2) (x). (1.9)

The following definitions of Muckenhoupt’s weight and multiple-weight are introduced
in [15] and [17], respectively.

Definition 1.2. Let p € (1,00). A non-negative p-measurable function w is called an A,(IR")
weight if there exists a positive constant C such that, for all balls B C X,

<’13’ /B w(x)dx){’lB’ /B [w(x)]lp’dx}pl <c (1.10)

And a weight w is called an A1(R") weight if there exists a positive constant C such that, for all
balls B C X,

’;/Bw(x)dx < Cyirellfgw(y). (1.11)

As in the classical setting, let

A (R") = G Ay(R").
p=1
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Definition 1.3. Let 0 < p < ooand 1 < py1,p2 < oo with satisfying% = L+ 1 Given

1
- o
@ = (w1, wy) and P = (p1, p2), for all x € R", set
2 r
v = [ Jlwi(x)]7.
i=1

Multiple-weight (0 is said to satisfy the Ag condition if there exists a positive constant C such
that,

{,13, / g[wxx)ﬁ}’l” <11 {ulﬂ / [m(x)]l"??dx}”l? <c. (1.12)

1
When p; = 1, the term {ﬁ [glewi(x)]'~Pidx } i is understood as (i%fwi)_l.

We recall the notion of a generalized fractional weighted Morrey space LP19(w)
in [24].

Definition 1.4. Let ¢ be a positive constant, increasing function on (0, 00) and there exists a
constant C > 0 such that

@(2t) < Co(t) for t>0.

The above best possible constant C is called doubling constant for ¢.
Let w be a non-negative weight function on R", n € [0,n), p € [1,}) and f € LI (R™).

loc

Then the generalized fractional weighted Morrey space LP1'?(w) is defined by

LPI9 (w) = {f € L, R") ¢ [[f [y < °°}’

where

=

1fllpnew) = sup [g(r)]

([ rwrewa)’, )
xeR", r>0 B(x,r)

and B(x,r) is a ball with center at x and radius r > 0.

Remark 1.1. (i) If we take w = 1in (1.13), then the generalized fractional weighted Mor-
rey space LP'?(w) is just generalized fractional Morrey space LP"?(R"), that is

1

n_1 p

fllonsier = swp (o ([ lrwlray) (11
xeR", r>0 B(x,r)

(ii) If we take 7 = 0 in (1.13), then the generalized fractional weighted Morrey space
LP1?(w) is just the generalized weighted Morrey space LV'?(w) (see [21]).
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(i) If we take ¢(r) = r° with 6 € (0,00), then the space LPI"?(w) is just weighted
Morrey space LP?(w) on IR", which is first introduced by Komori and Shirai in [16].

(iv) If we take w = 1 and ¢(r) = r° with 6 € (0,0), then the space LP"?(w) is just
classical Morrey space LP?(IR") introduce by Morrey in [22].

The organization of this paper is as follows. In Section 2, we prove that bilinear
pseudo-differential operator T, is bounded from the products of generalized fractional
weighted Morrey space LP1%(wq) x LP2129(w,) into LP1?(0), where @ = (wq, wy) €
As, P = (pi,p2), 1 = m + 1 and % = % + %, and bounded from the products
of generalized weighted Morrey space LP1'?(w;) x LP>?(w;) into space LF?(vg) for all
1 < p1,p2 < o0 and % = % + i. In Section 3, by establishing the sharp maximal esti-
mate for the commutator [by, by, T;;| generated by T, and by, b, € BMO(IR"), the authors
prove that [by, by, T;| is bounded on generalized fractional Morrey space LP/?(IR") and
on generalized Morrey space L?(R").

Finally, we make some conventions on notations. Throughout the whole paper, C
represents a positive constant being independent of the main parameters, but it may vary
from line to line. For any ball B C X, we denote its center and radius, respectively, by
cg and rp and, moreover, for any p € (0,0), we denote the ball B(cg, prg) by pB. Given
any g € (1,00), let g = q/(q — 1) denote its conjugate index. For any set E, xr denotes
its characteristic function, if E is also measurable and w is a weight,

w(E) :/Ew(x)dx.

2 Estimate for T, on LP7?(w)

In this section, we will mainly consider the boundedness of bilinear pseudo-differential
operators T, on generalized fractional weighted Morrey spaces L% (w) and on general-
ized weighted Morrey spaces LP¥(w) is also obtained. First, we state the main theorems
of this section as follows.

Theorem 2.1. Let 0 <y < n,0 € BS)(, & = (w1, wz) € Apand K(-,-,-) € C*(R" x R" x
R"\ {(x,y,z) : x = y = z}) with satisfying

CM,O&,,B,’Y

anByy <
‘axayazK(x/y/Z” = (|X _y| + |x _Z|)2n+‘.3‘+|'7‘+M

2.1)

forall M > 0 and multi-indices a, B,y € IN". Then T, defined as in (1.5) is bounded from prod-
ucts of spaces LP1-9(wy) x LP2"29(wy) into spaces LP1'?(0), namely, there exists a constant
C > Osuch that, for all f; € LPii9(w;), 1 < p; < % withi=1,2,

1 Te(f1, f)lLpne@) < Cllfallrme o L f2llrme wy),

11,1 —
whereg—a—i—zandiy—m—l—qz.
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Theorem 2.2. Let 0 € BSlO, @ = (wy,wp) € Agand K(-,-,-) € C®(R" x R" x R"\
{(x,y,2) : x = y = z}) with satisfying (2.1). Then T, defined as in (1.5) is bounded from
products of spaces LP1?(wq) x LP>?(wy) into spaces LP9(vg), for all 1 < py,p2 < co and
= —_ + —

P

Remark 2.1. By Remark 1.1, it is not difficult to see that Theorem 2.2 is a special case of
Theorem 2.1, hence, in this section, we only state the proof of Theorem 2.1.

To prove Theorem 2.1, we need to recall the following lemmas (respectively, see [15,
20]).

Lemma 2.1. Let p € [1,00) and w € A,(IR"). Then there exist constant C1,Co > 1 such that

for any ball B and measurable set E C B.

Lemma 2.2. Let 1 < p1, pp < o0, 1/p = 1/p1+1/p2, 0 € BS?’O, & = (w1, wr) € Ap
and K(x,y,z) € C®°(R" x R" x R"\ {(x,y,z) : x =y = z}) with satisfying (2.1). Then T,
defined as in (1.5) is bounded from products of weighted Lebesgue spaces L) (R") x LI (IR™)
into space Ll _(R").

Proof of Theorem 2.1. For the sake of convenience, decompose functions f; as

fii=fl+ 2= fixep + fixwn2p), 1=12.

Then, write

I To(Fr ) lrougy SNTo(fls f2)limmowa) + 1 To (A f52) I mma

+ 1T (2, ) [y + 1 To (F5° £5° )||LV/’7/€”(1/@)
=:dy +dy +d3z+dy.

By applying (1.13) and Lemma 2.2, we obtain that

1
1 P
< swp (T 0 P

x€R”, r>0 [qp( )] P R"
<C sup !

LA e (o 12 22 w)
x€R"®, r>0 [QD(T’)]V

<Cllfillmoon | follrarmn(en)  sup |
x€R™, r>0 [(P(}’)]P n

<CllfillLrree @ | fall Lz (eon):
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For any x € B, by applying (1.12), (1.13), (2.1) and Hdlder inequality, we have
ITo(fl, £57) ()]
< [, [ K2 A W15 @)l dydz

<C/n/n AWDIEEL g,

(1 =yl +Ix = D)7+

< fean |cB|f2(|2”+Mdz</ i 'dy>

00 RE)] -
SC’;/”“B\” o Capmete] [y ro)] oy}
SC Y. g fyog o2 fn@))

St WLOLEEL ) (o fentay)”

A

" <|le| /zg[wl(y)]gidy) ’ [|ZB|1[¢(2r)]f31"”1 }

i (2Frp)2n M L (/m |f2(z)|”2wz(2)dz)plz x ( / [wz(z)]iidz> s

w1 (2B)]n
2B 1_m
SCH_]C’lHL}’11,171,(/)((‘J])|7|L (2}’)]?’1 n
[w:(2B)]7

s 1 1 v
- {k:zi (ZkT’B)ZnJrM [(p(2k+ )]L*%Z </2k+1B |f2(z)‘p wZ(z)dZ)

1 1

1 7\ 1 P2
X <\2’<+1B| 2k+13[w2(z)] Pzdz> (|2k+1B| 2kHBm(z)dz)

k+1
« 278l [<o<zk+1r>]'73_?}
w2 (21B)] =

2B
(o1 (2B)]

ad k+1 1_m
% { Z 1 ’2 + B’ [QD(Zk_HI’)]E_ " }

= (2B, (k1)

<Cl| fillcrvme ) | fall rame (o)
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2B 1+% 1.m
<Cllfs e follmoun 22
[w1(2B)] "

00 Nk(L_LZ) k+1
Clr n ’2 B’ 1_m
% 2r)|p2 n

{I; (2k73)2”+M [wz(Zk‘*‘lB)]% [(P( )] }
1 1

"N falleme op | 2l Lrzme () ————

[w1(2B)] "

o GGy ppp
X E k n+M 1
i=t (278)" N [, (2k+1B) ] 2
1 1
! ||f1 Hmww(wl) ’|f2HLV2"72"/’(w2)7L
[wr(2B)] 7

=

<Clg(2r)]

Furthermore, by Definition 1.4 and 1 < pp < 17—”2, we can deduce that

1

P

dy SCHleL"’l'”l"P(wl)||f2||LV2"/2"P(w2) sup (/B( )v;,(x)dx)
x,r

xeR", r>0

1 o K3 1
2 n
x {Z k(M) 1 }

@i (2B)]71 =1 [wa(2+1B)] 2

1
1 2 1
<C|f1 HL”l'Vl""(wl) ’|f2HLP2/’72/4’(w2) SUp <|B| /B(x r) V(:;(X)dx) Bl

xeR”, r>0

T 7 fras} {5 [ [w1<x>]1—mdx}ﬁ’lw

o SHE-12) -
Cir 1 ( 1 / 1—y! 7’2
X — | Jwa2(x)] ”de>
{k_zl 2KeM) o (k1B e N Bl B

SCHfl HLVI'”l"f’(wl) Hf2 HL”Z”72"/’(w2)I

I~

where we have used the following fact that
¢(2t) < Co(t), Cisa doubling constant.

With an argument similar to that used in the above estimate of d5, it is easy to obtain that

a5 < Cll il follrame -
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Now let us estimate d4. For any x € B, from (1.10), (1.12), (1.13), (2.1) and Holder inequal-
ity, we obtain that

T, 1) (2)|
i) f2(2)]
<C ooy ooy Ty 1o v

CT[E L 2

k+lB\(2kB |CB _ yl

) rfi<yi>|[wi<yi>]%[wi<yi>]%dyi}

1
v <[¢<2k+1 i

1 Wl B\
2F1B] /2k+1B wi(Vi)dyi) (’2k+13’ 2k+13[wi(yi)] Pi d%‘)
2k+1r)]p%*% ‘Zk—HB‘ }

[w; (25+1B)] 7

) ]2k+1B| [ (2k+1r)]p%—%
<CHIIﬂHm (@) Z

- Zkr)”+z [w (2k+13)pl
1,

1
1 Pi
i(yi) |7 wi(yi)dy
i oy 0 it )

/N —— —/— —
N agk:
(Aag
—~~
N
2
3

~— | = \_3/ _ — | =
+
RS
7 N
s
A
oo ]
=
—~~
=
N~—
=]
£
—~
=
N—r
QU
=
~__
X
7N
T
=
o5 ]
£
—~
=
=
|
=
QU
=
N—
=
——

1

2 00 1 2k+1 %77
SCH Hﬂ”U’f”i“’(wi){ Z M Lo DI’ T }
i=1 k

=1 (27)2 [wi(2¢+1B)]%

Further, by Definition 1.4, we can deduce that

“ Scx€1§32>0[ ()] <!er !/xr ) Bl

2
—_— w;(x)]'Pidx
><zljl{w(x,rn/Bm i(x)] pd}
0o k 17, p%*%
xHHﬁum { U Canle) U }

k=1 (251) 2 [w;(2k+1B)]7i

1

X {\B(i,r)| /B(x,r) [wi(x)]l_p;dx}—p;

==
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xeR", r>0

y {M/B(x/r)[wi(x)]l—r’fdx}
{ki i [90(2“17)];"}3}[ wi(B)]

wi(zk-l—lB)]p%

2 1 oo 1 2k+1r p%*? 1
<CTTIllme sup wwv{z )] }
i=1 i

2
<C H Il fi HLPi/Wi/(P(wI.) sup
i=1

xeR", r>0

2 00 ék(p%*%’)
<C H Hfl ||L”i”7i"/’(w,-) Z kM
i=1

k=1 22

<C ||f1 HLplf’?l"P(wl) ||f2 || L2129 (wy)

Which, combing the estimates of d1, d, and d3, the proof of Theorem 2.1 is completed. [

3 Estimate for commutator [by, b, T,] on L9 (IR")

In this section, by establishing the sharp maximal estimate for commutator [by, by, T,]
which is generated by bilinear pseudo-differential operator T, and b;,b, € BMO(RR"),
the authors prove that the commutator [b1, by, Ty ] is bounded from the products of gen-
eralized fractional Morrey space LP11?(IR") x LF2"12?(R") into space LPI"?(IR"), and
bounded from the products of generalized Morrey space LP1'?(IR") x LF>?(R") into space
LP#(R"), where 1 = % + - for 1 < py, p2 < 0. First, we state the main theorems of this

p
section as follows.

1
p2

Theorem 3.1. Let by, by € BMO(R"), K(-, -, -) satisfy (2.1) and 1 < p1, p2 < oo with satis-
fying % = ﬁ + %. Suppose that T, defined as in (1.5) is bounded from the products of spaces
LY(R") x LY(IR") into space L2 (IR"). Then there exists a constant C > 0 such that, for all
fi € LI (R"), i = 1,2,

1101, b2, To] (f1, f2) oo (rey < Cllbrllmvowre 102llemore) | fillrvme ey L f2ll ranee re)-

Theorem 3.2. Let by, b, € BMO(RR"), K(, -, -) satisfy (2.1) and 1 < pq, p2 < oo with satisfying
% = % + i. Suppose that T, defined as in (1.5) is bounded from the products of spaces L' (R") x
LY(R") into space L2 (R"). Then there exists a constant C > 0 such that, for all f; € LPi# (R"),
i=1,2,

1161, b2, Tol (f1, f2) [ Lrerry < Cliballemore 102l Bmo e | filloverey | f2 ]l oo (v -

Before stating the proof of main theorems, we should recall some necessary results
given in [3,15] as follows.
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Lemma 3.1. If o is a symbol in BS? o then Ty defined as in (1.5) has a bounded extension from

products of spaces LP1(R") x LP2(IR") into LP(IR"), forall 1 < py, p2 < oo, + plz = %.

Lemma 3.2. (1) Let p € (1,00) and r € (1, p). The non-centered maximal operators N and M,
are respectively defined by, for any f € Ll _(R"),

Nf(x) %1;13,3, / F(W)ldy, (3.1)

and
M = L "d % 1 3.2
70 =sup (7 [1F@ray) o 1<r <o 62

are bounded on LP(IR") and also bounded from L' (IR") into LY (R").
(2) Forany f € Ll (R"), T € (0,1) and almost every x € R", the following inequality

|[f(x)] < Nef(x) (3.3)

holds true, where N¢(f)(x) = [N(|f]7)(x)]*.

For any f € L. (IR"), the sharp maximal function M*(f) is defined by

loc
Mif(x) —sup|B|/\f — faldy. (3.4)

Forany 0 < 7 <1, let
ME(f)(x) = [ME(|f]7) (2)] 7.

Moreover, from [15,23], it is easy to see that sharp maximal function M f defined in (3.4)
is equivalent to the following form

M*f(x )~S;;EC1€C|B|/|J‘ —cldy. (3.5)

Lemma3.3. Let0 < p, T < coand w € 1<U A,. Then there exits a constant C > 0 such that,
r<oo

for any smooth function f for which the left-hand side is finite,

| N @ P < € [ M EPw@d

Corollary 3.1. If f € BMO(IR"), then there exists a constant C > 0 such that, for any balls B
and p € [1,00),

<|B|/ () fﬂ%)l < Cllf lpmoqre)-
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Lemma 3.4 (Kolmogorov’s theorem). Let 0 < p < g < oo and for any measurable function

1
f. Define that, for 1 = ? T
1
[ fll oo (rey = sup A[{x € R" : [f(x)[ > A}|7
A>0
" Ifxel
XBIlLr(R7)
Npg(f) = sup ==,
) = S e

where the sup is taken over all measurable sets B with 0 < |B| < oo. Then there exists a positive
constant C,

Npqg(f) < CllfllLac(rn)-

Also, we need to establish the following sharp maximal estimate for [by, by, T,].

Lemma 3.5. Let by, b, € BMO(R"), 1 < py,pa,p < 00,1 <s < pand 0 < n < %. Suppose
that T, defined as in (1.5) is bounded from the products of spaces L*(R") x L}(IR") into space

L%(]R”). Then there exists a constant C > 0 such that, for any x € R", f; € LP(R") and
f2 € L(R"),

Mj (b1, by, To) (fu, f2) (x)
< C|lb1 || Bmore) b2 [l BMo R M (To (f1, £2)) (%)
+ Cl[b1 || smorey Mr([b2, Te ] (f1, £2)) (x) + Cllb2| [ Bmorny M ([b1, To] (f1, f2)) (x)

+ Cl|b1 [lemo(wr) 102l Bmo vy Mp, f1(x) Mp, f2(x), (3.6a)
Mj[by, T (fu, f2)(x)
< Clb1 lsvomn Mr (To (f1, £2)) (x) + ClIb1 | svoe) My, f1 (x) My, fo (%), (3.6b)
Mj[b2, T (fu, f2)(x)
< Cllb2llsmo®n) M (To (1, £2)) (x) + Cllb2llssio(re) My, f1(x) M, fa (). (3.60)

Proof. Without loss of generality, we may assume that fi, f» € L (R"). And decompose
function f; as

fiim fL 2= fixos + fimeas, 1= 1,2 (3.7)

Since the methods for (3.6a), (3.6b) and (3.6¢c) are similar, so we only need to estimate
(3.6a) in this paper. By the definition of Mg, it only suffices to show that

(,13’/3 ‘bebz, T,)(f1, f2)(z)|T — |hp|" dz) y

<Cl[b1 Mo 102 BMO R Mr (To (f1, f2)) (x) + Cllb1 [lBMO R M1 ([b2, Te | (1, f2)) (%)
+ CHbZHBMo(IRn)Mr([blr To](f1, f2))(x) + CHbluBMo(an) HbZHBMO(]R”)Mmfl(x)Mlﬂsz(x)r
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where

hp = (n(( (b >>f1,<bz—<bz>3>f2°°>).

B

For any z € B, since

(b1, b2, To|(f1, f2)(2)
=(b1(z) — (b)) (b2(2) — (b2)B) T (f1, f2)(2)
— (b1(2) = (b1)B) To (f1, (b2(°) — b2(2) + b2(z) — (b2)B) f2)(2)
— (b1(2) — (b1)B) (b2(2) — (b2)B) To(f1, f2)(2)
+ (b1(z) — (b)) [b2, To] (f1, f2)(2) — (b1(2) — (b1)B) (b2(2) — (b2)B) T (f1, f2)(2)
+ (ba(z) — (b2)B) [b1, To|(f1, f2)(2) + To((b1(:) — (b1)B) f1, (b2(-) — (b2)B) f2) (2
=To((1(-) = (b1)B) f1, (b2(+) — (b2)B) f2)(2) + (b1(z) — (b1)B)[b2, To](f1, f2)(2)
+ (b2(z) — (b2)B) (b1, To] (1, f2)(2) — (b1(2) — (b1)B) (b2(2) — (b2)B) To (f1, f2)(2)

then, we write
i
|B| /B
1 T\
<C / dz
<|B| )

+C< ! / (b1(z) — (b1)B) To(f1, (b2(+) — (b2)B) f2)(2)| d

1
Ul
dz)

(b1(2) = (b1)8) (b2(2) — (b2)8) To (f1, f2)(2)

|[b1, b2, To | (f1, f2) (2)|" — [hp]"

—

|B|

+c<|]13|/

+C< ! / To((b1(+) — (b1)B) f1, (b2(-) — (b2)B) f2)(2) —

by(2) = (b2)) To ((01(2) = b1(1)) f1, f2)(2) | dz

—

B

=:E; +E; + E3s + E4.
For any 1 < rq,1p,r < oo with satisfying % + % +1 = %, by Holder inequality and

Corollary 3.1, we have

1 r1 r2 %
x <|1la|/B‘T” fuuf2) z)!dz)
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< C|lb1][Bmore) | b2 |l BMO R M (To (f1, f2)) (x)-

For any 77 € (0,31), choosing a fit s € (1,00) with satisfying 1 + 1 = , from Holder
inequality and Corollary 3.1, it follows that

E, §C<|113|/B|b1(2)—(b1)3|5dz> <|13|/B|Ta(f1/(b2(z)—bz('))fz)(Z)VdZ)
<Cl|b1[|pmo(rn) Mr ([b2, To](f1, f2)) (%)

Similarly, it is not difficult to obtain that

Es < Cllb2|lemo(rn) Mr([b1, To](f1, f2)) (x)-
By (3.7), write

1
E, <C
(5.

7o\
+ C<|113| / Ta((bl() — (bl)B)fll/ (bZ() — (b2)B)f200)(Z) dZ)

To((b1(-) = (b)) fi, (b2(-) = (b2)B) f2)(2)| dz

i C(é\ / To((b1(-) = (b1)B) £, (ba(-) — (b2)B) f3)(2)| dz

JFC<|113| / To((01(-) = (01)B) f1°/ (b2(+) — (b2)B) f2°)(2) — hp

1
7 7
dz)
=E4 + Ep + Ey3 + Eyq.

By the Kolmogorov’s theorem, (L1 (R") x L!(R"), L2*(R"))-boundedness of T,, Holder
inequality and Corollary 3.1, we can deduce that

N
<|113| . T,((b1(+) — (b1)) fi, (b2(-) — (b2)B) f2)(2) dz)
:”XB”Lﬁ T ((b1(-) — (b1)B) fL, (b2(-) — (b2)B) f3) x| Ly
Ek lxsll s,
<<

|B| T (1) = B (2) = )8 D o

Crgr bmufl(yl)\dyl(fm /ZBrbz@z)—<bz>BHfz<yz>|dyz>
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w,( L 1o20) = (el )l + 6o — (bn)asl [ o

<|B|/ b2(2) — (b2)28| f2(y2) |dy2 + | (b2) B (bz)zB\’;/ZB \fZ(l/z)!dl/z)

<Cl|b1[lsmorm) 102l BMO(RT) Mp, f1 () My, fa (%),

hence, we have

Eq1 < Cl|b1]lpmo(re) 102l BMowr) Mpy f1 (X) Mp, f2(x).

To estimate Ey, we first consider

I To((b1() = (b1)B)f1, (b2(-) = (b2)B) f5°)(2)|  for z € B.
By (2.1), (3.2), Holder inequality and Corollary 3.1, we obtain that

| To((b1(-) = (b1)) fi, (b2() — (b2)B) f5°) (2)]

|b1(y1) — (b1)Bl1b2(y2) — (b2)Bl] f1(y1) || f2(v2)|
Sc/n 2B) J2B (|z — v1| + |z — 2| )2+ M dy1dy,
<c [ Ir(y) — Gsllm)ldv [, |bz<y|223—_(§§|>ir 11202l

1
p
C|ZB|<|2B’/ |f1(y1)]? dy1> <|2B|/ b1 (y lld%)

[b2(y2) — (b2)]|f2(v2)]
d
(kzl /2k+13\ 2tB) lcp — y2|2n+M Y2

> 1
SC‘ZB’HblHBMO(IR”)MPlfl(x) x [Z W (/2,(“3 02(y2) — (b2)or15[ f2(2) |dy2
k=1

+ '(b2)2k+13 — (b2)s

g |f2(y2)|dy2>]

1
> 1 1 2
<C|2B|[|b1[[Bpo(re) Mpy f1 (%) X {kz (2Kr)2n+M [<|2k+13| Jki1p \f2(y2)\p2dy2>

1
1 , 3
x <|2k+13| oki1p |b2(y2) - (b2)2k+13|p2dy2> 2 ‘2k+1B‘

1 1
P2
(3] oy el Pt ”

§ (et 1)|2k+1B|>

+ ‘2k+1B“(b2)2k+13 — (bz)B

<CI2Bl||b1 | Bmorr) 1b2]|BMO(RY) Mpy f1 (%) Mp, f2(x) < (2Fr )M

k=1
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5 (e |2k+1B||zB|1+ﬁf)

<C|[b1]|emorn 102 |l Bmo Ry Mpy f1 () My, f2(x) < 2Ky M

= (k+1
SCHbluBMo(Rn) HbZHBMO(IR”)MPlfl(x)Msz2(x) ( Z (k(n+M)>

<Cl[b1 | Bmo®r 102l BMO (R Mp, f1(X) Mp, f2(x),
where we have used the following fact
|bg — byeg| < Ckl|b]|zmo(rr)- (3.8)
Further, we can deduce that
Eyp < C||b1llmore) |62 [l Bmorr) Mp, f1 (X) My, f2(x).
With a way similar to that used in the estimate of Ey», it is easy to obtain that
Eg3 < C||b1llmore) |62 [l Bmorr) Mpy f1 () M, f2 ().

Finally, we estimate E44. For z € B, by applying (2.1), (3.2), Holder inequality, Corollary
3.1 and (3.8), we have

| To((b1(-) = (b1)B) f17, (b2(+) = (b2)B) f2")(2)]
<c/ / |01 (y1) — (01)B1b2(y2) — (b2)[1f1 (Y1) [ f2(y2)]
"\ (2B) "\ (2B)

(Iz =yl + |z = ya|)>+M

1bi(yi) — (bi)sl|fi(yi)]
SCH/"\(ZB) i

dyl dyz

|CB—y|”+2
: [bi(yi) — (b:)s|fi (v2)]
dy;
q(zzk+13\ 2kB |CB _yi|n+% y
2 ) 1
=C prTae— Y / bi(yi) — (bi i(yi)|dy;
<c] I{Z;(zkr)w( [ 1B3(3) = (5o L)ty

+1(bi)ep = bi)sl | !ﬁ(yi)ldyi>]

2 0o 1 i
| | E (17:)|Pi .
=C { (2kr) n+M [(|2k+1B| okilp | fi(yi) d%)

i=1 k:l

1
1 Co\
" <yzk+lsy g 1) <bf>zk+13\pfdyf> 2B

1
1 _ i
+ k|[bil [ B7mo(rr) <|2k+13| Dk+1p |fi(yi)\’”’dyi) |2k“B|] }
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, o k+1
<CTT e laviotme) My, () () ( = MM)

i=1 k=1 (Zkr)’””%

i=1

2 (o]
<CT T Iillomoqme) My, (£) (x) ( L" tMl)>

2
<CT T IIbillsmown Mp; (fi) (x).

i=1

Which, together with the estimates of E43, E4», E41, E3, E; and Eq, implies (3.6a). ]

Proof of Theorem 3.1. From (1.13), Lemmas 3.3, 3.4 and 3.5, it then follows that

||[blrb2r ](fler)”pr R")

1
< / oy Mol b2, T e ) (1P

1
< sup e [ Moy b T (1, ) ()P
x€R”, r>0 [q)(r)] pn JB(xr)
1
<Cloayomn E2lomey S0P ———— [ IMA(Talfu f)) ()P dx
x€R", r>0 [@(r)] 7 B(x,1)
+Cllb ||

o) S0 [ M2 T ) ()P

+ CHbZH];;Mo(]Rn) sup

xeR?, 10 [@(r)] 77

/B( (M ([br, Tol(f1, f2)) (x)|Pdx

1
+ Clt o 122 o xe;gprw[ i /B( My, (x) My, fo(x) P dx
<CHb1HBMO R") Hb2HBMO (Rn) 6;‘32» ;*Z B(x ’M To(f1, f2))(x)|Pdx
+C||b1||BMQ R” Hb2HBMo(]Rn) sup 1~/B |MP1f1( )Mpzfz(x)|pdx

xeR", r>0[ ( ]%

<C||b1||BMo RR") ||b2||BMO (R") xe;?€>0 ;7% |TU f1/f2 )|de
1
+ CHblHBMo R") HbZHBMO (Rn) xe;?gww/lg () |Mp, f1(x) My, f2(x)[Pdx

<CHb1HBMQ R") HbZHBMo R") HleLm 1.9 (R") HfZHLPMN R")”

which is the desired result. O
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Proof of Theorem 3.2. By applying (1.13), Lemmas 3.3, 3.4 and (3.6c), we have

H[b1,bz, ](fler)HLF“P R")
<|INe([b1, b2, To) (1, £2)) | Low(rey < ClIME([br, ba, T, ](flffZ))HLP ?(R")
<Cl|b1[[pmo(rn 102l B7mo(®) | Mr (T (f1, f2)) || Lo (e
+ C[b1|[Bmo (R HMr([bzrTa](flzfz))||mp(w)
+ Cl[b2[[smo(re) [[Mr ([b1, To] (f1, f2)) || oo (rr)
+ Cl|b1[[B7mor) 1b2 ]| BrMO R [[ My f1 M, f2 |l L0 ()
<Cl|b1[|Bmor [1b2]l B7mowe) | Mr (To (f1, f2)) | Lo (R
+ Cl|b1 || Bvmowr) 102 BrMO R [[ My f1 My, f2 |l 1ro (R
<Cl[b1 || Bmo ) 102 lBMO R [| T (f1, f2) |20 (R
+ Cl[b1 lemo(w) 102 | Bmo g | M, f1 Mp, 2| o (rr)

<Cl|b1 || Bmo ) 102 [BMO @R | fill e (rey | f2 |l 20 () -

Thus, we complete the proof. U
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