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Abstract. The modified ghost fluid method (MGFM) provides a robust and efficient
interface treatment for various multi-medium flow simulations and some particular
fluid-structure interaction (FSI) simulations. However, this methodology for one spe-
cific class of FSI problems, where the structure is plate, remains to be developed. This
work is devoted to extending the MGFM to treat compressible fluid coupled with a
thin elastic plate. In order to take into account the influence of simultaneous inter-
action at the interface, a fluid-plate coupling system is constructed at each time step
and solved approximately to predict the interfacial states. Then, ghost fluid states and
plate load can be defined by utilizing the obtained interfacial states. A type of acceler-
ation strategy in the coupling process is presented to pursue higher efficiency. Several
one-dimensional examples are used to highlight the utility of this method over loosely-
coupled method and validate the acceleration techniques. Especially, this method is
applied to compute the underwater explosions (UNDEX) near thin elastic plates. Evo-
lution of strong shock impacting on the thin elastic plate and dynamic response of
the plate are investigated. Numerical results disclose that this methodology for treat-
ment of the fluid-plate coupling indeed works conveniently and accurately for dif-
ferent structural flexibilities and is capable of efficiently simulating the processes of
UNDEX with the employment of the acceleration strategy.

AMS subject classifications: 65M06, 65N85, 74F10
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1 Introduction

Research on the interaction between fluid and structure, especially for the problem of
strong shock impacting on the interface, has a number of important applications in mili-
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tary technology, homeland security and engineering. Shock waves generated by under-
water explosions (UNDEX) would cause damage to vessels including hull deformation
or even fracture. Generally speaking, UNDEX tests are costly and hazardous, and even
may not be repeatable. Validated numerical approaches to faithfully simulate such prob-
lems are essential. The accurate numerical solution, however, may be extremely difficult
to obtain due to complicated nonlinear interaction. Usually, a fluid-structure interaction
(FSI) problem can be solved in a monolithic or partitioned way. The monolithic approach,
where the flow and structural equations are solved simultaneously, requires a purpose-
designed procedure and large computational cost. Comparatively speaking, the parti-
tioned approach, where the flow and structural equations are solved separately, allows
us to use the already existing solvers or highly developed software to treat respective me-
dia. For example, currently popular high-resolution fluid solvers, such as the discontinu-
ous Galerkin (DG) schemes [1,2] or the (weighted) essentially non-oscillatory ((W)ENO)
schemes [3,4], and high-order finite element method (FEM) can be conveniently applied
in the calculation of flow and structure, respectively. The loosely-coupled method [5-9],
categorized as one partitioned approach, treats the coupling conditions in an explicit
manner at each time step, which means that the flow does not change while the solution
of the structural equations is calculated and vice versa. This is often the method of choice,
usually in most commercial software, due to its simplicity and low computational cost.
But it does not enforce the equilibrium on the fluid-structure interface because the inter-
action is achieved by applying respective boundary conditions to the individual solver
separately. Thus, the numerical instability is induced, especially when the structure is
under a strong shock wave impact. On the other hand, an additional mesh deformation
algorithm or remeshing technique at least in the vicinity of the interface may be required.
Furthermore, it is also a challenge to conservatively map quantities from Eulerian bound-
ary nodes to nearby Lagrangian boundary nodes, and vice versa.

Recently, a ghost fluid method (GFM) has been employed to model fluid-fluid or
fluid-structure interaction in a simple and flexible way by Fedkiw et al. [10,11]. One does
not need to remesh the fluid domain using this method because the moving interface is
treated as an invisible internal boundary. The boundary condition is simply imposed by
extrapolating specific variables from one medium to another. This treatment is classi-
fied as a partitioned approach but different from the above loosely-coupled method and,
therefore, can also be regarded as a half-way-coupled method. However, it is found to be
inaccurate in some situations such as high-speed jet impacting [12,13]. To overcome this
problem and combine the advantages of partitioned loosely-coupled method, a modified
GFM (MGFM) was proposed and developed by Liu et al. [12]. The MGFM, when used
to handle fluid-fluid interaction, employs a double-shock approximate Riemann solver
to determine the interface states. The predicted interface states are then used to define
the fluid states in a narrow band of ghost fluid cells near the interface. The MGFM-based
techniques, including its varieties like RGFM [14], have been shown to be robust and less
problem-related and successfully applied to various gas-gas, gas-water coupling prob-
lems [12-16] or even solid-solid contact problems [17]. Furthermore, it has been proved
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that the error estimate by the MGFM is “third-order accurate” in the vicinity of the inter-
face for a multi-medium Riemann problem [18,19]. Also, there have been some success-
ful applications of this methodology to FSI problems. For example, to enable simplified
elastic-plastic response, the governing equations for the solid is also Eulerian in [20-23]
under assumption of a hydro-elasto-plastic material [24] for the structure subjected to a
strong shock load. The interface condition, as the treatment for fluid-fluid coupling, is
obtained through coupling two nonlinear characteristics from respective media. Gener-
ally, it is more common to describe the solid in a Lagrangian framework. Attempts in
employing the MGFM in conjunction with various Lagrangian solid formulations have
been made in recent years. For example, Liu et al. recasted the Naviers equation into a
linear system and defined the interface condition through coupling a nonlinear character-
istic from the fluid and a Riemann invariant from the solid [25,26]. Xie et al. combined the
fluid nonlinear characteristic with the solid equation of motion to achieve the interface
condition and experimented using a mass-spring model [21] or a sandwich composite
structure [27-30].

However, these MGFM treatments of FSI are not suitable for a thin plate structure.
The nonlinear fluid-structure coupling of strong shock impacting on a thin plate remains
poorly resolved. It is the purpose of this paper to extend the MGFM to solve this FSI
problem where the structure is considered as a thin elastic plate under the framework of
Kirchhoff assumption. Our interest is primarily in simulating the process of strong shock
wave generated by UNDEX impacting on a thin plate. The strategy in [12] is adopted to
treat the explosive gas bubble-water coupling. We shall achieve a further development
of the MGFM for fluid-plate coupling. The shock relationship and the equation of mo-
tion for the plate deflection are solved together to obtain internal boundary conditions.
Due to our specific treatment of the interface, numerical stability in the vicinity of the
fluid-plate interface can be achieved. In addition, the advantages of simplicity, low com-
putational cost, avoidance of remeshing step and easy extension to multi-dimensions are
also well inherited from the original GFM. More importantly, the nonlinear interaction
between fluid and plate has been taken into account through predicting the interface
states at each time step. Compared with the loosely-coupled method, the MGFM is able
to provide more accurate results, especially for lower mesh density. In order to pursue
higher efficiency, each fluid time step will be divided into several small time steps for the
calculation of the plate. This acceleration strategy will be implemented in the MGFM.

The rest of this paper is organized as follows. In Section 2, the governing equations
for both the fluid medium and plate structure are introduced. Respective solvers are
also briefly described in this section. In Section 3, the MGFM is extended and applied to
treat fluid-plate interaction. This is achieved mainly by constructing and solving a fluid-
plate coupling system to predict the interface states. Furthermore, some acceleration
techniques for the FSI simulation are presented in this section. In Section 4, the present
treatment of interface condition is compared with the loosely-coupled method in several
one-dimensional cases. The superiority of MGEM is confirmed through some extreme
examples. In addition, the comparison of two acceleration techniques in the MGFM is
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also carried out. In Section 5, an UNDEX numerical example is given to demonstrate the
dynamic response of thin elastic plate subjected to shock loading. The flow fields under
the different elastic moduli and rigid boundary are also simulated. Finally, conclusions
are drawn in Section 6.

2 Governing equations

2.1 Fluid model

The governing equations for two-dimensional inviscid and compressible flow are Euler
equations, which can be written in a conservative form as follows
ou oF(U) aG(U)

ey =Y 2.1)

where U, F(U) and G(U) are the vectors of conserved variables and fluxes, given respec-
tively by U=|p,pu,pv,E]", F(U)=[pou,pu*+p,puv,(E+p)u]’, G(U)=[pv,puv,00* +p,(E+
p)v]T. Here p is the density, u and v are the velocity components in the respective x- and
y- directions, p is the pressure, and E is the total energy per unit volume. The total energy
is written as

E:pe-i—%p(uz-i-vz), (2.2)

where ¢ is the internal energy per unit mass.
For closure of system (2.1), an equation of state (EOS) is required. For gases the y-law
is used as

p=(rs—1)pe, (2.3)

where 7, is the ratio of specific heats for gas. It is set to 1.4 for air, and 2.0 for explosive
gas. Physically, the more widely accepted EOS for explosive gas is Jones-Wilkins-Lee
(JWL) equation, which was derived as an analytic fit to experimental data. The simple
perfect gas law is used only for computational purpose. For water the Tait EOS is used
and has the form of

p=(vw—1)pe—"rwBu, (2.4)

where v, =7.15 and B, =3.309 x 108Pa. The EOS above can be expressed in the following
consistent form as

p=(r—1)pe—7B. (2.5)
Here y and B are set to 7y and 0 for gas, to 7y, and By, for water accordingly. The associ-
ated sound speed can then be expressed as c= /vyp/p, where p=p+B.

A second-order conservative scheme over a regular uniform mesh is used to discretize
the Eulerian system (2.1), which is written as

At At
ul?j;rl:ug].——(l-*” F" |
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ax ey F )~ 2y (Gl Gy 26)
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where At, Ax and Ay are the time step size, x- and y- spatial step sizes, respectively.
Numerical fluxes F"" and G" are calculated using the second-order MUSCL approach [31]
with the Harten-Lax-van Leer (HLL) approximate Riemann solver [32].

2.2 Structure model

The present work focuses on a special type of structural component, thin elastic plate,
which is defined as structures possessing one dimension far smaller than the other two.
The mid-plane of the plate lies along the two long dimensions of the plate, whereas
the normal to the plate extends along the shorter dimension. The governing differen-
tial equation for the transverse displacement w, based on the Kirchhoff small deflection
plate theory, is given by the thin-elastic-plate (or Kirchhoff) equation

2

DV2V20 4 psh 22

where D is the flexural rigidity of the plate defined by

D=ma-n)

In order to distinguish the x and y used in the Euler equations, we use ¢ and # to de-
note the coordinates describing the horizontal plane of the plate. Thus, the transverse
displacement w can be regarded as a function of &, 7, t, i.e., w=w(,7,t). In the thin-
elastic-plate equation, E, v, h and ps are constants, which respectively denote the elastic
modulus (Young’s modulus), Poisson’s ratio, thickness and density of the plate. g is the
loading function. In fluid-plate interaction q denotes the excess pressure (i.e., excluding
atmospheric pressure and the weight of the plate) exerted by the fluid. V? is the two-
dimensional Laplacian operator defined by

2 &

2—— —_—
Vi gmt e

The boundary conditions for clamped edges are

ow
w=0 and %—0, (2.8)

and the boundary conditions for simply supported edges are
o _
on?

Many discretization methods such as finite difference method (FDM) and finite ele-
ment method (FEM) have been widely used. An advantage of FEM is the suitability for
problem with complex geometries. However, the computational complexity constitutes

w=0 and 0. (2.9)
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the main disadvantage of this technique. In this work, due to the regular geometry of
the thin plate, FDM seems to be more applicable and faster to calculation. Therefore, we
constructed an approximate solution by FDM. Details of discretization of Egs. (2.7)-(2.9)
can be found in Appendix. The method given in Appendix is a three-level scheme in
the temporal direction. Two initial time-level conditions are then required to start the
scheme. In the present applications, the initial transverse displacement w in the first two
time-levels is set to zero because the plate is still initially and subsequently deformed by
shock wave impacting in a late moment.

3 Fluid-plate interface treatment

The methodology for a FSI problem, in the current work, consists mainly of a compress-
ible fluid solver, an elastic plate solver and an interface coupling technique. The existing
high-order algorithms can be adopted for respective media. Therefore, often the most
difficult part is to faithfully capture the effect of complex fluid-structure nonlinear inter-
action.

3.1 Motivation

In a MGFM-based algorithm for treating multi-fluid Euler-Euler coupling with an im-
miscible material interface, a narrow band of 3 to 5 grid points as ghost cells is defined
in the vicinity of the material interface. At the ghost cells, ghost fluid and real fluid co-
exist. To define ghost fluid states for the ghost cells, a multi-medium Riemann problem
is constructed along the normal direction of material interface. An approximate Riemann
problem solver with a doubled-shock structure [33] is employed to predict the interface
states. Finally the ghost fluid states are obtained by using the predicted interface states.
More can be found in [12]. Thus, we can employ our favorite single medium numerical
solver to solve for each medium covering both the real fluid nodes and ghost fluid nodes
next to the interface. By combining the solution for each medium according to the new
interface location, we then obtain the overall solution valid for the whole computational
domain at the new time step.

As for the FSI where one Eulerian fluid is coupled with one Lagrangian solid, the mu-
tual interaction often leads to highly nonlinear behavior and the development of robust
and efficient solution techniques for such problems presents one of the great challenges
in computational mechanics. Usually, most commercial software is known to adopt the
"loosely-coupled” strategy by solving the flow equations and the structural equations
in a sequential and staggered way. As shown in Fig. 1, the fluid is usually solved first
with the structure assumed rigid, and then the structure is solved via imposing the force
boundary conditions, which is obtained from the fluid solver, on the structure surface.
The interface location obtained from the solid solver serves as the new boundary for the
fluid solver in the next round of computation. It is obvious that this treatment does not
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Figure 1: Diagram of coupling between fluid and solid solvers using loosely-coupled method.
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Figure 2: Diagram of coupling between fluid and solid solvers using MGFM.

truly reflect the complex interaction and impose the equilibrium conditions at the inter-
face. As a consequence, this explicit coupling is only suitable for weak interactions like
aeroelastic simulation with a rather stiff structure. Furthermore, mesh regeneration or
special technique of treating irregular grid cells for the fluid solver seems essential at
least in the vicinity of the interface. Motivated by the existing MGFM applied to multi-
medium Riemann problem, we shall extend it to the computation for coupling between
the fluid and the elastic plate. Such treatment is classified as a partitioned algorithm, but
significantly alleviates the shortcomings of the loosely-coupled method via predicting
the interface states to define the ghost fluid states and the pressure loading. The current
implementation is depicted in Fig. 2. In addition, this method is also suitable for a fixed
Eulerian mesh construction, avoiding any mesh deformation or remeshing step.

3.2 Fluid-plate coupling system

When the MGFM is applied to treat the fluid-plate coupling where the plate is described
using (2.7), it is not convenient and easy to construct a fluid-plate Riemann problem at
the interface. But we can utilize the original MGFM implementation by replacing the
multi-medium Riemann problem with a fluid-plate coupling system. We assume that the
fluid is located on the left side of the interface (thin plate). For one-dimensional case, the
fluid-plate coupling system can be written as

au  oF(U)

ot ox

=0, with U|t:0:LIl for x <xo,

3.1
. 0w . G1)
DV+V W+psh¥=q, with w‘t:():ZU() for X=Xy,

where U = [p,ou,E]T, F(U) = [ou,pu*+p,(E+p)u]’. Here, u is the normal velocity. U, is
the constant flow status on the left-hand medium. xj is the initial interfacial location, and
it also represents the initial location of the thin plate in the normal direction. In general,
the transverse displacement wy is initially zero for a plate bending problem. Once the
"diaphragm” separating the fluid and plate is removed, the interface moves with the
plate transverse velocity and the transverse displacement changes.
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When employed to solve fluid-plate coupling system (3.1), the MGFM-based tech-
niques require essentially solving one pure medium Riemann problem (called GFM Rie-
mann problem) in the fluid medium with associated one-sided ghost fluid at each time
step. The GFM Riemann problem can be expressed as

ou aF(U)_ . U, x<xy,
ot T Tox U!t_o—{ U, x>x. (32)

It solves from the grid node 1 on the left end to the ghost node next to the interface.
Hereafter, ”+” indicates the ghost fluid (status). On the other hand, the thin-elastic-plate
equation should be solved simultaneously. This equation, therefore, can be written as

92
DV2V2w +psha—;” —q". (3.3)
Here, g* should be interpreted as q* = p* — po with predicted pressure loading p*. po can
be taken as the atmospheric pressure or zero, as required.

3.3 MGFM for interface treatment

In order to ensure the equilibrium on the fluid-plate interface within one time step, the
ghost fluid status U, and pressure loading p* should be faithfully defined in advance. In
fact, there is one nonlinear characteristic from the fluid medium intersecting with the in-
terface. The characteristic equation in association with the Eulerian system can be written

as

dpi dup dx
g7 +p1LCIL 7 =0 along 7 =uj+cjy. (3.4)
The subscript I refers to the interface and IL denotes the left side of the interface. On the

other hand, the discrete analogue of (2.7) is given by

un+l —y"
DV Vi +psh=—r——=pi—po, (3.5)
where V2V2w denotes the discrete form in space (see Appendix), u =0dw/dt denotes the
plate transverse nodal velocity. Following the treatment used in [12] for (3.4) together
with the discrete equation (3.5), we solve a coupled system

pr—pi n+lpi—p
Pt (up—u;)=0, Wy=ppc;y |14+ ——"—"—",
W (up—uy) 1=p1C1 27 pEB o6
pi—(po+DViViw)
o/ Bt (up—ulf)=0,

to predict the fluid-plate interface states. In the above system, the EOS for fluid is based
on (2.5). w} and uf in (3.6) can be obviously chosen as the plate transverse nodal dis-
placement and velocity at time t =t". We also need to determine the fluid state U, i.e.,
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Figure 3: 1D schematic diagram for treating a fluid-plate interaction in the MGFM.

(p1,u1,p1,¢1). Assuming that the plate is located next to node i at time t =+", U; can be
obtained via interpolation along the characteristic lines dx/dt=u;+cy; tracing back from
the interface into the fluid medium. Alternatively, U; can simply be taken as U;_;. Then,
the interface states can be obtained by solving (3.6) using iterative method.

After the predicted pressure and velocity at the interface are solved, the predicted
density can be obtained by utilizing the shock relationship. Then, as depicted in Fig. 3, we
could define the ghost fluid states and the plate load: for the fluid, the predicted pressure
p1, velocity ur and density pj;, are defined as the ghost fluid states; for the plate, only the
result of p;—pp is defined as the load. It is worth remarking that the computational fluid
domain should include at least two nodes across the interface. These nodes are served as
the ghost fluid nodes, as i+1, i+2 and i+3 shown in Fig. 3.

The methodology in the current work does not require an interface capturing tech-
nique, such as the level set technique [34] or the front tracking technique [35], which is
usually combined with the MGFM-based algorithm to obtain a moving “sharp” interface
for multi-medium problems. For the fluid-plate interaction, the interface location is given
by the solution of thin-elastic-plate equation (2.7). As shown in Fig. 3, there are respective
mesh systems for Eulerian and Lagrangian coordinates, where the fixed Cartesian Eule-
rian fluid cells are distributed across the thin plate (interface) and the mesh nodes may
not necessarily locate at the plate. The new interface location at t=¢""! can be expressed

as
X = xo+w|ipm. (3.7)
For each time iteration, the interface location is used to distinguish real cells within the
fluid domain and ghost cells on the other side of interface.

In the two-dimensional computations, we need to choose two corresponding nodes
along the normal direction: one is adjacent to the plate in the fluid region; the other is
a plate node, as nodes A and B marked in Fig. 4(a). The normal velocity u4, as the u;
in (3.6), is obtained via projecting fluid x- and y- velocity components into the normal
direction of the plate. The nodal velocity u} is taken as the one of last time step. After
solving the system (3.6) we can define the ghost fluid stats and the plate load. The x- and
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Figure 4: lllustration of the MGFM treatment for the fluid-plate interface.

y- ghost fluid velocity can be calculated comprising the ghost normal velocity component
and the real tangential velocity component. See Fig. 4(b). It should be pointed out that an
interpolation procedure is usually required to obtain the respective states at point A or
B during the construction of the fluid-plate coupled system to predict the interface state.
More specifically, to obtain and define the ghost fluid state for point A, point B on the
plate may not be a Lagrangian mesh point. Interpolation on the plate is applied to obtain
the plate state at point B and vice versa. It should be further noted that a narrow band
of ghost fluid cells are defined on the other side of the interface. Other fluid cells beyond
the ghost fluid region are not solved for, but are used simply to reserve the space to allow
bending deformation of the plate without the need to remesh the fixed fluid grid. When
the plate deforms, the ghost fluid cells in the vicinity of the plate may become real fluid
cells.

Here we briefly summarize the general procedure of fluid-plate coupling using the
MGEFM algorithm:

Step 1 Predict the fluid-plate interface states by solving coupled equations (3.6), and then use
the solutions to define ghost fluid states and pressure loading.

Step 2 Choose a suitable high-order single medium scheme to solve for each medium. In that
way the solution in all the media is advanced to the new time step.

Step 3 Obtain the final solution over whole computation domain according to the new interface
location (3.7), and then update the new time step size and proceed to the next time
step.

3.4 Acceleration of the coupling process

The MGFM utilizes the information in the vicinity of the interface at t =t" to predict
the embedded boundary conditions, and then defines the ghost fluid states and pressure
loading. In accordance with certain coupling time step At, both media are simultaneously
advanced to t= "1, as shown in Fig. 5(a). To ensure computational stability, the CFL
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Figure 5: lllustration and comparison of several acceleration techniques.

condition for the fluid medium is set as

min(Ax,Ay)

Aty =CFL ,
H}?X(\“z‘,ﬂﬂvi,j +cij)

(3.8)

where u;j, v; j and ¢; ; are the x- and y- velocity components and sound speed at each grid
point, respectively. The time step size for the plate calculations can be taken as

1 [psh/ 1 1 \1
<4 =4 — .
Ats—z D <A§2+A172> ’ (39)

through the stability analysis of scheme (A.2) using the Fourier method. The final time
step size, which must satisfy the stability restrictions of both fluid and structural field,
can be taken as

At=min(Ats,At;). (3.10)

The time step size for computing the plate is usually much smaller than that for the
fluid, i.e., At; < At £, say, for a large elastic modulus or nearly same order of both fluid
and solid mesh sizes. Therefore in such applications, the coupling time step At will be
dictated by the time step Af;, rather than the time step At;. If we typically take this
time step as the coupling time step, the computational cost is often too high. In order
to pursue higher efficiency, we can change the mesh size in the structural domain, i.e.,
to increase A¢ and Ay in (3.9). This is a natural and reasonable choice in most if not all
small deformation cases, because the structural field, compared with flow field, usually
does not require a very fine spatial resolution. But the mesh size of the plate can not be in-
creased unlimitedly. Excessive increase will inevitably lead to distortion of the results. To
further pursue higher efficiency and ensure strict synchronization between the fluid and
structural domains, other strategies based on structural substep are designed as follows.

In each fluid time step, we choose At = At¢ as the final time step. That time step is
divided into several small time steps for the calculation of the plate, i.e., Aty = At f/ N.
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At is so designed as to satisfy the stability requirement of (3.9). N substeps of the plate
computations can contribute to save the overall simulation CPU time because in that case
the flow field will be advanced fewer times. The structural nodal load can be defined as
follows. We predict the structural nodal load for each substep At/N using the MGFM.
After the solid solution at t =t"+At/N is obtained, we repeat the above process for the
next sub-time step. This acceleration technique is illustrated in Fig. 5(b). Alternatively,
the nodal load of plate can simply be regarded as constant in each substep, as shown
in Fig. 5(c). These two techniques are respectively called “Technique 1” and “Technique
2” in the following sections. The results are insensitive to the time step sizes as long as
stability is guaranteed.

It is worth mentioning that the prediction of interfacial states using the MGFM is not
time-consuming as part of numerical procedures, because the interface here is a lower
dimensional grid and the number of the points required to predict is therefore limited. In
view of this fact, it is easy to see that the speedup ratio ty/ty using the above accelera-
tion strategies is between 1 and N, where ty represents the overall computation time for
one numerical example without any acceleration technique, and ty represents the overall
time with certain acceleration technique. The so-called speedup ratio is close to 1 if the
computing time for structure is dominant compared to fluid calculation, and close to N
if the computing time for flow field is dominant, such as in this work. Certainly, we are
not free to choose the number N at our will. The value of N should be appropriate and
problem-related. On one hand, it should make the solid calculation satisfy the stabil-
ity condition (3.9) and therefore too small value is not suitable. On the other hand, the
distortion of the numerical results will be more and more evident with the increase of N.

4 Method validations and comparisons

Now we make some validations for the MGFM by several one-dimensional fluid-plate
interaction problems. For comparison, we also solve some of these test problems using
the loosely-coupled method. Let us consider an infinitely long plate simply supported
along two opposite edges. The center of the plate is assumed to be the right boundary of
one-dimensional fluid region. The nodal load of this point, obtained in each time step, is
constantly extrapolated to other grid points. So the plate is only subjected to a uniformly
distributed load, and its transverse loading g is just a function of time ¢. In this situation,
the two-dimensional solid equation (2.7) can be simplified as
otw >w

Actually, (4.1) is similar to the dynamic Euler-Bernoulli beam equation [36]. Fig. 6 shows
a simple illustration of this problem. For convenience the fluid variables are scaled as

£

(4.2)
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Figure 6: Sketch of 1D fluid-plate coupling.

with lp=1.0m, up=10.0m/s, pp=1.0x 10°kg /m? the reference length,velocity and density,
respectively. This results in the same equations for the non-dimensional parameters as
for the dimensional parameters, except that all variables have an overbar. The additional
plate variables, similarly, are scaled as

= _w < h = E
C:_I w:EI hz%/ ps:&/ ES: -

©o Pou

. (4.3)

The equation has the same form as (4.1). For notation purposes the bars are dropped in
the remainder of this subsection.

The material of the plate, except for special explanation, is chosen to be aluminum, for
which some non-dimensional parameters, such as elastic modulus of 7.1 x 10°, density of
2.7, Poisson’s ratio of 0.33, side length of 10.0 and thickness of 0.1 are assumed. Since this
problem has no exact analytical solution and the solutions by the MGFM and the loosely-
coupled method are nearly identical as the mesh size tends to zero, we therefore take the
result obtained with a fine mesh of Ax =1.0x 10™* in the fluid domain and AZ =0.1 in
the solid domain as the reference solution. In the following cases, we regard this as the
“exact” solution and use it to compare with the “numerical” solutions obtained in coarse
meshes. Note that the right boundary of the fluid domain changes with time due to fluid-
plate interaction. The initial non-dimensional flow conditions and other computational
parameter settings can be found in Table 1.

Table 1: Initial data and parameters.

Fluid Initial conditions Computation
medium | p; U pr | xo time
Case 4.1 Air 02]10x10°|1.0[03] 1.0x107°
Case42 | Water | 1.0 | 1.0x10% | 1.0 | 0.4 1.0x1073
Case 4.3 Air 02| 1.0x10* | 1.0 | 0.3 | 4.27x107°
Case 4.4 Air 02 |1.0x10* | 1.0 | 03| 6.4x10°°

Case 4.1 (Grid convergence). This is a problem where a shock wave is generated in the air
medium. In this case, we give a comparison between the MGFM and the loosely-coupled
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Figure 7: Case 4.1: Comparison of different mesh densities at t=1.0x1075.

method with different grid numbers in the fluid domain. The solid domain is discre-
tised by equally spaced cells of width A =0.5. Six fluid meshes are examined: Mesh 1:
Ax=2.0%10"2, Mesh 2: Ax=1.0x10"2, Mesh 3: Ax=5.0x10"?, Mesh 4: Ax=2.5x1073,
Mesh 5: Ax=1.25x10"3, Mesh 6: Ax=6.25x10"*. The MGFM, on a same mesh, is better
than the loosely-coupled method for capturing the location of the shock front, as shown
in Figs. 7(a)-7(d). The pressure and velocity profiles also show that the MGFM on Mesh
2 affords a comparable result to the “exact” solution, but similar result for the loosely-
coupled method can only be observed on a finer mesh. It is obvious that the results from
the MGFM and from the loosely-coupled method have no essential difference with suf-
ficiently fine mesh. However, fewer grids can achieve satisfactory results in the MGFM,
and this can not be carried out in the loosely-coupled method.

Case 4.2 (Water-plate interaction on a coarse mesh). As shown in Case 4.1, the MGFM is
more capable of treating the problem with fewer grids. In the following, we solve a water-
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Figure 8: Case 4.2 A shock wave is generated in the water medium.

plate interaction problem with a relatively coarse mesh, where the space discretization is
chosen as Ax =1.0x1072 in the fluid domain. As shown in Fig. 8(a), the MGFM is a
little better than the loosely-coupled method for simulating the velocity profile near the
interface. It should be noted that the overheating phenomenon exists near the interface
in Fig. 8(b), no matter what method is used. Comparatively speaking, it is suppressed
well by the MGFM. Several curves in Fig. 8(c) depict the center pressure history. The
loosely-coupled method is unable to faithfully take into account the simultaneous inter-
action between different media. This causes that the pressure curve starts from a very
low point, and then rises rapidly. During this time period the pressure differs from the
“exact solution” significantly. Then there is a pressure-drop process. During this time
period the pressure trend concurs with the “exact solution”, but there are still some dis-
crepancies. On the contrary, the MGFM faithfully takes into account the simultaneous
interaction occurring at the interface, which leads to a much better result during all the
time periods. Fig. 8(d) depicts the center displacement history. In this figure, the center
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displacement difference between the result by the loosely-coupled method and the “ex-
act solution” becomes more and more visible as time progresses, but this phenomenon is
not obvious for the MGFM.

Case 4.3 (Performance under extreme conditions). Although these two method both
work in the above cases, the loosely-coupled method is much worse than the MGFM on
the accuracy. To better understand the superiority of the MGFM, an extreme and special
example is designed and tested here. The loosely-coupled method, for this example, fails
to provide a positive interfacial pressure, which directly leads to the failure of calculation.
Nevertheless, the MGFM performs consistently. The material of the plate is chosen to be
stainless steel, with some non-dimensional parameters like elastic modulus of 2.05 x 10°,
density of 7.8, Poisson’s ratio of 0.3, side length of 10.0 and thickness of 0.2. The mesh
used is Ax=>5.0x 1073 in the fluid domain and also A¢=0.5 in the solid domain. The CFL
number is specially set to be 1.0. This is a problem where a shock wave is generated in
the air medium and can be work out by the loosely-coupled method, see Fig. 9. However,
if all the conditions and parameters remain unaltered except that the density of the plate
is replaced by ps; =0.2, the loosely-coupled method provides a solution with an obvious
error at the location of the shock front, see Fig. 10. Even worse, “negative” pressure may
be generated using this method. That is why we choose t =4.27x 10> as the terminal
time. Next time step the computation will collapse due to "negative” pressure. However,
this problem does not exist with the MGFM, no matter how long the computation time is
taken.
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Figure 9: Case 4.3(a): The material of the plate is stainless steel.

Case 4.4 (Acceleration techniques). In this case, we aim to validate and compare the
different acceleration techniques in Subsection 3.4. The material of the plate and the
initial conditions are chosen as those in Case 4.3. The space discretization is chosen as
Ax=5.0x1072 in the fluid domain and AZ =5.0 x 1072 in the solid domain. In order to
carry out a comparison, we take the result obtained with the fixed coupling time step
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Figure 11: Case 4.4: Comparison of different acceleration techniques.

At=6.4x1078 as the numerical solution without any acceleration technique, because this
time step satisfies both the conditions (3.8) and (3.9). In the meantime, we try to use
Technique 1 and 2 for acceleration with a larger coupling time step, e.g., At =3.2x 107,
to solve the same problem. This time step satisfies (3.8) but does not satisfy (3.9). We
divide one time step size into 5 sub-time intervals to calculate the plate deformation
with condition (3.9) satisfied. A simple comparison at respective =1.28 x107° and t =
6.4x107° is given in Fig. 11. Note that the results without any acceleration technique
are obtained after 200 steps for t =1.28 x 10> and after 1000 steps for t =6.4x107°. If
one acceleration technique is applied, the time step numbers can be reduced to 40 and
200, respectively. There is no apparent difference for these two techniques in the velocity
or pressure profile, see Figs. 11(a) and 11(b). We primarily apply Technique 2 into our
following computations for its easy implementation. Further validation for Technique 2
is given in the two-dimensional UNDEX examples.
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5 Numerical experiments and discussions

In the following, a series of simulations of UNDEX near an elastic plate consists of the
generation and propagation of blast wave and the response of structure. Physically, rapid
changes of pressure may cause the formation of cavitation in the fluid at the fluid-plate
interface because the fluid usually can not withstand tension. The appearance of cav-
itation imposes difficulties in the treatment of the interface. Up to present, there is no
well-developed numerical technique to treat the cavitation-structure interaction. Only
attempts have been made for Euler-Euler coupling [20]. We, therefore, only consider the
dynamic process of plate structure under the impact of shock waves until the incipience
of cavitation. Some examples are given below.

5.1 A case of UNDEX

In the following calculations, we assume that there is a square plate with two oppo-
site edges clamped on the water surface, and a cylindrical explosive source beneath it.
See Fig. 12(a). Flow fields or deformations of plate at all cross-sections of this three-
dimensional model are identical. This simulation, therefore, can be simplified to a two-
dimensional model. The thin plate is initially located at the straight line y =2m with
thickness of 0.25m. This plate is set to be a stainless steel plate and its material properties
are E; =2.05x10'Pa, v =0.3, p; = 7800kg/m>. The initial real computational domain
for fluid is a rectangular region with XxY € [-5m,5m| x [-5m,2m|. The deformation of
structure under impact loading will cause a small geometry change of computational do-
main. So we should reserve a little computational space beyond y=2m. An explosive gas
bubble with a radius of 0.5m is located at the origin (0.0,0.0) in water. See Fig. 12(b). The
initial conditions for these two fluids are shown in Table 2. A total of 321 x 225 uniform
grid points are distributed in the real fluid computational domain, and 21 x 21 uniform
grid points are distributed in the plate computational domain. The CFL number is set to
0.45. The nonreflective boundary conditions are used for all the fluid outside boundaries.
The gas bubble-water coupling is treated as the original MGFM in [12]. To capture the
moving gas-water interface, the level set technique is utilized.

In order to clearly demonstrate the evolution of strong shock impacting on the thin
plate and the dynamic response of the thin plate, the pressure contours at different stages
of earlier times are shown in Fig. 13. The dashed circle represents the initial bubble while
the solid circle represents the expanded bubble. Fig. 13(a) shows that once the explo-
sion starts, a strong underwater shock is generated and propagates radially outwards
with decreasing strength. Fig. 13(b) shows that the underwater shock soon impacts the

Table 2: Initial conditions of explosive bubble and water.

Medium | u (m/s) | v (m/s) | p (kg/m3) p (Pa)
Bubble 0.0 0.0 1270.0 8.29 x 108
Water 0.0 0.0 1000.0 | 1.0x10°
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Figure 12: Schematic diagram for UNDEX near a thin elastic plate.

plate, resulting in the incident shock reflected from the fluid-plate interface. The reflec-
tion wave with a decreasing strength travels towards the expanding explosion bubble
surface. A tiny deformation in the normal direction of the plate surface is formed, but it
is not easy to observe the change at this stage. Fig. 13(c) shows that the reflected wave,
as a result of contacting the expanded bubble, is divided into two parts: one is trans-
mitted into the air bubble, while the other is reflected as a rarefaction wave propagating
along the opposite direction. After the reflected rarefaction wave reaches the bottom sur-
face of the plate, the wave-plate interaction causes a low pressure region formed. As
time goes on, the pressure there keeps on decreasing such that the pressure in the low
pressure region drops below saturated pressure, leading to the incipience of cavitation.
See Fig. 13(d). The thin plate, under the lasting impact of load, has presented a certain
degree of bending. Because the material used is steel with larger elastic modulus, the
deformation rate is relatively small.

Fig. 14 records the pressure history at the plate center for three structure mesh sizes.
A large pressure peak can be found in this figure, which is generated by underwater
shock impact. The peak lasts for a short time, and decays rapidly. A low-pressure period
is then formed, which can be regarded due to the formation and evolution of cavitation.
The number of real fluid grid points is fixed as 321225, and the number of structure grid
points is taken as 11 x 11, 21 x 21 and 81 x 81, respectively. It is worth mentioning that a
finer mesh for the flow field is required to produce a good numerical resolution, while
this is not needed for the plate calculation due to the regular geometry and the feature
of small deformation. As shown in Fig. 14, there is no obvious difference among these
three test meshes. In the following, the fluid and structure grid points are still taken to be
321 %225 and 21 x 21, respectively.

To further validate the second acceleration technique (Technique 2) in Subsection 3.4,
Fig. 15 provides us a simple comparison of the fluid-plate interface displacement and
velocity profiles at t =1.0ms, 1.7ms and 2.4ms. We divide one time step size into 100
sub-time intervals to calculate the plate deformation for comparison purposes. There is
no significant difference between the two measures, as shown in Fig. 15.
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(a) 0.3 ms (b) 1.0 ms

(c) 1.7 ms (d) 24 ms

Figure 13: Pressure contours at different times.
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Figure 14: Comparison of pressure history at the plate center for different solid grid points.

5.2 Influence of structure flexibility on the flow field

Numerical tests show that the MGFM, because of taking into account the nonlinear fluid-
plate interaction, can provide accurate interfacial states. To better observe the effect of
structure flexibility on interaction occurring at the interface, we construct and simulate a
set of UNDEX problems in conjunction with some purpose-designed thin elastic plates.
Without loss of generality, the material property parameters are fixed by v =0.3, p; =
5000kg /m?> except E; is constantly adjusted from E;=1.0x 10" Pa to E;=1.0x 10*' Pa. For
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Figure 16: Comparison among different elastic moduli.

a large elastic modulus, too much simulation time is needed for a general FSI procedure
and this may be unendurable. But with the employment of Technique 2 for acceleration
in Subsection 3.4, MGFM is capable of efficiently simulating the processes of UNDEX
for different structural flexibilities. Figs. 16(a) and 16(b) respectively record the center
pressure history and interface pressure distribution at t = 1.5ms under three types of
elastic moduli and reflective boundary condition. A comparison shows that the structure
flexibility affects the shock impact significantly and a more flexible material causes the
cavitation to occur earlier. It is more obviously if the elastic modulus is relatively small,
say, Es=1.0x 10! Pa. It is also found that the result, if the plate rigidity is large enough,
concurs well with that under the reflective boundary condition by assuming the plate is
rigid.

The flow fields (pressure) at t =2.0ms among different elastic moduli and reflective
boundary condition are presented in Fig. 17. Due to symmetry, only half of the computa-
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Figure 17: Comparison of the flow fields among different elastic moduli and reflective boundary condition at
t=2.0ms.

tional domain is plotted. The vectors correspond to the fluid velocity. As the plate bends,
it expands the fluid region below the material surface, leading to reducing the shock
strength. A cavitation region where the pressure is near zero can be found on the left side
of Fig. 17(a), while this phenomenon does not exist on the right side of Fig. 17(a). Gener-
ally speaking, the plate with smaller elastic modulus leads to weaker interface pressure
due to lower material rigidity. Also, the curvature of the two plates is not the same due to
the different interface loading and rigidity. The plate on the left side features larger inter-
face displacement. Fig. 17(b) shows that the fluid and plate response remains almost the
same between E;=1.0 x 102! Pa and reflective boundary condition. This is consistent with
the actual physical situation, because the plate with an extremely large elastic modulus
could be considered similar to a rigid plate.

6 Conclusions

In this work, the MGFM originally applied to treat multi-fluid coupling was extended to
treat flow and thin plate nonlinear interaction. By solving shock relationship and thin-
elastic-plate equation together to predict the ghost fluid states and the plate loading, this
approach not only ensured numerical stability and maintained the advantages of simplic-
ity and high efficiency, but also provided a more accurate interface boundary condition.
In addition, there were no irregular grid cells required for special treatment due to the
definition of ghost cells and ghost fluids. An acceleration technique of the coupling pro-
cess was also implemented for improving efficiency. Multiple numerical experiments
were presented and analyzed to show that this method was capable of providing correct
results with robust and consistent performance, especially in case the interaction between
the fluid and the structure is very strong. The evolution of strong shock impacting on the
thin plate and dynamic response of the thin plate subjected to UNDEX was systematically
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investigated.

The present technique of treating the fluid-structure coupling relies on the assump-
tion that the solid is a rectangular plate, and we believe that the MGFM can be made to
work for other thin plates or shell structures for a long-time simulation with fluid phase
transition or cavitation involved. These are our future works.

Appendix: Difference discretization scheme of (2.7)

Each partial derivative term at the interior grid point (g;,7;) and time t" in (2.7) can be
approximated by a difference equation as follows:

n n n n n
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Direct substitution of (A.1a)-(A.1d) into (2.7) gives
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The difference schemes for the boundary conditions (2.8) and (2.9), for example at
¢ =230, =C—1, can be respectively written as

wg/] - 0 and wyil,]‘ - 3w111/] - 0.5wg,]‘, (A.3a)

wp;=0 and " ;=—wj, (A.3b)
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