
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 6, No. 5, pp. 570-589

DOI: 10.4208/aamm.2013.m226
October 2014

Continuous and Discrete Adjoint Approach Based

on Lattice Boltzmann Method in Aerodynamic

Optimization Part I: Mathematical Derivation of

Adjoint Lattice Boltzmann Equations

Mohamad Hamed Hekmat∗ and Masoud Mirzaei

Center of Excellence for Design & Simulation of Space Systems, K. N. Toosi University
of Technology, Tehran, 891567, Iran

Received 20 May 2013; Accepted (in revised version) 6 January 2014

Available online 23 June 2014

Abstract. The significance of flow optimization utilizing the lattice Boltzmann (LB)
method becomes obvious regarding its advantages as a novel flow field solution
method compared to the other conventional computational fluid dynamics techniques.
These unique characteristics of the LB method form the main idea of its application to
optimization problems. In this research, for the first time, both continuous and discrete
adjoint equations were extracted based on the LB method using a general procedure
with low implementation cost. The proposed approach could be performed similarly
for any optimization problem with the corresponding cost function and design vari-
ables vector. Moreover, this approach was not limited to flow fields and could be
employed for steady as well as unsteady flows. Initially, the continuous and discrete
adjoint LB equations and the cost function gradient vector were derived mathemati-
cally in detail using the continuous and discrete LB equations in space and time, re-
spectively. Meanwhile, new adjoint concepts in lattice space were introduced. Finally,
the analytical evaluation of the adjoint distribution functions and the cost function
gradients was carried out.

AMS subject classifications: 76D55, 49Q99, 93B40
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1 Introduction

Adjoint method is one of the gradient-based techniques in which cost function gradient
vector with respect to design variables is calculated indirectly by solving an adjoint equ-
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ation. Although, there is an additional cost arising from solving the adjoint equation, the
gradients of cost function can be altogether achieved with respect to each design vari-
able. Consequently, the total cost to obtain these gradients is independent of the number
of design variables and amounts to the cost of two flow solution roughly [1]. There are
two approaches to develop the adjoint equation: continuous and discrete. Continuous
adjoint approach utilizes the differential forms of flow field governing equations and
cost function. Variations of the cost function and the flow field equations with respect
to the flow field variables and the design variables are combined through the use of La-
grange multipliers, also called adjoint variables. Via gathering the terms associated with
the variation of the flow field variables, the adjoint equation and its boundary conditions
are reached. The terms associated with the variation of the design variables produce the
cost function gradient vector. The flow field equations and the adjoint equation with
its boundary conditions must finally be discretized using suitable numerical methods.
In this approach, physical significance of the adjoint variables is very clear, since we
are dealing with a continuous differential equation that can be solved even analytically
in some special cases. But, in the discrete adjoint approach, the adjoint equation is di-
rectly extracted from a set of discrete flow field equations and cost function gained from
numerical approximation of the equations. Discrete adjoint equation is derived by col-
lecting together all the terms multiplied by the variation of the discrete flow variables.
Major disadvantage of this approach is the complexity of the adjoint equation derived
from the discrete flow field (Navier-Stokes) equations; so that the complete extraction of
all the discrete terms in the adjoint equation and the gradient vector requires a lot of al-
gebraic manipulations. In addition, the viscous flux in the Navier-Stokes (NS) equations
further increases the complexity of deriving them in viscous flows. The discrete adjoint
equation becomes very complicated when the flow field (NS) equations are discretized
with higher order schemes and using flux limiters. Therefore cost of discrete equation
derivation from the NS equations is more while the implementation of the continuous
adjoint method is very simple. The discrete adjoint method requires more computational
efforts in comparison with the continuous one. Another critical issue of interest is the rel-
ative accuracy of the calculated gradients by the two approaches. The continuous adjoint
approach provides the inexact gradient to the exact cost function. On the other hand,
the discrete adjoint approach provides the exact gradient to the inexact cost function [2].
Here, the exact cost function is defined as the continuous form of the cost function, and
the inexact cost function as the value computed from the discrete field equations and
the boundary conditions. In other words, the continuous gradient is calculated from the
discretized continuous adjoint equation, derived from the continuous flow field equa-
tions and cost function. Therefore, the continuous gradient is not exactly consistent with
the cost function which is evaluated numerically. The advantage of the discrete adjoint
method is that the resulting discrete gradient is exactly consistent with the discrete cost
function and the method does not suffer from this inconsistency. Therefore resulting gra-
dients from discrete method have more consistency with resulting gradients from finite
difference method. In this case, however, the difference between discrete and continuous
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methods is often negligible.

In numerical optimization problems, there are factors that affect the efficiency of an
optimization method in real and practical issues, thereby restricting or extending the ap-
plicability of the method. The most important of these factors are implementation and
computational costs. Regardless of the inherent limitations of various optimization tech-
niques, methods which have lower implementation and computational costs have higher
efficiencies and would be more useful in practice. In comparison with the conventional
flow field (NS) equations, the LB method uses the Boltzmann transport equation to solve
the flow field that is less complicated. Therefore, the implementation of this method
would be considerably easier. Importance of this benefit will become more conspicuous
when a gradient technique is exploited in optimization problems involving the flow field
equations (irrespective of the flow field solution) in optimization process. Simplicity of
the Boltzmann equation, as an alternative to the conventional flow field equations, can be
very helpful in facilitating the process of extracting the continuous adjoint equation (and
particularly the discrete adjoint equation). The conventional numerical solution meth-
ods for flow equations such as finite volume and finite element approaches usually use
body-fitted grid systems i.e., regular structured and unstructured grids to discretize the
solution domain. Application of these types of grids to the complex three-dimensional
problems is very difficult. This issue becomes more intricate when analyzing the flow
fields with moving boundaries or in some optimization problems. Besides, accuracy and
numerical robustness strongly depend on the grid quality. These challenges can be over-
come utilizing immersed boundary techniques [3]. Nevertheless, the LB method uses
inherently immersed boundary grid system. This unique feature of the LB method en-
ables the modeling of complicated geometries and the analysis of flows around them,
straightforwardly and without the need for conventional body-fitted grid generation. So,
through exploiting the LB method, the optimization of special geometries is done with
lower cost. Furthermore, it can remove the drawbacks of non-gradient techniques, which
necessitate a lot of flow solutions (due to the selective random design variables) and con-
sequently the application of grid generation. Additionally, in gradient methods, there is
no need to consider some grid modification techniques. The inherent parallel process-
ing nature of the LB method owing to data transfer from the nearest neighbor in terms
of streaming and fully localized calculations of collision phase, distinguishes it from the
conventional methods of computational fluid dynamics. This capability of the LB method
seems to be very effective in the analysis of complex unsteady flows and in some cases
like optimization with a lot of design variables or constraints that demand long compu-
tational times. As a result, it is possible that some optimization techniques are employed
which are not efficient for computational fluid dynamics due to the high computational
cost (e.g., adjoint method in problems with high number of constraints or non- gradient
methods in problems with high number of design variables). Hence, the significance of
flow optimization utilizing the LB method becomes obvious regarding its advantages as
a novel flow field solution method compared to the other conventional techniques.

Execution of the adjoint optimization approach by means of conventional NS-based
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computational methods has been extensively studied in recent decades, for instance,
through the works of Jameson [4–6], Elliot and Peraire [7], Nadarajah [8], Hekmat et
al. [9, 10], Tonomura et al. [11], Peter and Dwight [12], Hicken and Zingg [13] and Fre-
und [14]. Nonetheless, there are few researches in combination of the adjoint method
and the LB method. Tekitek et al. [15], for the first time, performed the discrete adjoint
approach via the LB method. They extracted the discrete adjoint equation based on the
LB equation to identify the unknown parameters of the LB method without representing
a general framework or new concepts, or evaluating the details of the adjoint variables
and gradients. In addition, Pingen et al. [16, 17] explored the ability of the incompress-
ible LB method in topology optimization problems. Their major work was focused on
the extraction of steady discrete adjoint equation and gradient of cost function using the
steady LB equation and its implicit solution. Moreover, they examined the performance
of mathematical algorithms (e.g., iterative and direct algorithms) to solve these equations
implicitly. Their research was restricted to optimization in steady flows and did not offer
an overall framework for implementation and computation. Krause et al. [18] derived
the continuous adjoint equation by means of the continuous Boltzmann equation for op-
timization in incompressible flows. The negative aspect of their suggested approach was
the intricacy of the extraction process and consequently, high implementation cost. The
study only included the continuous adjoint method and did not discuss the discrete ad-
joint method.

In the present research, for the first time, both continuous and discrete adjoint ap-
proaches were scrutinized via the LB method. This study introduced a general frame-
work with low complexity to apply the continuous and discrete adjoint approaches based
on the LB method. The proposed procedure was not restricted to flow fields and could be
exploited for both steady and unsteady flows. Firstly, the continuous and discrete adjoint
LB equations and the cost function gradient vector were derived mathematically in de-
tail using the continuous and discrete LB equations in space and time, respectively. Also,
new adjoint concepts in lattice space were established. Introduction of these concepts can
be useful in applying the LB equation solution strategies to the adjoint equations. Even-
tually, the analytical evaluation of the adjoint distribution functions and the cost function
gradients was accomplished.

2 Lattice Boltzmann method

Unlike the conventional numerical methods of the flow field solution based on the dis-
cretization continuous macroscopic equations, the LB method is based on the mesoscopic
kinetic equations. The basic idea of this method is to construct simple kinetic models
which consider the microscopic processes so that the macroscopic averaged properties
follow the considered macroscopic equations. Because of molecular and kinetic nature
of the LB method, it has properties that distinguish it from other conventional computa-
tional fluid dynamics methods.
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2.1 Lattice Boltzmann equation

There are two ways to extract LB equation. The first way is using the lattice gas automata
(LGA) and substitution of the average of the Boolean occupation number with the par-
ticle distribution function [19]. The second way is derivation of LB equation using the
Boltzmann transport equation. The Boltzmann transport equation is based on the kinetic
theory of gases and it describes the statistical interaction of particles at the molecular
level. For a system without an external force, the Boltzmann equation can be written as

∂ f

∂t
+c·∇ f =Ω, (2.1)

where f = f (x,c,t) is the density distribution function, c is the particle velocity vector, x
is location vector in physical space, t is time and Ω=Ω( f ) is the collision operator. The
solution of the Boltzmann equation is very difficult due to the presence of the collision
term. But in 1954, the simple model of BGK for the collision operator was presented [20]:

Ω=ω( f eq− f )=
1

λ
( f eq− f ). (2.2)

The coefficient ω is called the collision frequency and λ is called the relaxation time.
The local equilibrium distribution function is denoted by f eq. After introducing BGK
approximation, the Boltzmann equation (2.1) can be approximated as

∂ f

∂t
+c·∇ f =

1

λ
( f eq− f ). (2.3)

In the LB method, the above equation is discretized in velocity or phase space and as-
sumed it is valid along specific directions, linkages. Hence, the discrete Boltzmann equa-
tion can be written along i direction as

∂ fi

∂t
+ci ·∇ fi =

1

λ
( fi

eq− fi), (2.4)

where fi is the distribution function along i direction and fi
eq is the corresponding local

equilibrium distribution function. The left-hand side of the above equation represents
the streaming or propagation process, where the distribution function streams along the
lattice link i with velocity ci=∆x/∆t (∆x and ∆t are displacement and time steps, respec-
tively) and the right-hand side represents the rate of change of the distribution function
in the collision process. Eq. (2.4) is now discretized with respect to space and time, using
a first order upwind finite difference approximation in time and space, resulting in the
discretized LB equation:

fi(x,t+∆t)− fi(x,t)

∆t
+ci ·

fi(x+∆x,t+∆t)− fi(x,t+∆t)

∆x
=

1

λ
[ fi

eq(x,t)− fi(x,t)]. (2.5)
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Since ci=∆x/∆t, Eq. (2.5) can be simplified as

fi(x+ci∆t,t+∆t)=(1−β) fi(x,t)+β fi
eq(x,t), (2.6)

where β = ∆t/λ is inverse of dimensionless relaxation time. Relation (2.6) is fully dis-
cretized LB equation in time, location space and velocity space.

In an incompressible flow, ideally, so that the divergence of the velocity is zero, the
density is assumed equal to initial density, i.e., ρ = ρ0. Therefore, Assuming an order
O(Ma2) density fluctuation, the equilibrium distribution function in relation (2.6) is ob-
tained using Taylor series expansion of Maxwell-Boltzmann equilibrium distribution and
ignoring O(Ma3) terms or higher [19, 21]:

f
eq
i =wiρ

{

1+
3(ci ·u)

c2
+

9(ci ·u)2

2c4
− 3u2

2c2

}

≡wiρΘi, (2.7)

where u≡ u(x,t) and ρ≡ ρ(x,t) are the macroscopic velocity vector and density, respec-
tively. Also, wi is the lattice weight parameter in i direction that depends on the lattice
arrangement.

2.2 D2Q9 model

In LB method, the solution domain needs to be divided into lattices. At each lattice
node, the factitious particles (distribution function) reside. Some of these particles stream
along specified directions to the neighboring nodes. The number of directions of particle
movements depends on the lattice arrangement. In this study, the two-dimensional, nine
velocity D2Q9 lattice model is used. In this model, the number of velocity vectors in each
lattice node is equal to 8 and one stationary particle also is considered in each node with
zero velocity (see Fig. 1).

Figure 1: Lattice Arrangement of the D2Q9 Model.
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These velocity vectors, ci =(cix,ciy), can be written as

ci =











(0,0), i=0,

(cos[(i−1)π/2],sin[(i−1)π/2])c, i=1,2,3,4,√
2(cos[(i−5)π/2+π/4],cos[(i−5)π/2+π/4])c, i=5,6,7,8.

(2.8)

For the D2Q9 model, the lattice weight parameters wi are as [19],

wi=











4/9, i=0,

1/9, i=1,2,3,4,

1/36, i=5,6,7,8.

(2.9)

For low Mach number (Ma≪1) or low density fluctuation (∆ρ/ρ≪1) flows, it is possible
to recover the macroscopic incompressible NS equations from the LB equation using the
Chapman-Enskog expansion and choosing kinematic viscosity ν as [16]

ν=
1

6β
(2−β)

∆x2

∆t
. (2.10)

Also, the macroscopic properties such as density ρ and velocity vector u = [ux,uy]T in
lattice units can be evaluated by taking statistical moments of the distribution function,
leading to the following equations:

ρ=
8

∑
i=0

fi(x,t), u=
1

ρ

8

∑
i=0

ci fi(x,t). (2.11)

There are three notable points about LB method. First, although the standard LB method
is used for simulation of incompressible flows, in this method, density is not constant
(∆ρ ≈O(Ma2)). Second, in the standard LB method, pressure p ≡ p(x,t) is related to
density using the ideal gas equation of state:

p= c2
s ρ, (2.12)

where the lattice speed of sound cs is c/
√

3 for the D2Q9 model [21]. And finally, to
facilitate the implementation of LB method, it is common to chose time step ∆t and lattice
spacing ∆x equal to 1 (c=1).

3 Optimization problem statement

On the whole, an aerodynamic optimization problem in an unsteady flow based on the
LB method can be expressed in the following general form:

MinI
F∈R9,κ∈Rn

(F,κ) s.t. Ht(F,κ)=0, t∈ [0,t f ]. (3.1)
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Where F=[ fi(x,t)]Ti=0,···,8 is the distribution functions vector, κ is the n-dimensional design
variables vector and Ht is the LB equation as a flow field governing equation. I is the
value of cost function at the time interval of [0,t f ] that can be written in the general form
as

I(F,κ)=
∫ t f

0
It(F,κ)dt=

∫ t f

0

∫

D
Itx(F,κ)dDdt, (3.2)

where It is the cost function at time t and D is the flow field domain on which the cost
function is integrated. By utilizing numerical integration rule and supposing that ∆x=
∆t=1, the cost function (3.2) can be evaluated as

I(F,κ)=
t f

∑
t=0

It(F,κ)=
t f

∑
t=0

∑
x

Itx(F,κ), (3.3)

where ∑x is performed over all the lattice points of D. The design problem is now treated
as a control problem wherein the design variables vector depicts the control function,
chosen to minimize I exposed to the constraint of satisfaction of the LB equation at any
time, any point of the lattice space and any direction of the lattice lines.

3.1 Cost function

The choice of cost function and design variables is one of the most crucial steps in any
optimization problem. In fact, the success of an optimization method strongly depends
on both the choice of the design variables and the cost function.

The inverse problem is employed, in this study, to validate the adjoint equation, the
gradient vector acquired from the LB method and the applied optimization algorithm.
Therefore, the target flow field is selected using the target design variables. Subsequently,
assuming unknown values for the target design variables, it is favorable to find the op-
timal design variables that lead to the target flow field. Hence, the local cost function in
flow field D at time t can be described as

Itx=
1

2
|w−wdesired|2, (3.4)

where w≡w(x,t)=[ρ,ux,uy]T∈R3 is the flow field variables vector and wdesired is the target
flow field variables vector.

3.2 Design variables

In this investigation, the external body forces vector applied to the fluid is regarded as
the design variables vector. Thus, the expression

Vi= c2
s (ci ·κ) (3.5)
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is added to the collision term (2.2). In the above equation, κ = [κx,κy]T ∈ R2 is the 2-D
body forces (design variables) vector and the dot (·) denotes the scalar product. It can be
shown that the existence of the force term (3.5) in the LB equation results in the recovery
of the NS equations in the presence of the body force κ [19].

4 Continuous adjoint approach based on lattice Boltzmann

method

Up to now, only Krause et al. [18] have applied the continuous adjoint sensitivities in
an LB method framework, focusing on the identification of optimal parameters using an
adjoint LB formulation. It is to be noted that, in the adjoint approach, generally, the ex-
pression for the extracted adjoint equation depends on the definition of the cost function
and the design variables vector and therefore on the details of a considered problem.
Consequently, according to the intricacy of the extraction process of the continuous ad-
joint equation reported in [18], if one wants to solve an optimization problem by applying
this adjoint based strategy, he/she needs to derive again an analytical expression for the
adjoint equation with high implementation cost. In this section, we derive mathemat-
ically the continuous adjoint equation and the cost function gradient vector based on
the LB equation using the similar procedure reported by Jameson [4]. The proposed ap-
proach can be performed similarly for any optimization problem by the corresponding
cost function and design variables vector but with a lower implementation cost.

4.1 Derivation of continuous adjoint equation based on lattice Boltzmann
method

As previously stated, in the continuous adjoint method, continuous cost function and
continuous governing flow field equations are used to derive the continuous adjoint
equation and the gradient vector of the cost function. Consider the general continuous
form of the cost function (3.2). Since the distribution function fi depends on the design
variables vector κ implicitly, a variation δκ in the design variables vector causes a vari-
ation δ fi in the distribution function and consequently, accordingly, a variation δI in the
cost function

δI=
∫ t f

0

∫

D

( 8

∑
i=0

∂Itx

∂ fi
δ fi+

∂Itx

∂κ

T

δκ
)

dDdt. (4.1)

Now, consider the continuous LB equation in time and space (2.4) with the inserted force
term (3.5),

∂ fi

∂t
+ci ·∇ fi =

1

λ
( fi

eq− fi)+c2
s (ci ·κ). (4.2)
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This equation is the constraint of the optimization problem (3.1) and must be satisfied at
any time, any point of the lattice space, and any direction of the lattice lines. As a con-
sequence, a variation in the distribution function fi because of a variation in the design
variables κ is such that the Eq. (4.2) will be always satisfied. So, we have

∂

∂t
δ fi+ci ·∇δ fi−

1

λ

( 8

∑
j=0

∂ f
eq
i

∂ f j
δ f j−δ fi

)

−c2
s (ci ·δκ)=0. (4.3)

Now, multiplying the Lagrange multiplier (adjoint variable) ψi≡ψi(x,t) to Eq. (4.3), then
summing the products over the entire lattice line directions and ultimately integrating
over time and space, we get

∫ t f

0

∫

D

8

∑
i=0

ψi
∂

∂t
δ fidDdt+

∫ t f

0

∫

D

8

∑
i=0

ψi(ci ·∇δ fi)dDdt

− 1

λ

∫ t f

0

∫

D

8

∑
i=0

[ 8

∑
j=0

ψi
∂ f

eq
i

∂ f j
δ f j−ψiδ fi

]

dDdt−c2
s

∫ t f

0

∫

D

8

∑
i=0

ψi(ci ·δκ)dDdt=0. (4.4)

Assuming that ψi is differentiable, the first term in the above equation can be rewritten
via integration by parts, as follows:

∫ t f

0

∫

D

8

∑
i=0

ψi
∂

∂t
δ fidDdt=

8

∑
i=0

∫

D

(

[ψiδ fi]
t f

0 −
∫ t f

0

∂ψi

∂t
δ fidt

)

dD. (4.5)

Likewise, for the second term in Eq. (4.4) via integration by parts and utilizing the vector
identities, we have

∫ t f

0

∫

D

8

∑
i=0

ψi(ci ·∇δ fi)dDdt=
8

∑
i=0

∫ t f

0

(

∫

B
ψi(ci ·n)δ fidB−

∫

D
∇·(ψici)δ fidD

)

dt

=
8

∑
i=0

∫ t f

0

(

∫

B
ψi(ci ·n)δ fidB−

∫

D
[ψi(∇·ci)+ci ·∇ψi]δ fidD

)

dt

=
8

∑
i=0

∫ t f

0

(

∫

B
ψi(ci ·n)δ fidB−

∫

D
(ci ·∇ψi)δ fidD

)

dt, (4.6)

where n is the unit vector perpendicular to the boundary B of the flow field domain D.
It should be noted that according to Eq. (2.8), the velocity vector, ci is constant at any
direction of the lattice lines. Therefore, for any time and any point of the lattice space,
∇·ci is equal to zero at any direction of the lattice lines. Now, substituting Eqs. (4.5) and
(4.6) into (4.4) and collecting together all the terms associated with the variation of the
distribution function δ fi and also gathering all the terms included to the variation of the
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design variables vector δκ and rearranging them, we have

8

∑
i=0

∫ t f

0

∫

D

(

− ∂ψi

∂t
−ci ·∇ψi−

1

λ

( 8

∑
j=0

ψj

∂ f
eq
j

∂ fi
−ψi

))

δ fidDdt+
8

∑
i=0

∫ t f

0

∫

B
ψi(ci ·n)δ fidBdt

+
8

∑
i=0

∫

D
[ψiδ fi]

t f

0 dD−c2
s

8

∑
i=0

∫ t f

0

∫

D
ψi(ci ·δκ)dDdt=0. (4.7)

As the left hand expression equals zero, it can be subtracted from the variation (4.1) with
no change in the result to give

δI=
∫ t f

0

∫

D

( 8

∑
i=0

∂Itx

∂ fi
δ fi+

∂Itx

∂κ

T

δκ
)

dDdt

+
8

∑
i=0

∫ t f

0

∫

D

(∂ψi

∂t
+ci ·∇ψi+

1

λ

( 8

∑
j=0

ψj

∂ f
eq
j

∂ fi
−ψi

))

δ fidDdt

−
8

∑
i=0

∫ t f

0

∫

B
ψi(ci ·n)δ fidBdt−

8

∑
i=0

∫

D
[ψiδ fi]

t f

0 dD+c2
s

8

∑
i=0

∫ t f

0

∫

D
ψi(ci ·δκ)dDdt. (4.8)

Collecting together all the terms associated with the variation of the distribution function
δ fi and also gathering all the terms included to the variation of the design variables vector
δκ and rearranging, we have

δI=
[ 8

∑
i=0

∫ t f

0

∫

D

(∂ψi

∂t
+ci ·∇ψi+

1

λ

( 8

∑
j=0

ψj

∂ f
eq
j

∂ fi
−ψi

)

+
∂Itx

∂ fi

)

δ fidDdt
]

I1

−
[ 8

∑
i=0

∫ t f

0

∫

B
ψi(ci ·n)δ fidBdt

]

I2

−
[ 8

∑
i=0

∫

D
[ψiδ fi]

t f

0 dD
]

I3

+
[ 8

∑
i=0

∫ t f

0

∫

D

(∂Itx

∂κ

T

+c2
s ψic

T
i

)

δκdDdt
]

I I

. (4.9)

Here, subscripts I and I I are exploited to indicate the contributions of δ fi from the change
associated directly with δκ in the variation of the cost function δI. Now, the adjoint vari-
able ψi is chosen such that changes of the cost function are independent from changes
of the flow field variables. As a result, by setting the term I1 equal to zero in the above
equation, the continuous adjoint equation in time and space is attained

−∂ψi

∂t
−ci ·∇ψi =

1

λ

( 8

∑
j=0

ψj

∂ f
eq
j

∂ fi
−ψi

)

+
∂Itx

∂ fi
. (4.10)

Furthermore, by setting the term I2 equal to zero, the adjoint boundary condition

ψi(ci ·n)=0. (4.11)
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And, by setting the term I3 equal to zero and considering constant initial conditions of
the flow field solution in the optimization process, the adjoint terminal condition

ψi(t f )=0 (4.12)

are obtained. The design variable ψi is achieved by solving the adjoint equation (4.10)
along with the adjoint boundary condition (4.11) and the adjoint terminal condition (4.12);
so that the variation of the cost function δI is independent from the variation of the dis-
tribution function δ fi. Thus, eliminating the terms I1 to I3, we have

δI=GTδκ, (4.13)

where

GT =∇κ I=
8

∑
i=0

∫ t f

0

∫

D

(∂Itx

∂κ

T

+c2
s ψic

T
i

)

dDdt. (4.14)

4.2 Interpretation of the continuous adjoint equation in lattice space

Consider the continuous adjoint equation (4.10). It can be seen that its structure is quite
similar to the LB equation. Accordingly, Eq. (4.10) is called the continuous adjoint LB
equation. Meanwhile, the adjoint variable ψi corresponding to the distribution function
fi can be referred as the adjoint distribution function along i direction. The left hand side
term actually displays the adjoint streaming process. In addition, the adjoint collision op-
erator that illustrates the rate of change of the adjoint distribution function in the adjoint
collision process can be defined as

σi =ω(ψ
eq
i −ψi)=

1

λ
(ψ

eq
i −ψi), (4.15)

where

ψ
eq
i =

8

∑
j=0

ψj

∂ f
eq
j

∂ fi
(4.16)

is called the adjoint equilibrium distribution function. Finally, the adjoint LB equation
(4.10) may be rewritten as

−∂ψi

∂t
−ci ·∇ψi =

1

λ
(ψ

eq
i −ψi)+

∧
Vi, (4.17)

where
∧
Vi=∂Itx/∂ fi.
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Collision Step Streaming Step

Adjoint Collision Step Adjoint Streaming Step

Figure 2: Streaming Steps of the LB and the Adjoint LB Equations.

Unlike the LB equation that needs the initial conditions to be solved, the adjoint LB
equation possesses the terminal condition (4.12). Therefore, Eq. (4.17) can be discretized
in space and time as follows:

−ψi(x,t)−ψi(x,t−∆t)

∆t
−ci ·

ψi(x,t−∆t)−ψi(x−∆x,t−∆t)

∆x

=
1

λ
[ψ

eq
i (x,t)−ψi(x,t)]+

∧
Vi(x,t). (4.18)

Since ci =∆x/∆t, the above equation can be simplified as

ψi(x−ci∆t,t−∆t)=(1−β)ψi(x,t)+βψ
eq
i (x,t)+

∧
Vi(x,t). (4.19)

This equation is almost similar to the discretized LB equation (2.6) with the inserted ex-
ternal body force term (3.5). The main difference of these equations is in their streaming
steps. In the LB equation, the distribution function fi in a lattice node streams to the adja-
cent node along i lattice line with velocity ci as forward in time. Conversely, in the adjoint
LB equation, the adjoint distribution function ψi in a lattice node streams to the adjacent
node along i lattice line with velocity −ci as backward in time. Fig. 2 demonstrates the
difference between the streaming steps of the LB and the adjoint LB equations.

Comparing the presented procedure with that reported in [18], it can be found that
the proposed model is more straightforward and has lower complexity. In addition, un-
like, the previous model, we could achieved to the continuous adjoint LB equation and
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new adjoint concepts in lattice space (e.g., the adjoint equilibrium distribution function
which only depends on the microscopic flow and adjoint properties) without involving
in details of the LB method. Other advantage of the present model is that it can also be
used similarly to extract the discrete adjoint equation (for more details, see Section 5).

4.3 Analytical evaluation of the adjoint distribution function

To evaluate the adjoint distribution function ψi using the adjoint LB equation (4.19), first,

the adjoint equilibrium distribution function ψ
eq
i and the source term

∧
Vi should be eval-

uated. According to Eq. (4.16), to determine the equilibrium distribution function, the
derivative of the distribution function is required. For the equilibrium distribution func-
tion (2.7), using the chain rule, we have

∂ f
eq
j

∂ fi
=

∂ f
eq
j

∂ρ

∂ρ

∂ fi
+

∂ f
eq
j

∂ux

∂ux

∂ fi
+

∂ f
eq
j

∂uy

∂uy

∂ fi
. (4.20)

Partial derivatives of the equilibrium distribution function with respect to the macro-
scopic flow field variables can be obtained as

∂ f
eq
j

∂ρ
=wjΘj,

∂ f
eq
j

∂ux
=wjρ

∂Θj

∂ux
,

∂ f
eq
j

∂uy
=wjρ

∂Θj

∂uy
. (4.21)

With assuming c=1,

∂Θj

∂ux
=−3ux+































0, j=0,2,4,

3+9ux, j=1,

(−3)+9ux, j=3,

3+9[ux−(−1)juy], j=5,8,

(−3)+9[ux−(−1)juy], j=6,7,

(4.22a)

∂Θj

∂uy
=−3uy+































0, j=0,1,3,

3+9uy, j=2,

(−3)+9uy, j=4,

3+9[uy−(−1)j
ux], j=5,6,

(−3)+9[uy−(−1)jux], j=7,8.

(4.22b)

Also, the partial derivatives of the macroscopic flow field variables with respect to the
distribution function using the conservative equations (2.11) can be evaluated as

∂ρ

∂ fi
=1,

∂ux

∂ fi
=







0, i=0,2,4,
1, i=1,5,8,
−1, i=3,6,7,

∂uy

∂ fi
=







0, i=0,1,3,
1, i=2,5,6,
−1, i=4,7,8.

(4.23)



584 M. H. Hekmat and M. Mirzaei / Adv. Appl. Math. Mech., 6 (2014), pp. 570-589

Finally, the partial derivatives of the cost function with respect to the distribution func-
tion with considering the cost function (3.4) and using the chain rule can be obtained
as,

∂Itx

∂ fi
=

∂Itx

∂ρ

∂ρ

∂ fi
+

∂Itx

∂ux

∂ux

∂ fi
+

∂Itx

∂uy

∂uy

∂ fi

=(ρ−ρdesired)
∂ρ

∂ fi
+(ux−ux

desired)
∂ux

∂ fi
+(uy−u

y
desired)

∂uy

∂ fi
. (4.24)

5 Discrete adjoint approach based on lattice Boltzmann method

In this section, we derive mathematically the discrete adjoint equation and the cost func-
tion gradient vector based on the LB equation using the similar procedure reported by
Nadarajah [8].

As previously stated, in the discrete adjoint method, discrete cost function and dis-
crete governing flow field equations are used to derive the discrete adjoint equation and
the gradient vector of the cost function. Consider the general discrete form of the cost
function (3.3) and the discrete LB equation (2.6) with the inserted force term (3.5):

fi,t =Φi,t( fi,t−1,κ), t=1,··· ,t f , (5.1)

where

Φi,t =(1−β) fi,t−1+β f
eq
i,t−1+c2

s (ci ·κ), (5.2)

and fi,t≡ fi(x,t). Since the distribution function fi,t depends on the design variables vector
κ implicitly ( fi,t = fi,t(κ)), a variation δκ in the design variables vector causes a variation
fi,t in the distribution function and consequently, these variations lead to a variation δI
in the cost function (3.3):

δI=
t f

∑
t=0

∑
x

δItx=
t f

∑
t=1

∑
x

[ 8

∑
i=0

∂Itx

∂ fi,t
δ fi,t+

∂Itx

∂κ

T

δκ
]

. (5.3)

It should be noted that with considering constant value for initial condition of the LB
equation, in the optimization process, variation of the distribution function and the de-
sign variables at t=0 are zero.

Also, the variation in the distribution functions due to the variation in the design
variables is such that the LB equation (5.1) will be always satisfied. Hence, we have

δ fi,t−δΦi,t( fi,t−1,κ)=δ fi,t−
8

∑
j=0

∂Φi,t

∂ f j,t−1
δ f j,t−1−

∂Φi,t

∂κ

T

δκ=0, t=1,··· ,t f . (5.4)
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Now, multiplying the adjoint variable ψi,t≡ψi(x,t) to (5.4) and summing the product over
all of the lattice line directions and finally summing over time and space and considering
δ fi,t=0 and δκ=0 at t=0, we get

t f

∑
t=1

∑
x

8

∑
i=0

ψi,t

(

δ fi,t−
∂Φi,t

∂κ

T

δκ
)

−
t f

∑
t=2

∑
x

8

∑
i=0

8

∑
j=0

ψi,t
∂Φi,t

∂ f j,t−1
δ f j,t−1=0. (5.5)

Since the left hand side term is equal to zero, it can be subtracted from the variation (5.3)
with no change in the result to give

δI=
t f

∑
t=1

∑
x

[ 8

∑
i=0

∂Itx

∂ fi,t
δ fi,t+

∂Itx

∂κ

T

δκ
]

−
t f

∑
t=1

∑
x

8

∑
i=0

ψi,t

(

δ fi,t−
∂Φi,t

∂κ

T

δκ
)

+
t f

∑
t=2

∑
x

8

∑
i=0

8

∑
j=0

ψi,t
∂Φi,t

∂ f j,t−1
δ f j,t−1

=∑
x

[ 8

∑
i=0

{

t f

∑
t=1

( ∂Itx

∂ fi,t
−ψi,t

)

δ fi,t+
t f

∑
t=2

8

∑
j=0

ψi,t
∂Φi,t

∂ f j,t−1
δ f j,t−1

}

+
t f

∑
t=1

(∂Itx

∂κ

T

+
8

∑
i=0

ψi,t
∂Φi,t

∂κ

T)

δκ
]

. (5.6)

The terms inside { } can be rewritten as

t f

∑
t=1

( ∂Itx

∂ fi,t
−ψi,t

)

δ fi,t+
t f

∑
t=2

8

∑
j=0

ψi,t
∂Φi,t

∂ f j,t−1
δ f j,t−1

=
t f

∑
t=1

( ∂Itx

∂ fi,t
−ψi,t

)

δ fi,t+
t f −1

∑
t=1

8

∑
j=0

ψi,t+1
∂Φi,t+1

∂ f j,t
δ f j,t

=
( ∂It f x

∂ fi,t f

−ψi,t f

)

δ fi,t f
+

t f −1

∑
t=1

[( ∂Itx

∂ fi,t
−ψi,t

)

δ fi,t+
8

∑
j=0

ψi,t+1
∂Φi,t+1

∂ f j,t
δ f j,t

]

. (5.7)

Substituting Eq. (5.7) into (5.6), we have

δI=∑
x

[ 8

∑
i=0

{( ∂It f x

∂ fi,t f

−ψi,t f

)

δ fi,t f
+

t f −1

∑
t=1

[( ∂Itx

∂ fi,t
−ψi,t

)

δ fi,t+
8

∑
j=0

ψi,t+1
∂Φi,t+1

∂ f j,t
δ f j,t

]}

+
t f

∑
t=1

(∂Itx

∂κ

T

+
8

∑
i=0

ψi,t
∂Φi,t

∂κ

T)

δκ
]

. (5.8)

The adjoint variable ψi,t is chosen such that the changes of the cost function are indepen-
dent from the changes of the distribution function fi,t. Therefore, by setting the terms in
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the first line of the above equation equal to zero, the terminal adjoint condition and the
discrete adjoint equation are obtained

ψi,t f
=

∂It f x

∂ fi,t f

, ψi,t=
∂Itx

∂ fi,t
+

8

∑
j=0

ψj,t+1

∂Φj,t+1

∂ fi,t
, t= t f −1,··· ,1. (5.9)

Thus, eliminating the terms including δ fi,t in Eq. (5.8), we have

δI=∑
x

t f

∑
t=1

[∂Itx

∂κ

T

+
8

∑
i=0

ψi,t
∂Φi,t

∂κ

T]

δκ. (5.10)

Finally, the gradient vector G will be achieved by

G=∇κ I=∑
x

t f

∑
t=1

[∂Itx

∂κ
+

8

∑
i=0

ψi,t
∂Φi,t

∂κ

]

. (5.11)

Similarly, the adjoint distribution functions as stated for the continuous adjoint method
can be evaluated.

It is noted that, according to Eq. (5.9), the proposed discrete procedure is not restricted
to flow fields and can be implemented for both steady and unsteady flows in contrary to
the provided model in [16, 17].

6 Conclusions and future works

In this research, for the first time, both continuous and discrete adjoint equations were de-
rived based on the LB method for unsteady aerodynamic optimization problems. Firstly,
the continuous adjoint equation was derived with complete details by means of the con-
tinuous LB equation in time and in space. As it was expected, the continuous adjoint
LB equation was rather similar to the continuous LB equation. Therefore, the equation
possesses all inherent aspects of the original LB equation (e.g., simplicity, parallelizabil-
ity, etc.) and it is anticipated that the computational cost for solving the equation will
be nearly equal to that of the LB equation. The discrete adjoint LB equation was also
derived from the discrete LB equation in space and time. Comparison of the derivation
trend of this equation with the derivation of the discrete adjoint equation from the NS
equations shows that the present equation includes less complexity and so its implemen-
tation cost is lower. Finally, it can be said that the simplicity of the LB equation as an
alternative for the conventional flow field equations can facilitate the derivation process
of the continuous adjoint equation and specifically the discrete adjoint equation. Besides,
all the advantages of the LB equation over the NS equations are expected for the adjoint
LB equation compared to the adjoint equation extracted from the NS equations. These
benefits can be useful in optimization problems.
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In part II of this investigation, the results of the implementation of the method for in-
verse problem of a fluid flow will be reported and the accuracy of cost function gradients
will be evaluated relative to the results of the finite difference approach. Moreover, since
different representations of the forcing term have also been proposed (e.g., in [22]), the
effect of various forcing term selections on the efficiency and computational cost of the
presented optimization approach will be discussed, in more details.

Nomenclature

c Particle velocity vector
D Flow field domain
f Density distribution function
F Density distribution function vector
G Gradient vector of cost function with respect to design variables
H Flow field governing equations
I Cost function in optimization problem
n Dimension of design variables vector
P Pressure
t Time
u Velocity vector or component in physical space
w Flow field variables vector in physical space/Lattice weight parameters
x Location vector in physical space
Ma Mach number
ρ Density
β Inverse of dimensionless relaxation time
λ Relaxation time
ψ Adjoint distribution function
∂ Partial derivative operator
δ Exact differential operator
∇ Napla vector operator
ω Collision frequency
κ Design variables vector
Ω Collision operator
σ Adjoint collision operator
ν Kinematic viscosity
f Terminal time index
i Direction in LB method
T Transpose
t Time index
s Sound speed index
x Variable of horizontal direction in physical space/Location index
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y Variable of vertical direction in physical space/Location index
I Contribution due to variation of the flow field variables
I I Contribution due to variation of the design variables
eq Equilibrium sate index
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