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HIGH-ORDER ENERGY STABLE NUMERICAL SCHEMES FOR
A NONLINEAR VARIATIONAL WAVE EQUATION MODELING

NEMATIC LIQUID CRYSTALS IN TWO DIMENSIONS

PEDER AURSAND AND UJJWAL KOLEY

Abstract. We consider a nonlinear variational wave equation that models the dynamics of the
director field in nematic liquid crystals with high molecular rotational inertia. Being derived from
an energy principle, energy stability is an intrinsic property of solutions to this model. For the two-
dimensional case, we design numerical schemes based on the discontinuous Galerkin framework
that either conserve or dissipate a discrete version of the energy. Extensive numerical experiments
are performed verifying the scheme’s energy stability, order of convergence and computational
efficiency. The numerical solutions are compared to those of a simpler first-order Hamiltonian
scheme. We provide numerical evidence that solutions of the 2D variational wave equation loose
regularity in finite time. After that occurs, dissipative and conservative schemes appear to converge
to different solutions.

Key words. Nonlinear variational wave equation, energy preserving scheme, energy stable
scheme, discontinuous Galerkin method, higher order scheme.

1. Introduction

1.1. The Equation. Liquid crystals (LCs) are mesophases, i.e., intermediate states
of matter between the liquid and the crystal phase. They possess some of the prop-
erties of liquids (e.g. formation, fluidity) as well as some crystalline properties (e.g.
electrical, magnetic, etc.) normally associated with solids. The nematic phase is
the simplest of the liquid crystal mesophases, and is close to the liquid phase. It is
characterized by long-range orientational order, i.e., the long axes of the molecules
tend to align along a preferred direction, which can be considered invariant under
rotation by an angle of π. The state of a nematic liquid crystals is usually given by
two linearly independent vector fields; one describing the fluid flow and the other
describing the dynamics of the preferred axis, which is defined by a vector n giving
its local orientation. Under the assumption of constant degree of orientation, the
magnitude of the director field n is usually taken to be unity. In the present work
we focus exclusively on the dynamics of the director field (independently of any
coupling with the fluid flow), a map

n : R3 × [0,∞)→ S2

from the Euclidean space to the unit ball.
We consider the elastic dynamics of the liquid crystal director field in the inertia-

dominated case (zero viscosity). Associated with the director field n, the classical
Oseen-Frank elastic energy density W is given by

(1) W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)
2

+ γ (n · (∇× n))
2
.

The constants α, β and γ are elastic material constants of the liquid crystal, and
are associated with the three basic types of deformations of the medium; bend,
splay and twist; respectively. Each of these constants must be positive in order

Received by the editors on April 9, 2015, and accepted on July 26, 2016.
1991 Mathematics Subject Classification. Primary 65M99; Secondary 65M60, 35L60.

20



RKDG SCHEMES FOR A VARIATIONAL WAVE EQUATION 21

to guarantee the existence of the minimum configuration of the energy W in the
undistorted nematic configuration.

The one constant approximation (α = β = γ) often provides a valuable tool to
reach a qualitative insight into distortions of nematic configurations. Observe that,
in this case the potential energy density (1) reduces to the Dirichlet energy

W(n,∇n) = α |∇n|2 .

This corresponds to the potential energy density used in harmonic maps into the
sphere S2. The stability of the general Oseen–Frank potential energy equation, de-
rived from the potential (1) using a variational principle, is studied by Ericksen and
Kinderlehrer [8]. For the parabolic flow associated to (1), see [3, 7] and references
therein.

In the regime in which inertial effects dominate viscosity, the dynamics of the
director n is governed by the least action principle

(2) J(n) =

∫∫ (
n2
t −W(n,∇n)

)
dx dt, n · n = 1.

Standard calculations reveal that the Euler-Lagrange equation associated to J is
given by

(3) ntt = div (W∇n(n,∇n))−Wn(n,∇n),

and is termed the variational wave equation. Introducing the energy and energy
density

E(t) =

∫ (
n2
t +W(n,∇n)

)
dx, E(t, x) = n2

t +W(n,∇n),

it is easy to check the identities

E ′ = 0, Et = div (W∇n(n,∇n)nt) ,

in light of (3). Given the formidable difficulties in the mathematical analysis of
(3), it is customary to investigate the particular case of a planar director field
configuration.

The physical implications of considering the inertia-dominated regime warrants a
comment. Indeed, in many experimental situations the inertial forces acting on the
director are orders of magnitude smaller than the dissipative. For this reason, the
inertial term is often neglected in modelling [9, 25, 26]. It was however noted early
by Leslie [21] that inertial forces might be significant in cases where the director
field is subjected to large accelerations. In general, inertia will be more significant
in the small time-scale dynamics of the director. For this reason, their inclusion
can be warranted in, e.g., liquid crystal acoustics [19], mechanical vibrations [27]
and in cases with and external oscillating magnetic field [28].

1.1.1. One-dimensional planar waves. Planar deformations are central in the
mathematical study of models for nematic liquid crystals. A simple such model can
be derived by assuming that the deformation depends on a single space variable x
and that the director field n in confined to the x-y plane. In this case we can write
the director as

n = (cosu(x, t), sinu(x, t), 0).
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Geometrically, the molecules are lined up vertically on the x-y plane, and at each
column (located at x) u(x, t) measures the angle of the director field to the x-
direction. With the above simplifications, the variational principle (2) reduces to

(4)


utt − c(u) (c(u)ux)x = 0, (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,
ut(x, 0) = u1(x), x ∈ R,

where ΠT = R× [0, T ] with fixed T > 0 , and the wave speed c(u) given by

(5) c2(u) = α cos2 u+ β sin2 u.

Initially considered by Hunter and Saxton [17, 23], (4) is the simplest form of the
nonlinear variational wave equation (3) studied in the literature.

1.1.2. Two-dimensional planar waves. Planar deformations can also be stud-
ied in two dimensions. Specifically, if we assume that the deformation depends on
two space variables x, y, the director can be written in the form

n = (cosu(x, y, t), sinu(x, y, t), 0)

with u being the angle to the x-z plane. The corresponding variational wave equa-
tion is given by
(6)
utt − c(u) (c(u)ux)x − b(u) (b(u)uy)y − a

′(u)uxuy − 2a(u)uxy = 0, (x, y, t) ∈ QT ,
u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

ut(x, y, 0) = u1(x, y), (x, y) ∈ R2,

where QT = R2× [0, T ] with T > 0 fixed, u : QT → R is the unknown function and
a, b, c are given by

c2(u) = α cos2 u+ β sin2 u,

b2(u) = α sin2 u+ β cos2 u,

a(u) =
α− β

2
sin(2u).

In this picture, c(u) is the wave speed in the x-direction and b(u) is the wave speed
in the y-direction.

For smooth solutions of (6) it is straightforward to verify that the energy
(7)

E(t) =

∫∫
R2

(
u2
t + c2(u)u2

x + b2(u)u2
y + 2a(u)uxuy

)
dx dy

=

∫∫
R2

u2
t + (α(cos(u)ux + sin(u)uy))

2
+ (β(sin(u)ux − cos(u)uy))

2
dx dy

is conserved, i.e., we have

(8)
dE(t)

dt
≡ 0.

Moreover, for all t ∈ [0, T ] we have∫∫
R2

(
u2
t + min{α, β}(u2

x + u2
y)
)
dx dy ≤ E(t)

≤
∫∫

R2

(
u2
t + max{α, β}(u2

x + u2
y)
)
dx dy.
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In particular, it follows that E(t) ≥ 0 for all t ∈ [0, T ]. To see this, first we consider
α ≥ β (for α ≤ β, we argue in the same way). Then

c2(u)u2
x + b2(u)u2

y + 2a(u)uxuy

=
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y

+ 2(α− β) sin(u) cos(u)uxuy

≤
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y

+ 2(α− β) |sin(u) cos(u)uxuy|
=α

(
cos2(u)u2

x + sin2(u)u2
y + 2 |sin(u) cos(u)uxuy|

)
+ β

(
sin2(u)u2

x + cos2(u)u2
y − 2 |sin(u) cos(u)uxuy|

)
=α (|cos(u)ux|+ |sin(u)uy|)2

+ β (|sin(u)ux| − |cos(u)uy|)2

≤α
[

(|cos(u)ux|+ |sin(u)uy|)2
+ (|sin(u)ux| − |cos(u)uy|)2

]
=α(u2

x + u2
y),

and

c2(u)u2
x + b2(u)u2

y + 2a(u)uxuy

=
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y

+ 2(α− β) sin(u) cos(u)uxuy

≥
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y

− 2(α− β) |sin(u) cos(u)uxuy|
=α

(
cos2(u)u2

x + sin2(u)u2
y − 2 |sin(u) cos(u)uxuy|

)
+ β

(
sin2(u)u2

x + cos2(u)u2
y + 2 |sin(u) cos(u)uxuy|

)
=α (|cos(u)ux| − |sin(u)uy|)2

+ β (|sin(u)ux|+ |cos(u)uy|)2

≥β
[

(|cos(u)ux| − |sin(u)uy|)2
+ (|sin(u)ux|+ |cos(u)uy|)2

]
= β(u2

x + u2
y).

1.2. Mathematical Difficulties. There exists a fairly satisfactory well posed-
ness theory for the one dimensional equation (4). However, despite its apparent
simplicity, the mathematical analysis of (4) is complicated. Independently of the
smoothness of the initial data, due to the nonlinear nature of the equation, sin-
gularities may form in the solution [10–12]. Therefore, solutions of (4) should be
interpreted in the weak sense:

Definition 1.1. Set ΠT = R× (0, T ). A function

u(t, x) ∈ L∞
(
[0, T ];W 1,p(R)

)
∩ C(ΠT ), ut ∈ L∞ ([0, T ];Lp(R)) ,

for all p ∈ [1, 3 + q], where q is some positive constant, is a weak solution of the
initial value problem (4) if it satisfies:
(D.1) For all test functions ϕ ∈ D(R× [0, T ))

(9)
∫∫

ΠT

(
utϕt − c2(u)uxϕx − c(u)c′(u)(ux)2ϕ

)
dx dt = 0.

(D.2) u(·, t)→ u0 in C
(
[0, T ];L2(R)

)
as t→ 0+.

(D.3) ut(·, t)→ u1 as a distribution in ΠT when t→ 0+.
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In recent years, there has been an increased interest to understand the different
classes of weak solutions (conservative and dissipative) of the Cauchy problem (4),
under the restrictive assumption on the wave speed c (positivity of the derivative of
c). The literature herein is substantial, and we will here only give a non-exhaustive
overview. Within the existing framework, we mention the papers by Zhang and
Zheng [29–34], Bressan and Zheng [4] and Holden and Raynaud [15]. In fact,
taking advantage of Young measure theory, existence of a global weak solution
with initial data u0 ∈ H1(R) and u1 ∈ L2(R) has been proved in [33]. However, the
regularity assumptions on the wave speed c(u) (c(u) is smooth, bounded, positive
with derivative that is non-negative and strictly positive on the initial data u0) in
the analysis of [29–34] precludes consideration of the physical wave speed given by
(5).

A novel approach to the study of (4) was taken by Bressan and Zheng [4].
They have constructed the solutions by introducing new variables related to the
characteristics, leading to a characterization of singularities in the energy density.
The solution u, constructed by the above principle, is locally Lipschitz continuous
and the map t → u(t, ·) is continuously differentiable with values in Lploc(R) for
1 ≤ p < 2.

Drawing preliminary motivation from [4], Holden and Raynaud [15] provides a
rigorous construction of a semigroup of conservative solutions of (4). Since their
construction is based on energy measures as independent variables, the formation of
singularities is somewhat natural and they were able to overcome the non-physical
condition on wave speed (c′(u) > 0). Moreover, their analysis can incorporate
initial data u0, u1 that contain measures.

On the other side, the existence of solutions to two dimensional planar waves (6)
is completely open. Contrary to its one dimensional counterpart, it is not possible
to rewrite (6) as a system of equations in terms of Riemann invariants (for a brief
justification, see Sec 2). Therefore, the same proofs do not apply mutatis mutandis
in the two dimensional case. Having said this, one can of course rewrite (6) as
a first order system using different change of variables (see Sec 2). However, due
to lack of “symmetry” of this formulation, it is hard to establish well posedness of
such equations using this approach. The convergence of numerical schemes (DG
or others) to weak solutions of the 2D equation is also a delicate issue, due to
the nonlinearity associated with the elastic energy. However, in the non-physical
one-constant approximation (α = β) the equation becomes linear and classical
convergence results can be applied.

1.3. Numerical Schemes. Except under very simplifying assumptions, there
does not exist elementary and explicit solutions for (4). Moreover, the existence of
two classes of weak solutions renders the initial value problem ill-posed after the
formation of singularities. Consequently, robust numerical schemes are important
in the study of the variational wave equation. Furthermore, capturing conserva-
tive solutions numerically is indeed a delicate issue since we expect that traditional
finite difference schemes will not yield conservative solutions, due to the intrinsic
numerical diffusion in these schemes.

There is a sparsity of efficient numerical schemes for the 1D equation (4) available
in the literature. We can refer to [11], where the authors present some numerical
examples to illustrate their theory. By the way of the theory of Young’s measure-
valued solutions, Holden et. al. [16] proved convergence of the numerical approx-
imation generated by a semi-discrete finite difference scheme for one-dimensional
equation (4) to the dissipative weak solution of (4), under a restrictive assumption
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on the wave speed (c′(u) > 0). To overcome such non-physical assumptions, Holden
and Raynaud [15] used their analytical construction, as mentioned earlier, to define
a numerical method that can approximate the conservative solution. However, the
main drawback of this method is that it is computationally very expensive as there
is no time marching.

Finally, we mention recent papers [1,20] which deals with finite difference schemes
and discontinuous Galerkin schemes, respectively, for (4). Their main idea was to
rewrite (4) in the form of a first order systems and design numerical schemes for
those systems. The key design principle was either energy conservation or energy
dissipation. In that context, they have presented schemes that either conserve or
dissipate the discrete energy. They also validated the properties of the schemes via
extensive numerical experiments.

Numerical results for the two-dimensional variational wave equation (6) are even
more sparse than for the one-dimensional case. In fact, to the best of the authors’
knowledge, the only available numerical experiments are given in the final section
of the recent paper by Koley et al. [20].

1.4. Scope and Outline of the Paper. The purpose of this paper is to de-
velop efficient high-order schemes for the two-dimensional nonlinear variational
wave equation (6). By using the Discontinuous Galerkin framework we aim to
derive schemes that either conserve or dissipate a discrete version of the energy
inherited from the variational formulation of the problem. The proposed DG for-
mulation is in space, and we use high-order Runge–Kutta schemes to integrate in
the temporal dimension. Since the behavior of solutions to the 2D equation (6) is
largely unknown, these schemes will allow us to begin investigate if crucial proper-
ties of the 1D equation (4) carry over in the two-dimensional case. To the best of
our knowledge, this is the first systematic numerical study of the two-dimensional
variational wave equation (6).

Our approach for constructing high-order schemes is the RK-DG method [6,13],
where the test and trial functions are discontinuous piecewise polynomials. In con-
trast to high order finite-volume schemes, the high order of accuracy is already
built into the finite dimensional spaces and no reconstruction is needed. Exact
or approximate Riemann solvers from finite volume methods are used to compute
the numerical fluxes between elements. For an energy dissipative scheme we will
employ a combination of dissipative fluxes and, in order to control possible spu-
rious oscillations near shocks, shock capturing operators [2, 5, 18]. These methods
have recently been shown to be entropy stable for conservation laws [14]. In con-
trast to for finite volume methods, entropy stability has gained more attention in
finite element methods since one advantage of this method is that the formulation
immediately allows the use of general unstructured grids.

The shock capturing DG schemes in this paper have the following properties:

(1) The schemes are arbitrarily high-order accurate.
(2) The schemes are robust and resolved the solution (including possible sin-

gularities in the angle u) in a stable manner.
(3) The energy conservative scheme preserves the discrete energy at the semi-

discrete level. Using a high-order time stepping method, this property also
holds in the fully discrete case for all orders of accuracy tested.

(4) The energy dissipative scheme dissipates the discrete energy at the semi-
discrete level. Using a high-order time stepping method, this property also
holds in the fully discrete case for all orders of accuracy tested.
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In the current presentation we consider, for simplicity, a Cartesian grid. The
schemes can however be generalized to more general geometries. For such applica-
tions, it might be useful to write (6) in the form

(10) utt − (T (u)∇) (T (u)∇u) = 0

where
T (u) =

( √
α cos(u)

√
α sin(u)

−
√
β sin(u)

√
β cos(u)

)
.

The rest of the paper is organized as follows: In Section 2, we present energy
conservative and energy dissipative schemes for the one-dimensional equation (6).
Section 3 concerns a first-order Hamiltonian (energy preserving) scheme for compar-
ison. Section 4 contains numerical experiments verifying the order of convergence,
energy stability and efficiency of the schemes.

2. Discontinuous Galerkin Schemes in Two-space Dimensions

Drawing primary motivation from the one-dimensional case [1], we aim to design
energy conservative and energy dissipative discontinuous Galerkin schemes of the
two-dimensional version of the nonlinear variational wave equation (6), by rewriting
it as a first-order system. First, we briefly mention why formulation based on
Riemann invariants does not work in two dimensional case.

2.1. The system of equations. We introduce three new independent variables:

p := ut,

v := cos(u)ux + sin(u)uy,

w := sin(u)ux − cos(u)uy.

Then, for smooth solutions, we see that

vt = cos(u)uxt − sin(u)utux + sin(u)uyt + cos(u)utuy

=(cos(u)ut)x − ut(cos(u))x + (sin(u)ut)y − ut(sin(u))y

− ut (sin(u)ux − cos(u)uy) ,

and

wt = sin(u)uxt + cos(u)utux − cos(u)uyt + sin(u)utuy

=(sin(u)ut)x − ut(sin(u))x − (cos(u)ut)y + ut(cos(u))y

+ ut (cos(u)ux + sin(u)uy) .

Moreover, a straightforward calculation using equation (6) reveals that

pt − (α− β)
(
cos(u) sin(u)u2

x − cos2(u)uxuy

+ sin2(u)uxuy − cos(u) sin(u)u2
y

)
=α (cos(u)(cos(u)ux + sin(u)uy))x + α (sin(u)(cos(u)ux + sin(u)uy))y

+ β (sin(u)(sin(u)ux − cos(u)uy))x − β (cos(u)(sin(u)ux − cos(u)uy))y .

Hence, for smooth solutions, equation (6) is equivalent to the following system for
(p, v, w, u),
(11)

pt − α(f(u)v)x − α(g(u)v)y − β(g(u)w)x + β(f(u)w)y − αvw + βvw = 0,

vt − (f(u)p)x + pf(u)x − (g(u)p)y + pg(u)y + pw = 0,

wt − (g(u)p)x + pg(u)x + (f(u)p)y − pf(u)y − pv = 0,

ut = p,
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where f(u) := cos(u), and g(u) := sin(u). Furthermore, the corresponding energy
associated with the system (11) is

(12) E(t) =

∫∫
R2

(
p2 + α v2 + β w2

)
dx dy.

A simple calculation shows that smooth solutions of (11) satisfy the energy identity:
(13)(
p2 + α v2 + β w2

)
t

+ 2 (αp f(u) v + β p g(u)w)x + 2 (αp g(u) v − β p f(u)w)y = 0.

Hence, the fact that the total energy (12) is conserved follows from integrating
the above identity in space and assuming that the functions p, u, v and w decay at
infinity.

2.2. The grid. We begin by introducing some notation needed to define the DG
schemes. Let the domain Ω ⊂ R2 be decomposed as Ω = ∪i,jΩij with Ωij := Ωi×Ωj
where Ωi = [xi−1/2, xi+1/2] and Ωj = [yj−1/2, yj+1/2] for i, j = 1, · · · , N . Moreover,
we denote ∆xi = xi+1/2−xi−1/2 and ∆yj = yj+1/2− yj−1/2. Furthermore, we also
denote xi = (xi−1/2 + xi+1/2)/2 and yj = (yj−1/2 + yj+1/2)/2.

Let u be a grid function and denote u+
i+1/2(y) as the function evaluated at the

right side of the cell interface at xi+1/2 and let u−i+1/2(y) denote the value at the
left side. Similarly, we let u+

j+1/2(x) be the function evaluated at the upper side of
the cell interface at yi+1/2 and let u−j+1/2(x) denote the value at the lower side. We
can then introduce the jump and, respectively, the average of any grid function u
across the interfaces as

ui+1/2(y) :=
u+
i+1/2(y) + u−i+1/2(y)

2
, uj+1/2(x) :=

u+
j+1/2(x) + u−j+1/2(x)

2
,

JuKi+1/2(y) := u+
i+1/2(y)− u−i+1/2(y), JuKj+1/2(x) := u+

j+1/2(x)− u−j+1/2(x).

Moreover, let v be another grid function. Then the following identities are readily
verified:

(14)
JuvKi+1/2 = ui+1/2JvKi+1/2 + JuKi+1/2vi+1/2,

JuvKj+1/2 = uj+1/2JvKj+1/2 + JuKj+1/2vj+1/2

2.3. Variational Formulation. We seek an approximation (p, v, w, u) of (11)
such that for each t ∈ [0, T ], p, v, w, and u belong to finite dimensional space

Xs
h(Ω) =

{
u ∈ L2(Ω) : u|Ωij

polynomial of degree ≤ p
}
.

The variational form is derived by multiplying the strong form (11) with test
functions φ, ν, ψ, ζ ∈ Xs

h(Ω) and integrating over each element separately. After
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using integration-by-parts, we obtain

N∑
i,j=1

∫
Ωij

pt φ dx dy + α

N∑
i,j=1

∫
Ωij

f(u) v φx dxdy

− α
N∑

i,j=1

∫
Ωj

(fv)i+1/2 φ
−
i+1/2 dy + α

N∑
i,j=1

∫
Ωj

(fv)i−1/2 φ
+
i−1/2 dy

+ α

N∑
i,j=1

∫
Ωij

g(u) v φy dxdy − α
N∑

i,j=1

∫
Ωi

(gv)j+1/2 φ
−
j+1/2 dx

+ α

N∑
i,j=1

∫
Ωi

(gv)j−1/2 φ
+
j−1/2 dx+ β

N∑
i,j=1

∫
Ωij

g(u)wφx dxdy

− β
N∑

i,j=1

∫
Ωj

(gw)i+1/2 φ
−
i+1/2 dy + β

N∑
i,j=1

∫
Ωj

(gw)i−1/2 φ
+
i−1/2 dy

− β
N∑

i,j=1

∫
Ωj

f(u)wφy dxdy + β

N∑
i,j=1

∫
Ωi

(fw)j+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫
Ωi

(fw)j−1/2 φ
+
j−1/2 dx− α

N∑
i,j=1

∫
Ωij

v w φ dx dy

+ β

N∑
i,j=1

∫
Ωij

v w φ dxdy = 0,(15)

and

N∑
i,j=1

∫
Ωij

vt ν dx dy +

N∑
i,j=1

∫
Ωij

f(u) p νx dxdy

−
N∑

i,j=1

∫
Ωj

(f p)i+1/2 ν
−
i+1/2 dy +

N∑
i,j=1

∫
Ωj

(f p)i−1/2 ν
+
i−1/2 dy

−
N∑

i,j=1

∫
Ωij

f(u) (p ν)x dxdy +

N∑
i,j=1

∫
Ωj

(f)i+1/2 p
−
i+1/2 ν

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

(f)i−1/2 p
+
i−1/2 ν

+
i−1/2 dy +

N∑
i,j=1

∫
Ωij

g(u) p νy dxdy

−
N∑

i,j=1

∫
Ωi

(g p)j+1/2 ν
−
j+1/2 dx+

N∑
i,j=1

∫
Ωi

(g p)j−1/2 ν
+
j−1/2 dx

−
N∑

i,j=1

∫
Ωij

g(u) (p ν)y dxdy +

N∑
i,j=1

∫
Ωi

(g)j+1/2 p
−
j+1/2 ν

−
j+1/2 dx

−
N∑

i,j=1

∫
Ωi

(g)j−1/2 p
+
j−1/2 ν

+
j−1/2 dx+

N∑
i,j=1

∫
Ωij

pw ν dx dy = 0,(16)



RKDG SCHEMES FOR A VARIATIONAL WAVE EQUATION 29

and

N∑
i,j=1

∫
Ωij

wt ψ dxdy +

N∑
i,j=1

∫
Ωij

g(u) pψx dxdy

−
N∑

i,j=1

∫
Ωj

(g p)i+1/2 ψ
−
i+1/2 dy +

N∑
i,j=1

∫
Ωj

(g p)i−1/2 ψ
+
i−1/2 dy

−
N∑

i,j=1

∫
Ωij

g(u) (pψ)x dxdy +

N∑
i,j=1

∫
Ωj

(g)i+1/2 p
−
i+1/2 ψ

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

(g)i−1/2 p
+
i−1/2 ψ

+
i−1/2 dy −

N∑
i,j=1

∫
Ωij

f(u) pψy dx dy

+

N∑
i,j=1

∫
Ωi

(f p)j+1/2 ψ
−
j+1/2 dx−

N∑
i,j=1

∫
Ωi

(f p)j−1/2 ψ
+
j−1/2 dx

+

N∑
i,j=1

∫
Ωij

f(u) (pψ)y dxdy −
N∑

i,j=1

∫
Ωi

(f)j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx

+

N∑
i,j=1

∫
Ωi

(f)j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx−

N∑
i,j=1

∫
Ωij

p v ψ dxdy = 0,(17)

and

N∑
i,j=1

∫
Ωij

ut ζ dxdy =

N∑
i,j=1

∫
Ωij

p ζ dxdy.(18)

Remark 2.1. Admittedly, the notation used in (15)–(18) is more cumbersome than
the vector notation often seen in the DG literature. The purpose of this is to be
able to treat the fluxes in the different equations differently in order to ensure en-
ergy conservation. Also, since the proposed scheme is for the nonlinear variational
wave equation, not a general class of wave equations, we hope to avoid unnecessary
confusion by writing fluxes explicitly.

In order to complete the description of the above schemes, we need to specify
numerical flux functions.

2.4. Energy Preserving Scheme. For a conservative scheme, we use the central
numerical flux

(f)k±1/2 = fk±1/2 and (fg)k±1/2 = fk±1/2gk±1/2,

for any grid functions f, g ∈ Xs
h(Ω). An energy preserving (spatial) DG scheme

based on the weak formulation (15)–(18) becomes: Find p, v, w, u ∈ Xs
h(Ω) such
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that

N∑
i,j=1

∫
Ωij

pt φdx dy + α

N∑
i,j=1

∫
Ωij

f(u) v φx dxdy

− α
N∑

i,j=1

∫
Ωj

f i+1/2 vi+1/2 φ
−
i+1/2 dy + α

N∑
i,j=1

∫
Ωj

f i−1/2 vi−1/2 φ
+
i−1/2 dy

+ α

N∑
i,j=1

∫
Ωij

g(u) v φy dxdy − α
N∑

i,j=1

∫
Ωi

gj+1/2 vj+1/2 φ
−
j+1/2 dx

+ α

N∑
i,j=1

∫
Ωi

gj−1/2 vj−1/2 φ
+
j−1/2 dx+ β

N∑
i,j=1

∫
Ωij

g(u)wφx dx dy(19)

− β
N∑

i,j=1

∫
Ωj

gi+1/2 wi+1/2 φ
−
i+1/2 dy + β

N∑
i,j=1

∫
Ωj

gi−1/2 wi−1/2 φ
+
i−1/2 dy

− β
N∑

i,j=1

∫
Ωj

f(u)wφy dxdy + β

N∑
i,j=1

∫
Ωi

f j+1/2 wj+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫
Ωi

f j−1/2 wj−1/2 φ
+
j−1/2 dx− α

N∑
i,j=1

∫
Ωij

v w φ dx dy

+ β

N∑
i,j=1

∫
Ωij

v w φ dxdy = 0,

for all φ ∈ Xs
∆x(Ω),

N∑
i,j=1

∫
Ωij

vt ν dx dy +

N∑
i,j=1

∫
Ωij

f(u) p νx dxdy

−
N∑

i,j=1

∫
Ωj

f i+1/2 pi+1/2 ν
−
i+1/2 dy +

N∑
i,j=1

∫
Ωj

f i−1/2 pi−1/2 ν
+
i−1/2 dy

−
N∑

i,j=1

∫
Ωij

f(u) (p ν)x dxdy +

N∑
i,j=1

∫
Ωj

f i+1/2 p
−
i+1/2 ν

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

f i−1/2 p
+
i−1/2 ν

+
i−1/2 dy +

N∑
i,j=1

∫
Ωij

g(u) p νy dxdy(20)

−
N∑

i,j=1

∫
Ωi

gj+1/2 pj+1/2 ν
−
j+1/2 dx+

N∑
i,j=1

∫
Ωi

gj−1/2 pj−1/2 ν
+
j−1/2 dx

−
N∑

i,j=1

∫
Ωij

g(u) (p ν)y dxdy +

N∑
i,j=1

∫
Ωi

gj+1/2 p
−
j+1/2 ν

−
j+1/2 dx

−
N∑

i,j=1

∫
Ωi

gj−1/2 p
+
j−1/2 ν

+
j−1/2 dx+

N∑
i,j=1

∫
Ωij

pw ν dxdy = 0,
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for all ν ∈ Xs
h(Ω),

N∑
i,j=1

∫
Ωij

wt ψ dx dy +

N∑
i,j=1

∫
Ωij

g(u) pψx dx dy

−
N∑

i,j=1

∫
Ωj

gi+1/2 pi+1/2 ψ
−
i+1/2 dy +

N∑
i,j=1

∫
Ωj

gi−1/2 pi−1/2 ψ
+
i−1/2 dy

−
N∑

i,j=1

∫
Ωij

g(u) (pψ)x dxdy +

N∑
i,j=1

∫
Ωj

gi+1/2 p
−
i+1/2 ψ

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

gi−1/2 p
+
i−1/2 ψ

+
i−1/2 dy −

N∑
i,j=1

∫
Ωij

f(u) pψy dx dy(21)

+

N∑
i,j=1

∫
Ωi

f j+1/2 pj+1/2 ψ
−
j+1/2 dx−

N∑
i,j=1

∫
Ωi

f j−1/2 pj−1/2 ψ
+
j−1/2 dx

+

N∑
i,j=1

∫
Ωij

f(u) (pψ)y dxdy −
N∑

i,j=1

∫
Ωi

f j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx

+

N∑
i,j=1

∫
Ωi

f j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx−

N∑
i,j=1

∫
Ωij

p v ψ dx dy

= 0,

for all ψ ∈ Xs
h(Ω) and

N∑
i,j=1

∫
Ωij

ut ζ dxdy =

N∑
i,j=1

∫
Ωij

p ζ dx dy.(22)

for all ζ ∈ Xs
h(Ω).

The above scheme preserves a discrete version of the energy, as shown in the
following theorem:

Theorem 2.2. Let p, v and w be approximate solutions generated by the scheme
(19)–(22) with periodic boundary conditions. Then

d

dt

N∑
i,j=1

∫
Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dxdy = 0.

Proof. Let p, v and w be numerical solutions generated by the scheme (19)–(22).
Since those equations hold for any φ, ν, ψ ∈ Xs

h(Ω), they hold in particular for
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φ = p, ν = v and ψ = w. We can then calculate

d

dt

N∑
i,j=1

∫
Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dxdy

=2

N∑
i,j=1

∫
Ωij

(ppt + α vvt + β wwt) dxdy

=2α

N∑
i,j=1

∫
Ωj

f i+1/2

(
vi+1/2JpKi+1/2 + pi+1/2JvKi+1/2 − JpvKi+1/2

)
dy

+ 2α

N∑
i,j=1

∫
Ωi

gj+1/2

(
vj+1/2JpKj+1/2 + pj+1/2JvKj+1/2 − JpvKj+1/2

)
dx

+ 2β

N∑
i,j=1

∫
Ωj

gi+1/2

(
vi+1/2JpKi+1/2 + pi+1/2JwKi+1/2 − JpwKi+1/2

)
dy

+ 2α

N∑
i,j=1

∫
Ωi

f j+1/2

(
−wj+1/2JpKj+1/2 − pj+1/2JwKj+1/2 + JpwKj+1/2

)
dx = 0,

where we have used the periodic boundary conditions and the identities (14). �

Remark 2.3. Theorem 2.2 and similar results to follow explicitly assume periodic
boundary conditions. It is however straightforward to show that these results also
hold for certain other situations such as with compactly supported or decaying data.

2.5. Energy Dissipating Scheme. Note that the above designed energy conser-
vative scheme (19)–(22) is expected to approximate a conservative solution of the
underlying system (6). To attempt to approximate a dissipative solution of (6),
one has to add numerical viscosity. In this work we propose adding viscosity in the
numerical fluxes (scaled by the maximum wave speed) as well as a shock capturing
operator dissipating energy near shocks or discontinuities. Specifically, we propose
the following modification of the energy conservative scheme (19)–(22):

Denoting

si±1/2 = max{c−i±1/2, c
+
i±1/2} and sj±1/2 = max{b−j±1/2, b

+
j±1/2}

for the maximal local wave velocity, a dissipative version of the DG scheme is then
given by the following: Find p, v, w, u ∈ Xs

h(Ω) such that

N∑
i,j=1

∫
Ωij

pt φ dxdy + α

N∑
i,j=1

∫
Ωij

f(u) v φx dx dy

− α
N∑

i,j=1

∫
Ωj

(
f i+1/2 vi+1/2 +

1

2
si+1/2JpKi+1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

φ−i+1/2 dy

+ α

N∑
i,j=1

∫
Ωj

(
f i−1/2 vi−1/2 +

1

2
si−1/2JpKi−1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

φ+
i−1/2 dy
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+ α

N∑
i,j=1

∫
Ωij

g(u) v φy dxdy

− α
N∑

i,j=1

∫
Ωi

(
gj+1/2 vj+1/2 +

1

2
sj+1/2JpKj+1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

φ−j+1/2 dx

+ α

N∑
i,j=1

∫
Ωi

(
gj−1/2 vj−1/2 +

1

2
sj−1/2JpKj−1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

φ+
j−1/2 dx(23)

+ β

N∑
i,j=1

∫
Ωij

g(u)wφx dxdy

− β
N∑

i,j=1

∫
Ωj

gi+1/2 wi+1/2 φ
−
i+1/2 dy + β

N∑
i,j=1

∫
Ωj

gi−1/2 wi−1/2 φ
+
i−1/2 dy

− β
N∑

i,j=1

∫
Ωj

f(u)wφy dxdy + β

N∑
i,j=1

∫
Ωi

f j+1/2 wj+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫
Ωi

f j−1/2 wj−1/2 φ
+
j−1/2 dx− α

N∑
i,j=1

∫
Ωij

v w φ dx dy

+ β

N∑
i,j=1

∫
Ωij

v w φ dxdy = −
N∑

i,j=1

εij

∫
Ωij

(px φx + py φy) dxdy︸ ︷︷ ︸
shock capturing operator

,

for all φ ∈ Xs
h(Ω),

N∑
i,j=1

∫
Ωij

vt ν dxdy +

N∑
i,j=1

∫
Ωij

f(u) p νx dxdy

−
N∑

i,j=1

∫
Ωj

(
f i+1/2 pi+1/2 +

1

2
si+1/2JvKi+1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

ν−i+1/2 dy

+

N∑
i,j=1

∫
Ωj

(
f i−1/2 pi−1/2 +

1

2
si−1/2JvKi−1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

ν+
i−1/2 dy

−
N∑

i,j=1

∫
Ωij

f(u) (p ν)x dxdy +

N∑
i,j=1

∫
Ωj

f i+1/2 p
−
i+1/2 ν

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

f i−1/2 p
+
i−1/2 ν

+
i−1/2 dy +

N∑
i,j=1

∫
Ωij

g(u) p νy dx dy
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−
N∑

i,j=1

∫
Ωi

(
gj+1/2 pj+1/2 +

1

2
sj+1/2JvKj+1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

ν−j+1/2 dx(24)

+

N∑
i,j=1

∫
Ωi

(
gj−1/2 pj−1/2 +

1

2
sj−1/2JvKj−1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

ν+
j−1/2 dx

−
N∑

i,j=1

∫
Ωij

g(u) (p ν)y dx dy +

N∑
i,j=1

∫
Ωi

gj+1/2 p
−
j+1/2 ν

−
j+1/2 dx

−
N∑

i,j=1

∫
Ωi

gj−1/2 p
+
j−1/2 ν

+
j−1/2 dx+

N∑
i,j=1

∫
Ωij

pw ν dx dy

=−
N∑

i,j=1

εij

∫
Ωij

(vx νx + vy νy) dxdy︸ ︷︷ ︸
shock capturing operator

,

for all ν ∈ Xs
h(Ω),

N∑
i,j=1

∫
Ωij

wt ψ dx dy +

N∑
i,j=1

∫
Ωij

g(u) pψx dx dy

−
N∑

i,j=1

∫
Ωj

(
gi+1/2 pi+1/2 +

1

2
si+1/2JwKi+1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

ψ−i+1/2 dy

+

N∑
i,j=1

∫
Ωj

(
gi−1/2 pi−1/2 +

1

2
si−1/2JwKi−1/2

)
︸ ︷︷ ︸

diffusive flux in x-direction

ψ+
i−1/2 dy(25)

−
N∑

i,j=1

∫
Ωij

g(u) (pψ)x dx dy +

N∑
i,j=1

∫
Ωj

gi+1/2 p
−
i+1/2 ψ

−
i+1/2 dy

−
N∑

i,j=1

∫
Ωj

gi−1/2 p
+
i−1/2 ψ

+
i−1/2 dy −

N∑
i,j=1

∫
Ωij

f(u) pψy dx dy

+

N∑
i,j=1

∫
Ωi

(
f j+1/2 pj+1/2 −

1

2
sj+1/2JwKj+1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

ψ−j+1/2 dx

−
N∑

i,j=1

∫
Ωi

(
f j−1/2 pj−1/2 −

1

2
sj−1/2JwKj−1/2

)
︸ ︷︷ ︸

diffusive flux in y-direction

ψ+
j−1/2 dx

+

N∑
i,j=1

∫
Ωij

f(u) (pψ)y dx dy −
N∑

i,j=1

∫
Ωi

f j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx
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+

N∑
i,j=1

∫
Ωi

f j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx−

N∑
i,j=1

∫
Ωij

p v ψ dxdy

=−
N∑

i,j=1

εij

∫
Ωij

(wx ψx + wy ψy) dxdy︸ ︷︷ ︸
shock capturing operator

,

for all ψ ∈ Xs
h(Ω),

N∑
i,j=1

∫
Ωij

ut ζ dxdy =

N∑
i,j=1

∫
Ωij

p ζ dx dy.(26)

for all ζ ∈ Xs
h(Ω).

The scaling parameter ε in the shock capturing operator is given by

(27) εij =
hij C Res(∫

Ωij
(p2
x + v2

x + w2
x)dxdy +

∫
Ωij

(p2
y + v2

y + w2
y)dxdy

)1/2

+ hθij

where C > 0 is a constant, θ ≥ 1/2, hij = max{∆xij ,∆yij} and

(28) Res =

(∫
Ωij

(Res)2dx dy

)1/2

with
(29)
Res =

(
p2 + α v2 + β w2

)
t

+ (αp f(u) v + β p g(u)w)x + (αp g(u) v − β p f(u)w)y .

The rationale for the scaling parameter is as follows: For smooth solutions of (11)
the conservation law (13) is fulfilled. The numerical solution is then expected to
fulfill the same conservation law up to the spatial and temporal accuracy of the
scheme. The shock capturing operator will therefore vanish in smooth regions,
while introducing added dissipation near shocks and discontinuities.

The above scheme dissipates a discrete version of the energy, as shown in the
following theorem:

Theorem 2.4. Let p, v and w be approximate solutions generated by the scheme
(19)–(22) with periodic boundary conditions. Then

d

dt

N∑
i,j=1

∫
Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dxdy ≤ 0.
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Proof. By using the result from Theorem 2.2, we can write

d

dt

N∑
i,j=1

∫
Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dxdy

=− 2

N∑
i,j=1

εij

∫
Ωij

(
p2
x + p2

y + v2
x + v2

y + w2
x + w2

y

)
dxdy

+ α

N∑
i,j=1

∫
Ωj

(
si+1/2JpKi+1/2p

−
i+1/2 − si−1/2JpKi−1/2p

+
i−1/2

)
dy

+ α

N∑
i,j=1

∫
Ωi

(
sj+1/2JpKj+1/2p

−
j+1/2 − sj−1/2JpKj−1/2p

+
j−1/2

)
dx

+ α

N∑
i,j=1

∫
Ωj

(
si+1/2JvKi+1/2v

−
i+1/2 − si−1/2JvKi−1/2v

+
i−1/2

)
dy

+ α

N∑
i,j=1

∫
Ωi

(
sj+1/2JvKj+1/2v

−
j+1/2 − sj−1/2JvKj−1/2v

+
j−1/2

)
dx

+ β

N∑
i,j=1

∫
Ωj

(
si+1/2JwKi+1/2w

−
i+1/2 − si−1/2JwKi−1/2w

+
i−1/2

)
dy

+ β

N∑
i,j=1

∫
Ωi

(
sj+1/2JwKj+1/2w

−
j+1/2 − sj−1/2JwKj−1/2w

+
j−1/2

)
dx

(30)

Now, since the periodic boundary condition lends the relation

(31)
N∑

i,j=1

(
si+1/2JaKi+1/2a

−
i+1/2 − si−1/2JaKi−1/2a

+
i−1/2

)
= −

N∑
i.j=1

si+1/2JaK2
i+1/2,

we can write

(32)

d

dt

N∑
i,j=1

∫
Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dxdy

=− 2

N∑
i,j=1

εij

∫
Ωij

(
p2
x + p2

y + v2
x + v2

y + w2
x + w2

y

)
dxdy

− α
N∑

i,j=1

∫
Ωj

si+1/2JpK2
i+1/2dy − α

N∑
i,j=1

∫
Ωi

sj+1/2JpK2
j+1/2dx

− α
N∑

i,j=1

∫
Ωj

si+1/2JvK2
i+1/2dy − α

N∑
i,j=1

∫
Ωi

sj+1/2JvK2
j+1/2dx

− β
N∑

i,j=1

∫
Ωj

si+1/2JwK2
i+1/2dy − β

N∑
i,j=1

∫
Ωi

sj+1/2JwK2
j+1/2dx.

The result then follows from the positivity of εij , s and the physical parameters α
and β. �
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3. Energy Preserving Scheme Based On a Variational Formulation

It is worth noting that all the previous schemes were designed by rewriting the
variational wave equation (6) as first-order systems and approximating these sys-
tems. However, one can also design a scheme for the original variational wave
equation (6). To achieve this, we design an energy conservative scheme by ap-
proximating the nonlinear wave equation (6) directly. We proceed by rewriting the
nonlinear wave equation (6) in the general form:

(33) utt = −δH
δu

,

with

H = H(u, ux, uy) :=
1

2
c2(u)u2

x +
1

2
b2(u)u2

y + a(u)ux uy.

Here, H is the “Hamiltonian”, and δH
δu denotes the variational derivative of function

H(u, ux, uy) with respect to u.
A simple calculation, in light of (33), reveals that

(34)
d

dt

∫
R

(
1

2
u2
t +H(u, ux, uy)

)
dx = 0.

To be more precise, this is a direct consequence of the simple identity:

(35)
δH

δu
=
∂H

∂u
− d

dx

(
∂H

∂ux

)
− d

dy

(
∂H

∂uy

)
.

We also note that for equation (6),

δH

δu
=c(u)c′(u)u2

x −
(
c2(u)ux

)
x

+ b(u)b′(u)u2
y −

(
b2(u)uy

)
y

+ a′(u)uxuy − (a(u)uy)x − (a(u)ux)y

=− c2(u)uxx − c(u)c′(u)u2
x − b2(u)uyy

− b(u)b′(u)u2
y − a′(u)uxuy − 2a(u)uxy

=− c(u) (c(u)ux)x − b(u) (b(u)uy)y − a
′(u)uxuy − 2a(u)uxy.

Based on above observations, we propose the following scheme for (6)

(36)

(uij)tt + c(uij)c
′(uij)(D

xuij)
2 −Dx

(
c2(uij)D

xuij
)

+ b(uij)b
′(uij)(D

yuij)
2 −Dy

(
b2(uij)D

yuij
)

+ a′(uij)D
x(uij)D

y(uij)−Dx (a(uij)D
yuij)−Dy (a(uij)D

xuij) = 0,

where the central differences Dx and Dy are defined by

Dxzij =
zi+1,j − zi−1,j

2∆x
, and Dyzij =

zi,j+1 − zi,j−1

2∆y
.

This scheme is energy preserving as shown in the following theorem:

Theorem 3.1. Let uij(t) be an approximate solution generated by the scheme (36)
using periodic boundary conditions. Then we have

d

dt

∆x∆y

2

∑
i,j

(uij)
2
t + c2(uij) (Dxuij)

2

+b2(uij) (Dyuij)
2

+ 2a(uij)D
x(uij)D

y(uij)
)

= 0.
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Proof. We start by calculating

d

dt

∆x∆y

2

∑
i,j

(uij)
2
t + c2(uij) (Dxuij)

2

+b2(uij) (Dyuij)
2

+ 2a(uij)D
x(uij)D

y(uij)
)

=∆x∆y
∑
i,j

(
(uij)t(uij)tt + c(uij)c

′(uij) (Dxuij)
2

(uij)t + c2(uij)D
xuijD

x(uij)t

)
+ ∆x∆y

∑
i,j

(
b(uij)b

′(uij) (Dyuij)
2

(uij)t + b2(uij)D
yuijD

y(uij)t

)
+ ∆x∆y

∑
i,j

(a′(uij)D
x(uij)D

y(uij)(uij)t

+a(uij)D
x(uij)tD

yuij + a(uij)D
xuijD

y(uij)t)

=∆x∆y
∑
i,j

(
(uij)t(uij)tt + c(uij)c

′(uij) (Dxuij)
2

(uij)t

−Dx
(
c2(uij)D

xuij
)

(uij)t
)

+ ∆x∆y
∑
i,j

(
b(uij)b

′(uij) (Dyuij)
2

(uij)t −Dy
(
b2(uij)D

yuij
)

(uij)t

)
+ ∆x∆y

∑
i,j

(a′(uij)D
x(uij)D

y(uij)(uij)t

−Dx (a(uij)D
yuij) (uij)t −Dy (a(uij)D

xuij) (uij)t)

=0. (follows from (36))

�

4. Numerical Experiments

For the numerical experiments, the computational domain is subdivided into
N ×N rectangular cells. All cells are of size ∆x×∆y. A uniform time step

(37) ∆t = 0.1
min{∆x,∆y}

max{α, β}
is used throughout the computation. Moreover, in all experiments the parameters
for the shock capturing operator are C = 0.1 and θ = 1. To keep focus on the
spatial discretization, we will use a fifth-order Runge–Kutta scheme [22] ensuring
a satisfactory temporal accuracy. Periodic boundary conditions are used in all
experiments.

4.1. Gaussian disturbance to homogeneous director state. In this section
we consider the initial value problem (6) with the initial data

u0(x, y) = exp
(
−16

(
x2 + y2

))
(38a)

u1(x, y) = 0(38b)

on (x, y) ∈ R2. The physical parameters are α = 1.5 and β = 0.5. A numerical so-
lution was computed using N = 32 with the dissipative piecewise quadratic (s = 2)
scheme. Figure 1 shows the time evolution of the numerical solution, demonstrating
the non-isotropic nature of this model.
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Figure 1. Numerical solution of the initial value problem (6)
with the initial data (38) using the dissipative piecewise quadratic
scheme with N = 32. The parameters are α = 1.5 and β = 0.5.
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Figure 2. Evolution of the discrete energy (39) for the numerical
solutions of the initial value problem (6) with the initial data (38)
using both conservative and dissipative schemes. The parameters
were α = 1.5 and β = 0.5 and a N = 32 grid size was used.

A key property of the schemes derived in this paper is that they are designed, at
the semi-discrete level, to either conserve or dissipate the energy. Figure 2 shows
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Figure 3. The numerical solution at for left) the piecewise qua-
dratic conservative scheme and right) the piecewise quadratic dis-
sipative scheme of the initial value problem (6) with initial data
(40) with N = 64 cells. The physical parameters were α = 1.5 and
β = 0.5.

the time evolution of the discrete energy

E =

N∑
i,j=1

∫
Ωij

p2 + αv2 + βw2

2
dx

=
∆x∆y

8

N∑
i,j=1

s∑
k,l=0

ρkρl

((
p

(kl)
ij

)2

+ α
(
v

(kl)
ij

)2

+ β
(
w

(kl)
ij

)2
)
,(39)
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for the Gaussian initial value problem using both conservative and dissipative
schemes for s ∈ {0, · · · , 3}. The results clearly indicate that the energy preserv-
ing (and dissipating) properties carry over to the fully discrete case when using a
higher-order time integrator.

4.2. Loss of regularity. A crucial property for the 1D variational wave equation
is that solutions loose regularity in finite time even for smooth initial data. For the
2D case this is still an open problem. We investigate this numerically by considering
the initial value problem (6) with data

u0(x, y) = exp
(
−
(
x2 + y2

))
(40a)

u1(x, y) = −c(u0(x, y))u0,x(x, y)(40b)

for (x, y) ∈ R2. A numerical experiment was performed using N = 64 compu-
tational cells with the conservative and dissipative piecewise quadratic schemes.
The results, shown in Figure 3, indicates a clear steepening of the gradient as the
solution evolves.

Smooth solutions of (6) satisfies the conservation law (29). The root-mean-
square of the residual (28)Â can therefore be an indicator function for loss of regu-
larity in the solution. Figure 4 shows the residual at t = 10 for both the conservative
and dissipative schemes. The results indicate that the solution looses smoothness
near the front of the wave propagating in the positive x direction. Moreover, as
expected, the dissipative scheme with the shock capturing operator is able to main-
tain a higher degree of numerical smoothness (as measured by the residual) than
the conservative scheme.
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(b) Dissipative scheme

Figure 4. The root-mean-square of the residual (28) at t = 10
for the initial value problem (6) with initial data (40). At the left:
the piecewise quadratic conservative scheme and at the right: the
piecewise quadratic dissipative scheme, both with N = 64 cells.
The physical parameters were α = 1.5 and β = 0.5.

4.3. Bifurcation of solutions. Another critical feature of the 1D nonlinear vari-
ational wave equation (4) is the existence of different classes of weak solutions.
However, the existence and well-posedness for the initial value problem in the 2D
generalization remains an open problem.

In order to investigate this issue numerically, we consider the initial data 3 and
study the convergence of the three schemes; the conservative DG scheme, the dissi-
pative DG scheme and the Hamiltonian scheme; after the loss of regularity. Figure
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5 shows the L2 distance between the numerical solutions for different times and
under grid refinement. The results indicate that the conservative DG scheme and
the Hamiltonian scheme indeed converge to the same solution as the grid is refined.
However, the distance between the dissipative and conservative DG schemes seems
to converge to a non-zero value that increases as a function of time. This may
indicate that the question of well-posedness for the 2D variational wave equation is
as delicate as in the 1D case.
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Figure 5. The L2 distance between left: the conservative DG
scheme and the Hamiltonian scheme and right: the conservative
DG scheme and the dissipative DG scheme, for the initial value
problem (6) with initial data (40). The physical parameters were
α = 1.5 and β = 0.5.

4.4. Order of Convergence and Efficiency. In the following, we demonstrate
the order of convergence and efficiency of both the conservative and dissipative
schemes for smooth solutions. As before, we consider the initial value problem
(6) with the initial data (38) with physical parameters α = 1.5 and β = 0.5. A
reference solution uref was calculated at t = 0.1 using the conservative piecewise
cubic scheme (s = 3) with N = 1024. Figure 6 shows the error

(41) e = ‖uN − uref‖2

for different grid cell numbers N = Nx = Ny. The results indicate a suboptimal
order of convergence for odd s when using the conservative numerical flux. For
the dissipative scheme the order of convergence is optimal. This behavior has been
observed also in the 1D case [1], and for certain DG schemes in the literature [24].
The Hamiltonian scheme converges to first order.

Figure 7 shows the error (41) compared to a a reference solution as a function
of computational cost (CPU wall time). The results indicate that the higher-order
schemes mostly make up for their increased computational complexity in better
accuracy per CPU time. One exception is the conservative piecewise linear scheme,
which for this case requires more computational work than the piecewise constant
scheme in order to obtain the same accuracy. A possible explanation for this is
that enforcing energy preservation using piecewise linear elements results in an un-
physically jagged solution in certain regions. This happens despite the fact that
the converged solution does not exhibit this behavior. For the piecewise linear
dissipative scheme, this effect is suppressed by the added artificial viscosity.
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Figure 6. The error (41) for the numerical solution of the Gauss-
ian initial value problem (38) as a function of N , using α = 1.5
and β = 0.5. The dashed lines indicate the different orders of
convergence.
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Figure 7. The error (41) for the numerical solution of the Gauss-
ian initial value problem (38) at t = 0.5 as a function of CPU time
(wall time), using α = 1.5 and β = 0.5. The reference solution
was calculated using the piecewise cubic conservative scheme with
N = 1024 cells.

4.5. Relaxation from a standing wave. For this experiment we consider the
initial value problem

u0(x, y) = 2 cos(2πx) sin(2πx)(42a)
u1(x, y) = sin(2π(x− y))(42b)
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Figure 8. The numerical solution at left: t = 1 and right: t = 2
of the initial value problem (6) with initial data (42) using the
conservative and dissipative piecewise quadratic schemes (s = 3)
with N = 64 cells. The bottom row shows the numerical solution
using the Hamiltonian scheme. The physical parameters were α =
1.5 and β = 0.5.

on (x, y) ∈ [0, 1]× [0, 1] with periodic boundary conditions. The initial value prob-
lem can be seen as describing the following: Initially, a standing wave is induced in
the director field using e.g. an external electromagnetic field or mechanical vibra-
tions. At t = 0, the external influence is removed, and the evolution of the director
is purely governed by elastic forces.
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Figure 8Â shows the numerical solution using both conservative and dissipative
piecewise quadratic schemes with N = 64 cells. For comparison, a numerical solu-
tion was also computed using the Hamiltonian scheme derived in Section 3. The
physical parameters were, as before, α = 1.5 and β = 0.5. For t > 0 the non-
isotropic elasticity of the director field deteriorates the initial standing wave and
the pattern becomes more complicated. At t = 2 the solution given by the dissipa-
tive DG scheme is visibly more regular that the solutions given by the conservative
schemes (DG and Hamiltonian).

5. Summary

Using the Discontinuous Galerkin framework we have derived arbitrarily high-
order numerical schemes for the 2D variational wave equation describing the director
field in a type of nematic liquid crystals. By design, these schemes either conserve or
dissipate the total mechanical energy of the system. The energy conserving scheme
is based on a centralized numerical flux, while the dissipative scheme employs a
dissipative flux combined with a shock capturing operator.

We have performed extensive numerical experiments both to verify the perfor-
mance of the schemes and to investigate the behavior of solutions to the variational
wave equation. In particular:

• The schemes converge to a high order of accuracy for smooth solutions.
• The high-order schemes outperform low-order scheme in terms of error per

CPU time.
• The energy respecting properties (proven at the semi-discrete level) also

hold on the fully discrete level when using a high-order numerical integra-
tion in time.

• Experiments show that the solution can loose regularity in finite time even
for smooth initial data.

• After loss of regularity, results indicate that the conservative and dissipative
schemes converge to different solutions as the grid is refined.

To the best of our knowledge, this is the first systematic numerical study of
the 2D generalization of the nonlinear variational wave equation (4). Indeed, the
results here indicate that the mathematical treatment of (6) might be as delicate
as in the 1D case.
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