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Abstract. In this paper, we study wave interaction with an emerged porous media.
The governing equation is shallow water equations with a friction term of the lin-
earized Dupuit-Forcheimer’s formula. From the continuity of surface and horizontal
flux, we derived the wave reflection and transmission coefficient formulas. They are
similar with the corresponding formulas of the submerged solid bar breakwater. We
solve the equations numerically using finite volume method on a staggered grid. The
numerical wave reduction in the porous media confirms the analytical wave transmis-
sion curve.
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1 Introduction

Porous structures, such as rubble-mound breakwaters are commonly used to protect har-
bors against the action of incident waves. Porous breakwaters have a large impact on
waves and flow because they produce flow resistance. This resistance factor associated
with the porous structure. For this purpose, before implementation in the real field, it is
important to assess the engineering aspect of a porous structure, such as predicting the
reflection and transmission wave coefficient correspond to the porous structure.

Studies about wave interaction with porous structure have been done by many au-
thors, for instance R. A. Dalrymple et al. [3], M. Calabrese et al. [1], N. Kobayashi and
Wurjanto [8], A. T. Chwang and A. T. Chan [2], W. Sulisz [19], P. J. Lynett et al. [11], P. L. F.
Liu et al. [10], C. K. Sollitt and R. H. Cross [17]. The porous structures can be classified in-
to two categories, submerged and emerged porous structure. Submerged breakwater lies
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entirely beneath the mean water level while emerged porous breakwater’s crest is visi-
ble above the mean water level. N. Kobayashi and Wurjanto [8] studied monochromatic
wave reflection and transmission over a submerged impermeable breakwater, Z. Gu and
H. Wang [6, 7] studied maximum wave energy dissipation by porous submerged break-
waters numerically using boundary integral element method. M. Calabrese et al. [1] has
presented a method for calculating 2D wave setup behind a submerged breakwater. We
also have studied wave interaction with a submerged porous structure in [16, 21]. In this
paper, we are interested to study wave interaction with an emerged porous structure.

Two common approaches to study wave reflection and transmission due to a porous
structure are by using shallow water assumption with an additional friction and poten-
tial theory. W. Sulisz [19] predicted the reflection and transmission coefficient by using
potential theory. The potential theory was also adopted in many literatures to investigate
reflection and transmission from porous structure, such as O. S. Madsen [12] and R. A.
Dalrymple et al. [3]. C. K. Sollitt and R. H. Cross [17] formulated the wave transmission
through a permeable breakwater as a linear boundary value problem. A. T. Chwang and
A. T. Chan [2] studied waves moving past a porous structure by using potential theory
with Darcy’s Law. P. L. F. Liu et al. [10] and P. J. Lynett et al. [11] studied solitary wave
interaction with porous structure by using potential theory with Dupuit-Forcheimer fric-
tion.

In this paper, we study the problem of surface gravity waves reduce due to emerged
porous media. We take the Shallow Water Equation (SWE) with an additional friction
force of Dupuit-Forcheimer type. Next, we will formulate wave transmission and reflec-
tion coefficients. Based on the linear wave theory, the wave has a constant frequency and
we can apply separation variable. In this way, we can directly get wave reduction from
dispersion relation. When we combine solution in free water area and the reduced wave
inside the porous structure, and from the continuity of surface and horizontal flux, we
obtain explicit formulas for wave transmission and reflection coefficient. Numerically,
we solve the equation using the finite volume method on a staggered grid. Numerical
result of wave transmission coefficient is in good agreement with analytical data.

2 Model formulation

In this section, the governing equation of the flow pass through a porous structure will
be formulated. Let η and u denote surface elevation and horizontal fluid velocity, re-
spectively. We consider, the continuity and momentum equations in free region reads
as:

ηt+(hu)x =0, (2.1a)

ut+gηx =0, (2.1b)

with g is the gravitational acceleration. Notation h=η+d denotes water thickness, where
d is bottom topography.
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Figure 1: Sketch of the domain.

For flow in a porous media with porosity n, the rate of change of free surface η de-
pends on the filtered horizontal momentum with filtered velocity u/n, where 0< n≤ 1.
The momentum equation (2.1b) also gets an additional resistance by porous structure.
Here, we implement a frictional force formulated by Dupuit-Forchheimer (α+β|u|)u.
Then, the full governing equations in the porous media are:

ηt+
(

h
u

n

)

x
=0, (2.2a)

1

n
ut+gηx =−(α+β|u|)u. (2.2b)

The coefficient α expresses the laminar flow resistance whereas β expresses the turbu-
lent flow resistance. Under the assumption that the waves are periodic, relatively long,
and do not break, Madsen and White [12] approximate the non-linear friction term by
linearizing it as:

u(α+β|u|)≃ f
ω

n
u,

where f is the friction coefficient and ω is the wave frequency.

Further, we will consider wave elevation in a domain as depicted in Fig. 1. For that
purpose, we denote a domain with porous media as Ω2, whereas upstream and down-
stream regions are denoted Ω1 and Ω3, respectively. We recapitulate the governing equa-
tions for the whole domain are as follows:

ηt+
(

h
u

N

)

x
=0, (2.3a)

1

N
ut+gηx+Fl

ω

N
u=0, (2.3b)

with piecewise constant functions of N and F1 as follows

N=

{

1, if x∈Ω1 and x∈Ω3,

n, if x∈Ω2,
(2.4)
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and

Fl =

{

0, if x∈Ω1 and x∈Ω3,

f , if x∈Ω2.
(2.5)

At the interfaces x=0 and x=L, the boundary condition comes from continuity of surface
elevation η and horizontal flux hu.

3 Wave reflection and transmission

In this section, we will limit ourselves to the study of small wave amplitude in shallow
water. We approximate h= η+d in Eq. (2.2a) with d. Hence, Eqs. (2.2a) and (2.2b) with
linear friction reduce to:

ηt+
(

d
u

n

)

x
=0, (3.1a)

1

n
ut+gηx+ f

ω

n
u=0. (3.1b)

Next, we consider a harmonic wave with certain frequency ω in porous domain read as:

η(x,t)=F(x)exp(iωt), (3.2a)

u(x,t)=G(x)exp(iωt). (3.2b)

Substituting Eqs. (3.2a), (3.2b) into Eqs. (3.1a), (3.1b) will yield:

Fxx+
ω2

gd
(1−i f )F=0, (3.3a)

G(x)=−
gn

ω

1

i+ f
Fx. (3.3b)

Solution of Eq. (3.3a) is F(x)= a1e−iκx+a2eiκx , where the wave number in porous media
κ follows from the following dispersion relation:

κ2=
ω2

gd
(1−i f ). (3.4)

Solution κ of (3.4) has the form of a−bi and −a+bi, where

a=
w(1+ f 2)1/4

gd
cos

( tan−1( f )

2

)

and b=
w(1+ f 2)1/4

gd
sin

( tan−1( f )

2

)

.

A finite formulation for surface elevation is then:

η(x,t)= a1e−i(κx−ωt)+cc.+a2ei(κx+ωt)+cc.,
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with cc. denotes complex conjugate. Differentiate F(x) with respect to x and substitute
the result into (3.3b) will give us

G(x)=
gn

ω

iκ

i+ f

(

a1e−iκx−a2eiκx
)

. (3.5)

Next, substituting (3.5) into (3.2b) will yield:

u(x,t)=

√

g

d

n
√

1−i f

(

a1e−i(κx−ωt)+cc.−a2ei(κx+ωt)+cc.
)

. (3.6)

Consider an incoming wave from free water area propagate to the right. After passing
through the porous media the wave is partially reflected. So, in the upstream free region
Ω1 there will be right running wave e−i(kx−ωt) and left running wave ei(kx+ωt), where k
denotes wave number in free region. The right running wave has amplitude ai and left
running wave has amplitude ar . Then, in downstream free region Ω3, after the wave has
passed through the porous media, there is only right running transmitted wave, say with
amplitude at. In general, surface elevation in the whole domain can be formulated as:

η(x,t)= eiωt











aie
−ikx+areikx in x<0,

a1e−iκx+a2eiκx in 0≤ x< L,

ate
−ikx in x> L,

(3.7)

with k follows dispersion relation ω2/gk= kd.

In free region, traveling waves of the linear SWE has to satisfy the following relation
u(x,t)=±

√

g/dη(x,t), with positive sign for right running wave and negative sign for
left running wave. In porous domain the relation is

u(x,t)=±

√

g

d

n
√

1−i f
η(x,t).

Consider η(x,t) formulated as (3.7), suitable anzat for u(x,t) is as follows:

u(x,t)= eiωt



































√

g

d
(aie

−ikx−areikx) in x<0,
√

g

d

n
√

1−i f
(a1e−iκx−a2eiκx) in 0≤ x< L,

√

g

d
ate

−ikx in x> L.

(3.8)

Along the interface x=0 and x= L, free surface flow admits continuity of free surface η

and horizontal momentum du.
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Further, the coefficients a1, a2, ar and at can be found by matching η and du at the two
interfaces. Continuity of surface elevation η and horizontal flux du at x=0, will yield

a1+a2 = ai+ar , (3.9)

and
ǫ(a1−a2)= ai−ar . (3.10)

Similarly, continuity at x= L will yield

a1e−iκL+a2eiκL = ate
−ikL, (3.11)

and
ǫ(a1e−iκL−a2eiκL)= ate

−ikL, (3.12)

with ǫ=n/
√

1−i f . From Eqs. (3.11) and (3.12), we can express a1 and a2 in terms of at:

a1 =
1+ǫ

2ǫ
e−ikLeiκLat, (3.13a)

a2 =
ǫ−1

2ǫ
e−ikLe−iκLat. (3.13b)

Substituting the results above for a1 and a2 into Eqs. (3.9) and (3.10), will give us two
equations in three variables ai, ar, and at. Eliminating ar and at will give us wave reflection
and transmission coefficients, respectively:

KR=
∣

∣

∣

ar

ai

∣

∣

∣
=
∣

∣

∣

S2−D2

S2MR−D2MR−1

∣

∣

∣
, (3.14a)

KT =
∣

∣

∣

at

ai

∣

∣

∣
=
∣

∣

∣

SD(R−R−1)

S2R−D2R−1

∣

∣

∣
, (3.14b)

where S=1+ǫ, D=1−ǫ, M= e−ikL, and R= eiκL. Transmission and reflection coefficient
are both depend on the characteristic of porous media such as porosity n, friction f , and
length L of the porous media. Formulas (3.14a) dan (3.14b) are similar with wave re-
flection and transmission formulas for the case of submerged solid bar, derived by C. C.
Mei [13], see also [5, 14, 22]. In the submerged solid bar case, the incident wave scattered
because of depth discontinuity. Here, the incident wave scattered because it enters an
emerged porous media.

Formulas (3.14a) and (3.14b) are tested for the following two limiting cases. Case
n→ 0, the porous media becomes a solid wall and we obtain KR → 1 and KT → 0 which
mean perfect reflection and no transmission. Case n→1 and f →0, in which the porous
media becomes a free region, we obtain ǫ→ 1, then KR → 0 and KT → 1. This means no
reflection and perfect transmission. Further, the dispersion relation (3.4) reduces to the
well-known dispersion relation for gravity wave: ω2/gk= kd, as we expect.

Taking parameter values ω = 3π, d = 5, g = 9.81, n = 0.8, f = 0.18, dispersion rela-
tion (3.4) will give us a complex value wave number κ=1.350421351−0.1205690968I. A
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Figure 2: Solid line is the curve of η(x,t)=exp−i(κx−ωt) at certain time for κ=1.350421351−.1205690968I and
its envelope |η(x,t)| which is exactly KT.

monochromatic wave exp−i(κx−ωt) with negative imaginary part ℑ(κ) will undergo am-
plitude reduction, see Fig. 2. Let

KT = |η(x,t)|=expℑ(κ)x,

the term KT denotes amplitude reduction of incident wave as a function of x, the hori-
zontal length of an emerged porous breakwater. It also denotes the ratio between wave
transmission amplitude and incident wave amplitude or wave transmission coefficient.
It is clear that the profile of wave transmission coefficient depends strongly on the com-
plex wave number κ, and hence on the dispersion relation (3.4). Parameters involve in
(3.4) are wave frequency ω, gravitational acceleration g, porosity n, friction coefficient f ,
and water depth d.

Next, we study wave reflection and transmission coefficient with respect to porous
structure parameter such as, porosity n, wave length L, and friction coefficient f . Here,
we analyze the dependence of KR and KT on those parameters. Fig. 3 shows curves
of KR and KT with respect to non-dimensional variable kL for several values of n. For
all computations follow we take g = 9.8 and f = 1. We observe that the longer porous
media does not directly mean larger KR. For relatively small value of kL, we observe an
oscillating behavior. The same behavior of KR curve is also found by W. Sulisz [19]. We
can also conclude that smaller n will yield smaller KT.

Fig. 4 shows curves of KR and KT with respect to n for several values of f . We conclude
that larger f , will yield smaller KT. And larger porosity n will yield larger KT. We also
conclude that smaller f will yield larger KT. For large value of n, smaller f will yield
smaller KR.

Clearly, the wave reflection and transmission coefficient depend strongly on the porous
structure parameters such as porosity n, length of the porous structure L, and friction co-
efficient f .
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(a) (b)

Figure 3: (a) Curves of KR w.r.t kL for fixed values of the friction coefficient f =1. (b) Curves of KT w.r.t. kL
for for fixed values of the friction coefficient f =1.

(a) (b)

Figure 4: (a) Curves of KR w.r.t n for fixed values of kL = 1. (b) Curves of KT w.r.t. n for fixed values of
kL=1.

4 A staggered finite volume method

In this section a numerical finite volume method on a staggered grid will be implemented
for simulating an incident wave passing through an emerged porous media. We will use
the numerical computations to confirm the analytical results.

Consider equation for gravity waves in a porous media (3.1a), (3.1b) in domain [0,L].
We discretize the porous domain in a staggered way 0=x1/2,x1,··· ,xNx+1/2=L. Mass con-
servation (3.1a) is approximated at a cell centered at xi whereas momentum conservation
(3.1b) is approximated at a cell centered at xi+1/2, see Fig. 5. Approximate equations are



688 I. Magdalena, S. R. Pudjaprasetya and L. H. Wiryanto / Adv. Appl. Math. Mech., 6 (2014), pp. 680-692

Figure 5: Illustration of staggered grid with cell [xi− 1
2
,xi+ 1

2
] for mass conservation and cell [xi−1,xi] for mo-

mentum equation.

then

ηn+1
i −ηn

i

∆t
+

d

n

u|ni+1/2−u|ni−1/2

∆x
=0, (4.1a)

1
n un+1

i+1/2−
1
n un

i+1/2

∆t
+g

ηn+1
i+1 −ηn+1

i

∆x
+ f

ω

n
un+1

i+1/2=0. (4.1b)

The above approach is known as the finite volume method on a staggered grid. This
discretization is described extensively in G. S. Stelling and S. P. A. Duinmeijer [18]. In
this setting, values of η will be computed at every full grid points xi, with i=1,2,··· ,Nx,
using mass conservation (4.1a). Velocity u will be computed at every staggered grid
points xi+1/2, with i= 1,2,··· ,Nx, using momentum equation (4.1b). Implementing Von
Neumann stability analysis, we obtain stability condition for (4.1a), (4.1b), which is
√

gd∆t/∆x ≤ 1, where d is the flat bottom depth. Note the friction term f ωu/n is cal-
culated implicitly in order to avoid more restricted stability condition.

Further, for simulating the gravity waves in free water area, the approximate equa-
tions are just (4.1a) and (4.1b) with n = 1 and f = 0. The resulting scheme is free from
numerical damping error, see S. R. Pudjaprasetya and I. Magdalena [15] for details.

5 Numerical simulation

In this section, we will implement the above scheme to simulate wave interaction with
a porous structure. For simulation, we take a computational domain 0< x<20. We take
g= 9.81 and a constant depth d= 10. The initial condition is still water level η(x,0)= 0,
u(x,0)=0 and for the left wave influx we take a monochromatic wave with amplitude 0.5

η(0,t)=0.5sin3πt. (5.1)

Along the right boundary, we apply an absorbing boundary.

We first test the no porous case n=1 and without friction f =0, for which Eqs. (2.2a)
and (2.2b) reduce to the shallow water equations without porous structure. Numerical
simulation of (4.1a) and (4.1b) will yield a monochromatic wave travels undisturbed in
shape, as we expect.
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Figure 6: (a) Damping of wave amplitude inside the porous media. (b) Wave interactions with an emerged
porous media.

When the whole domain 0≤x≤20 is a porous media with parameters n=0.8, f =0.18,
and for computations we use ∆x=0.1, ∆t=∆x/

√

gd=0.01, then the results are given in
Fig. 6(a). It shows wave amplitude reduction in the porous media.

Next, we will simulate the evolution of a wave initially being in a free water region.
It travels to the right and enters a porous region. In the porous region the wave travels
further to the right, and out to the free water region. For that purpose, we take a compu-
tational domain −20≤ x≤ 40. Along the left and right boundaries, we apply absorbing
boundary. The initial condition is the following hump:

η(x,0)=1e−(0.5x−15)2
, (5.2a)

u(x,0)=

√

g

d
η(x,0). (5.2b)

The porous structure with parameters n= 0.8, f = 0.18 is installed in 0< x< 20. The nu-
merical simulation is given in Fig. 6(b). When the waves hit the emerged porous media,
it will split into reflected and transmitted waves. In the porous media, transmitted wave
is reduced. When the wave travels further to the right and out to free water, it splits
again into reflected and transmitted waves. This second reflected wave is very small and
hardly noticeable in Fig. 6(b).

5.1 Comparison with analytical solution

In this section, we will show that our numerical surface profile reduces in the porous
media with an envelope that confirms the analytical KT curve. For numerical computa-
tions, we take the parameters used in Section 3, and we use ∆x=0.1, and ∆t=∆x/

√

gd.
The surface profile in a porous media is plotted in Fig. 7. Clearly, the numerical wave
amplitude reduction confirms the analytical curve of KT.
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Figure 7: Solid line is the numerical surface elevation in porous media. Dash curves are the analytical wave
transmission coefficient KT from Eq. (3.14b).
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Figure 8: Comparison between wave transmission coefficient from numerics and analytic as function of porosity
n for several friction coefficient f . Dash lines: analytical result, solid lines: numerical result.

Wave reflection and transmission coefficient, (3.14a) and (3.14b) depend on porosity n,
friction coefficient f , length of the porous structure L, and wave number k, and κ. We do
another comparison, the dependance of KT with n and f . For the computation, we take
parameter ω=3π and L=10. We plot the curve of wave transmission coefficient KT with
respect to porosity n for several values of f . From Fig. 8, we conclude that for a certain
porosity n, larger friction coefficient, will lead to smaller wave transmission coefficient.
The numerical results are in a good agreement with analytical result, especially for n
larger than 0.8.

6 Conclusions

We have derived dispersion relation that holds for gravity waves in an emerged porous
media. This dispersion relation explain diffusive mechanism of the porous structure.
Further, wave reflection and transmission coefficients were also obtained. The formu-
las are similar to wave reflection and transmission coefficients from the solid submerged
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breakwater. Finite volume method on a staggered grid applied to SWE with linear fric-
tion result in numerical wave damping that confirms the analytical wave transmission
coefficient.
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