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Abstract. The Strebel point is a Teichmüller equivalence class in the Teichmüller space
that has a certain rigidity in the extremality of the maximal dilatation. In this paper,
we give a sufficient condition in terms of the Schwarzian derivative for a Teichmüller
equivalence class of the universal Teichmüller space under which the class is a Strebel
point. As an application, we construct a Teichmüller equivalence class that is a Strebel
point and that is not an asymptotically conformal class.
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1 Introduction

The Teichmüller space is the deformation space of marked Riemann surfaces. Indeed,
the space is defined as the quotient space of the family of marked Riemann surfaces by a
certain topological equivalence relation. Each element of the Teichmüller space is called
the Teichmüller equivalence class. Especially, the Teichmüller space of the hyperbolic
plane is called the universal Teichmüller space, denoted by T.

It is known that each Teichmüller equivalence class has a quasiconformal mapping
with smallest maximal dilatation in its class, which is called extremal. It is generally
difficult to find an extremal quasiconformal mapping in each Teichmüller equivalence
class. However the extremal quasiconformal mapping is uniquely determined in a cer-
tain Teichmüller equivalence class named the Strebel point, which means the class where
the boundary dilatation is less than the maximal dilatation. This result is called Strebel’s
frame mapping theorem (see Chapter 4 in [5]). There exist several studies of the Strebel
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point. For example, Lakic [6] proved that the set of Strebel points is open and dense in
the Teichmüller space and Earle and Li [4] showed that a Teichmüller equivalence class τ
is a Strebel point if and only if there exists exactly one geodesic connecting the basepoint
to τ in the Teichmüller distance. Hence the Strebel point is an important concept for the
Teichmüller theory.

In this paper, we deal with Strebel points of the universal Teichmüller space T. In
other words, we will give a sufficient condition for a Teichmüller equivalence class un-
der which the class is a Strebel point. We take ∆

∗ = {|z|> 1}∪{∞} as the model of the
hyperbolic plane. The main tool is the Schwarzian derivative, which induces a homeo-
morphic embedding of T into the Banach space B of holomorphic functions on the unit
disk ∆={|z|<1} with finite hyperbolic sup-norm

‖ϕ‖B=sup
z∈∆

(1−|z|2)2|ϕ(z)|.

We have preliminaries in Section 2 and Section 3. Section 2 is devoted to introduce
some properties of the Schwarzian derivative in the Teichmüller theory. Especially, we
discuss the quasiconformal extensibility of a meromorphic function on ∆ to the extended
complex plane Ĉ = C∪{∞} by estimating the hyperbolic sup-norm of its Schwarzian
derivative. Section 3 contains a brief summary of the universal Teichmüller space and
Strebel points. We introduce an example of Strebel points named the asymptotically con-
formal class, whose boundary dilatation vanishes. The set T0 of asymptotically conformal
classes is a closed submanifold of T. In fact, T0 is embedded into a closed subspace B0 of
the Banach space B, where each element of B vanishes in the semi-norm

‖ϕ‖B0
= limsup

|z|→1

(1−|z|2)2|ϕ(z)|.

We call this norm the boundary hyperbolic sup-norm. The subspace T0 is studied in its
analytic and metric structure (see [1, 2]).

In Section 4 our main result is stated and proved. We will require a comparison of
the hyperbolic and boundary hyperbolic sup-norm in the sufficient condition. As an
application, we construct a Teichmüller equivalence class that is a Strebel point and that
is not an asymptotically conformal class. Since it is generally difficult to find such a class
specifically, it is considered that such an example is significant.

2 Schwarzian derivative and quasiconformal mappings

In this section, we discuss a relation between the Schwarzian derivative and quasiconfor-
mal mappings. Let f be a meromorphic function in a simply connected domain A of Ĉ.
Then the expression

S f =
( f ′′

f ′

)′
−

1

2

( f ′′

f ′

)2
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is called the Schwarzian derivative of f . A sense-preserving homeomorphism g is quasicon-
formal if g is ACL (absolutely continuous on lines) in A and there exists a constant 0<k<1
such that

∣

∣∂̄g(z)
∣

∣≤ k
∣

∣∂g(z)
∣

∣, (2.1)

for a.e. z∈A. By the definition, the function

µ(z)=
∂̄g(z)

∂g(z)

is determined for a.e. z∈A, which is called the Beltrami coefficient of g. Since g is continu-
ous, µ is a measurable function in A, and from the inequality (2.1) we see that

‖µ‖∞ =ess sup
z∈A

|µ(z)|≤ k<1.

Conversely, it is known that for every measurable function µ in A with L∞-norm less than
1, there exists a quasiconformal mapping g in A with Beltrami coefficient µ.

We first state that the Schwarzian derivative can be prescribed.

Proposition 2.1. Let ϕ be a holomorphic function in ∆. Then there exists a meromorphic
function f in ∆ such that

S f = ϕ.

The solution f is unique up to post-composition with Möbius transformation.

The Schwarzian derivative S f of a meromorphic function f relates the univalence and

quasiconformal extensibility of f to Ĉ through the hyperbolic sup-norm.

Proposition 2.2. Let f be a meromorphic function in ∆. If

‖S f ‖B<2, (2.2)

then f is univalent and can be extended to a quasiconformal mapping of Ĉ with Beltrami
coefficient

ν(1/z̄)=−
1

2
(z/z̄)2(1−|z|2)2S f (z), (2.3)

for z∈∆.

Conversely, if f is a quasiconformal mapping of Ĉ that is conformal in ∆, then the
hyperbolic sup-norm of the Schwarzian derivative S f |∆ can be estimated by the L∞-norm
of its Beltrami coefficient.

Proposition 2.3. Let f be a quasiconformal mapping of Ĉ that has the Beltrami coefficent
µ and that is conformal in ∆. Then

‖S f |∆‖B≤6‖µ‖∞. (2.4)

These propositions can be generalized to the case of meromorphic functions on an
arbitrary simply connected domain A. In this case, the constants 2, 6 in inequalities (2.2),
(2.4) are replaced to the ones depending only on A, respectively (see Chapter II in [7]).
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3 Universal Teichmüller space and Strebel points

In this section, we introduce the universal Teichmüller space and Strebel points.

Let Bel be the set of Beltrami coefficients on ∆
∗. For µ∈Bel, we extend µ to Ĉ by letting

µ ≡ 0 on ∆. Then there exists a quasiconformal mapping of Ĉ with extended Beltrami
coefficient µ. Let fµ be such a quasiconformal mapping normalized to fix 1, i, −1. Given
µ,ν∈Bel, µ and ν are Teichmüller equivalent if

fµ|∆ = fν|∆. (3.1)

Then the universal Teichmüller space T is defined as the quotient space of Bel by this equiv-
alence relation. For µ∈Bel, let [µ] be the Teichmüller equivalence class represented by
µ. The point of T determined by µ≡ 0 on ∆

∗ is especially called the base point of T and
denoted by 0.

For p,q∈T, define

dT(p,q)=
1

2
inflog

1+‖(µ−ν)/(1−µ̄ν)‖∞

1−‖(µ−ν)/(1−µ̄ν)‖∞

, (3.2)

where the infimum is taken over all µ∈ p and ν∈q. This function is called the Teichmüller
distance on T. The metric space (T,dT) is complete and contractible (cf. Chapter III in [7]).

For τ∈T, the expression

k(τ)= inf{‖µ‖∞ |µ∈τ}

is called the maximal dilatation of τ. Note that k(τ) = tanhdT(0,τ), which means that k
measures the difference between the base point and τ with respect to the deformation of
marked conformal structures on ∆

∗. Similarly to the maximal dilatation, define

h∗(µ)= inf{‖µ|∆∗\E‖∞|E⊂∆
∗ : compact in Ĉ}

for µ∈Bel and

h(τ)= inf{h∗(µ)|µ∈τ}

for τ ∈ T. The expression h(τ) is called the boundary dilatation of τ. By the definition, it
follows immediately that for any τ∈T,

h(τ)≤ k(τ). (3.3)

A Teichmüller equivalence class τ∈T is called a Strebel point if h(τ)< k(τ).
As we mentioned previously, the Strebel point has a certain rigidity in the exremality

of Teichmüller equivalence classes. For any τ∈T, there exists a Beltrami coefficient on ∆

such that k(τ)= ‖µ‖∞ . Such a Beltrami coefficient µ is said to be extremal in τ. If τ is a
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Strebel point, then there exists a holomorphic function ϕ on ∆
∗ with

∫∫

∆∗ |ϕ(z)|dxdy= 1
such that the extremal Beltrami coefficient of τ is uniquely given by

k(τ)
ϕ

|ϕ|
. (3.4)

A typical example of Strebel points is the asymptotically conformal class. A Teichmüller
equivalence class τ ∈ T is asymptotically conformal if h(τ)= 0. Recall that T0 is the set of
asymptotically conformal classes in T and B0 be the set of holomorphic functions on ∆

with ‖ϕ‖B0
=0. It follows that [µ]∈T0 if and only if S fµ|∆ ∈B0 (cf. [3]).

4 Main theorem and an application

In this section, we state and show the main theorem.

Theorem 4.1. If a Teichmüller equivalence class [µ]∈T satisfies

3‖S fµ |∆‖B0
<‖S fµ|∆‖B<2, (4.1)

then [µ] is a Strebel point.

Proof. The second inequality of condition (4.1) corresponds to condition (2.2). Then it
follows from Proposition 2.2 that fµ|∆ has another quasiconformal extension to Ĉ with
Beltrami coefficient ν of form (2.3). Since fν|∆ = fµ|∆, ν belongs to [µ]. By inequality (2.4)
and the first inequality of condition (4.1), we have

h([µ])≤h∗(ν)=
‖S fµ |∆‖B0

2
<

‖S fµ |∆‖B

6
≤ k([µ]).

Therefore [µ] is a Strebel point.

As an application of this theorem, we construct a Teichmüller equivalence class that
is a Strebel point and that is not an asymptotically conformal class.

For 1<R<25/4−1, set

ϕR(z)=
(R−z)2

(1−z)2

on ∆. It clearly follows that ϕ is holomorphic in ∆. Fix 0≤ r<1 and let

αR(θ)= |ϕR(reiθ)|=
R2−2Rrcosθ+r2

1−2rcosθ+r2

for 0≤ θ<2π. By differentiating αR, we have

α′
R(θ)=

2r(R−r2)(1−R)sinθ

(1−2rcosθ+r2)2
.
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Then it follows that

max
0≤θ<2π

αR(θ)=αR(0)=
(R−r)2

(1−r)2
.

Let βR(r)=(1−r2)2max0≤θ<2π αR(θ)=(1+r)2(R−r)2. By a simple calculation, we have

‖ϕR‖B= sup
0≤r<1

βR(r)=βR((R−1)/2)=
(R+1

2

)4

and
‖ϕR‖B0

= limsup
r→1−0

βR(r)=4(R−1)2. (4.2)

Since ϕR is holomorphic in ∆, it follows from Proposition 2.1 that there exists a meromor-
phic function fR in ∆ such that

S fR
= ϕR.

This fact and R<25/4−1 imply that ‖S fR
‖B<2. By Proposition 2.2, fR is univalent in ∆

and has a quasiconformal extension to Ĉ with Beltrami coefficient

µR(1/z̄)=−
1

2
(z/z̄)2(1−|z|2)2S fR

(z)

for z∈∆. It follows from formula (4.2) that the Teichmüller equivalence class [µR] is not
asymptotically conformal for 1<R<25/4−1. By a simple computation, we have

3‖S fR
‖B0

<‖S fR
‖B

for 1<R<25/4−1. From Theorem 4.1, [µR] is a Strebel point and is not an asymptotically
conformal for 1<R<25/4−1.
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