Boundedness for Multilinear Commutators of Marcinkiewicz Integral on Morrey-Herz Spaces with Non Doubling Measures

Jianglong $\mathrm{Wu}^{1, *}$ and Qingguo Liu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, Hei Longjiang, China
${ }^{2}$ University of Nove Gorica, Nova Gorica 5000, Slovenia

Received 7 September 2012

Abstract

In this paper, the authors establish the boundedness of multilinear commutators generated by a Marcinkiewicz integral operator and a $\operatorname{RBMO}(\mu)$ function on homogeneous Morrey-Herz spaces with non doubling measures.

Key Words: Marcinkiewicz integral, commutator, Morrey-Herz space, non doubling measure, RBMO function.

AMS Subject Classifications: 47B47, 42B20, 47A30

1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley g function, Marcinkiewicz [1] introduced the operator

$$
\mathcal{M}(f)(x)=\left(\int_{0}^{\pi} \frac{|F(x+t)+F(x-t)-2 F(x)|^{2}}{t^{3}} \mathrm{~d} t\right)^{\frac{1}{2}}, \quad x \in[0,2 \pi],
$$

where $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$. This operator is now called the Marcinkiewicz integral. Zygmund [2] proved that the operator \mathcal{M} is bounded on the Lebesgue space $L^{p}([0,2 \pi])$ for $p \in(1, \infty)$. Stein [3] generalized the above Marcinkiewicz integral to the following higherdimensional case. Let Ω be homogeneous of degree zero in \mathbf{R}^{d} for $d \geq 2$, integrable and have mean value zero on the unit sphere S^{d-1}. The higher-dimensional Marcinkiewicz integral is defined by

$$
\mathcal{M}_{\Omega}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{d-1}} f(y) \mathrm{d} y\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{1}{2}}, \quad x \in \mathbf{R}^{d} .
$$

[^0]Stein in [3] proved that if $\Omega \in \operatorname{Lip}_{\delta}\left(S^{d-1}\right)$ for some $\delta \in(0,1]$, then \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{d}\right)$ for any $p \in(1,2]$, and is also bounded from $L^{1}\left(\mathbf{R}^{d}\right)$ to $L^{1, \infty}\left(\mathbf{R}^{d}\right)$. Since then, a lot of papers focus on this operator. For some recent development, we mention that Al-Salman et al. in [4] obtained the $L^{p}\left(\mathbf{R}^{d}\right)$-boundedness for $p \in(1, \infty)$ of \mathcal{M}_{Ω} if $\Omega \in L(\log L)^{1 / 2}\left(S^{d-1}\right)$; Fan and Sato in [5] proved that \mathcal{M}_{Ω} is bounded from the Lebesgue space $L^{1}\left(\mathbf{R}^{d}\right)$ to the weak Lebesgue space $L^{1, \infty}\left(\mathbf{R}^{d}\right)$ if $\Omega \in L \log L\left(S^{d-1}\right)$. There are many other interesting works for this operator, among them we refer to [6,7] and their references. On the other hand, Torchinsky and Wang in [8] first introduced the commutator generated by the Marcinkiewicz integral \mathcal{M}_{Ω} and the classical $\operatorname{BMO}\left(\mathbf{R}^{d}\right)$ function, and established its $L^{p}\left(\mathbf{R}^{d}\right)$-boundedness for $p \in(1, \infty)$ when $\Omega \in \operatorname{Lip}_{\delta}\left(S^{d-1}\right)$ for some $\delta \in(0,1]$. Such boundedness of this commutator is further discussed in $[9,10]$ when Ω only satisfies certain size conditions. Moreover, its weak type endpoint estimate is obtained in [11,12] when $\Omega \in \operatorname{Lip}_{\delta}\left(S^{d-1}\right)$ for some $\delta \in(0,1]$, and its weight weak type endpoint estimate is obtained in $[13,14]$ when Ω satisfies a kind of Dini conditions. Also see [15-17] et al. for more informations.

Motivated by the work above, the main purpose of this paper is to establish a similar theory for the multilinear commutator generated by a Marcinkiewicz integral operator and a $\operatorname{RBMO}(\mu)$ function or $\operatorname{Osc}_{\exp L^{r}}(\mu)$ function on \mathbf{R}^{d} with a positive Radon measure which may be non doubling.

To be precise, let μ be a positive Radon measure on \mathbf{R}^{d} which only satisfies the following growth condition that for all $x \in \mathbf{R}^{d}$ and all $r>0$,

$$
\begin{equation*}
\mu(B(x, r)) \leq C_{0} r^{n}, \tag{1.1}
\end{equation*}
$$

where $C_{0}>0$ and n are some positive constants, $0<n \leq d$, and $B(x, r)$ is the open ball centered at x and having radius r. We recall that μ is said to be a doubling measure, if there is a positive constant C such that for any $x \in \operatorname{supp} \mu$ and $r>0$,

$$
\mu(B(x, 2 r)) \leq C \mu(B(x, r)),
$$

and that the doubling condition is a key assumption in the classical theory of harmonic analysis. In recent years, many classical results concerning the theory of CalderónZygmund operators and function spaces have been proved to be still valid if the Lebesgue measure is substituted by a measure μ as in (1.1); see [18-25]. We mention that the analysis on non-homogeneous spaces play an essential role in solving the longstanding open Painlevé's problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For a cube $Q \subset \mathbf{R}^{d}$, we mean a closed cube whose sides parallel to the coordinate axes, and we denote its side length by $l(Q)$ and its center by x_{Q}. Let $\gamma>1$ and $\beta>\gamma^{n}$. We say that a cube Q is an (γ, β)-doubling cube if $\mu(\gamma Q) \leq \beta \mu(Q)$, where γQ denotes the cube with the same center as Q and $l(\gamma Q)=\gamma l(Q)$. For definiteness, if γ and β are not specified, by a doubling cube we mean a $\left(2,2^{d+1}\right)$-doubling cube. Especially, for any given cube Q, we denote by \tilde{Q} the smallest doubling cube which contains Q and has the same center as Q.

Given two cubes $Q_{1} \subset Q_{2}$ in \mathbf{R}^{d}, set

$$
K_{Q_{1}, Q_{2}}=1+\sum_{k=1}^{N_{Q_{1}, Q_{2}}} \frac{\mu\left(2^{k} Q_{1}\right)}{\left[l\left(2^{k} Q_{1}\right)\right]^{n}},
$$

where $N_{Q_{1}, Q_{2}}$ is the smallest positive integer k such that

$$
l\left(2^{k} Q_{1}\right) \geq l\left(Q_{2}\right)
$$

The concept of $K_{Q_{1}, Q_{2}}$ is first appeared in [20], where some useful properties of $K_{Q_{1}, Q_{2}}$ can be found. The following space $\operatorname{RBMO}(\mu)$ is introduced by Tolsa in [20].
Definition 1.1. (see [20]) Let $\rho>1$ be a fixed constant. A function $b \in L_{\text {loc }}^{1}(\mu)$ is said to be in the space $\operatorname{RBMO}(\mu)$ if there exists some constant $B>0$ such that
(i) for any cube Q centered at some point of $\operatorname{supp}(\mu)$,

$$
\sup _{Q} \frac{1}{\mu(\rho Q)} \int_{Q}\left|b(x)-m_{\tilde{Q}}(b)\right| \mathrm{d} \mu(x) \leq B<\infty .
$$

(ii) for any two doubling cubes $Q_{1} \subset Q_{2}$,

$$
\left|m_{Q_{1}}(b)-m_{Q_{2}}(b)\right| \leq B K_{Q_{1}, Q_{2}} .
$$

Where the supremum is taken over all cubes centered at some point of $\operatorname{supp}(\mu)$, and $m_{Q}(b)$ denotes the mean value of b over the cube Q. The minimal constant B as above is defined to be the norm of b in the space $\operatorname{RBMO}(\mu)$ and denoted by

$$
\|b\|_{\operatorname{RBMO}(\mu)}=\|b\|_{*} .
$$

Tolsa in [20] proved that the definition of the space $\operatorname{RBMO}(\mu)$ is independent of the choice of ρ. The definition of the following function space of Orlicz type is a variant with a non doubling measure of the space $\mathrm{Osc}_{\mathrm{expl}^{r}}$ in [22].
Definition 1.2. (see [22]) For $r \geq 1$, a function $b \in L_{\mathrm{loc}}^{1}(\mu)$ is said to be in the space $\operatorname{Osc}_{\exp L^{r}}(\mu)$ if there is a constant $B_{1}>0$ such that
(i) for any Q,

$$
\left\|b-m_{\tilde{Q}}(b)\right\|_{\exp L^{r}, Q, \mu / \mu(2 Q)}=\inf \left\{\gamma>0: \frac{1}{\mu(2 Q)} \int_{Q} \exp \left(\frac{\left|b-m_{\tilde{Q}}(b)\right|}{\gamma}\right)^{r} \mathrm{~d} \mu \leq 2\right\} \leq B_{1} .
$$

(ii) for any doubling cubes $Q_{1} \subset Q_{2}$,

$$
\left|m_{Q_{1}}(b)-m_{Q_{2}}(b)\right| \leq B_{1} K_{Q_{1}, Q_{2}} .
$$

The minimal constant B_{1} satisfying (i) and (ii) is the norm of b in the space $\operatorname{Osc}_{\exp L^{r}}(\mu)$ and denoted by $\|b\|_{\mathrm{Osc}_{\text {exp } L}{ }^{r}(\mu)}$.

Obviously, for any $r \geq 1, \operatorname{Osc}_{\exp L^{r}}(\mu) \subset \operatorname{RBMO}(\mu)$. Moreover, from John-Nirenberg's inequality in [20], it follows that $\operatorname{Osc}_{\exp L^{1}}(\mu)=\operatorname{RBMO}(\mu)$. In [26], Pérez and TrujilloGonzález point that if μ is a Lebesgue measure in \mathbf{R}^{d}, the counterpart of the space $\operatorname{Osc}_{\exp L^{r}}(\mu)$ when $r>1$ is a proper subspace of the classical space $\operatorname{BMO}\left(\mathbf{R}^{d}\right)$. However, it is still unknown whether the space $\mathrm{Osc}_{\exp L^{r}}(\mu)$ is a proper subspace of the space $\operatorname{RBMO}(\mu)$ when μ is a non doubling measure.

We now introduce the Marcinkiewicz integral related to the measure μ as in (1.1). Let K be a locally integrable function on $\mathbf{R}^{d} \times \mathbf{R}^{d} \backslash\{(x, y): x=y\}$. Assume that there exists a constant $C>0$ such that for all $x, y, y^{\prime} \in \mathbf{R}^{d}$ with $x \neq y$,

$$
\begin{equation*}
|K(x, y)| \leq C|x-y|^{-(n-1)} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{|x-y| \geq 2\left|y-y^{\prime}\right|} \frac{\left|K(x, y)-K\left(x, y^{\prime}\right)\right|+\left|K(y, x)-K\left(y^{\prime}, x\right)\right|}{|x-y|} \mathrm{d} \mu(x) \leq C . \tag{1.3}
\end{equation*}
$$

The Marcinkiewicz integral $\mathcal{M}(f)$ associated to the above kernel K and the measure μ as in (1.1) is defined by

$$
\begin{equation*}
\mathcal{M}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t} K(x, y) f(y) \mathrm{d} \mu(y)\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{1}{2}}, \quad x \in \mathbf{R}^{d} . \tag{1.4}
\end{equation*}
$$

Obviously, if μ is the d-dimensional Lebesgue measure in \mathbf{R}^{d}, and

$$
K(x, y)=\frac{\Omega(x-y)}{|x-y|^{d-1}}
$$

with Ω homogeneous of degree zero and $\Omega \in \operatorname{Lip}_{\delta}\left(S^{d-1}\right)$ for some $(\delta \in(0,1]$, then it is easy to verify that K satisfies (1.2) and (1.3), and \mathcal{M} in (1.4) is just the Marcinkiewicz integral \mathcal{M}_{Ω} introduced by Stein in [3]. Thus, \mathcal{M} in (1.4) is a natural generalization of the classical Marcinkiewicz integral in the current setting.

To state the main result, we also need to introduce the following notation. As in [26], given any positive integer m, for all $i \in[1, m]$, we denote by \mathfrak{C}_{i}^{m} the family of all finite subsets $\sigma=\{\sigma(1), \sigma(2), \cdots, \sigma(i)\}$ of $\{1,2, \cdots, m\}$ with i different elements. For any $\sigma \in \mathfrak{C}_{i}^{m}$, we define the complementary sequence $\sigma^{\prime}=\{1,2, \cdots, m\} \backslash \sigma$.

Let $\vec{b}=\left(b_{1}, b_{2}, \cdots, b_{m}\right)$ be a finite family of locally integrable functions. For all $1 \leq i \leq m$ and $\sigma=\{\sigma(1), \sigma(2), \cdots, \sigma(i)\} \in \mathrm{C}_{i}^{m}$, we will denote $\vec{b}_{\sigma}=\left(b_{\sigma(1)}, b_{\sigma(2)}, \cdots, b_{\sigma(i)}\right)$ and the product $b_{\sigma}=b_{\sigma(1)} b_{\sigma(2)} \cdots b_{\sigma(i)}$. With this notation, we write

$$
(b(x)-b(y))_{\sigma}=\left(b_{\sigma(1)}(x)-b_{\sigma(1)}(y)\right) \cdots\left(b_{\sigma(i)}(x)-b_{\sigma(i)}(y)\right),
$$

and

$$
\left(b_{Q}-b(y)\right)_{\sigma}=\left(\left(b_{\sigma(1)}\right)_{Q}-b_{\sigma(1)}(y)\right) \cdots\left(\left(b_{\sigma(i)}\right)_{Q}-b_{\sigma(i)}(y)\right),
$$

where Q is any cube in $\mathbf{R}^{d}, x, y \in \mathbf{R}^{d}$, and

$$
f_{Q}=\frac{1}{|Q|} \int_{Q} f(y) \mathrm{d} y
$$

In particular, for $b_{i} \in \operatorname{RBMO}(\mu)(1 \leq i \leq m)$, we write

$$
\left\|\vec{b}_{\sigma}\right\|_{*}=\left\|b_{\sigma(1)}\right\|_{*}\left\|b_{\sigma(2)}\right\|_{*} \cdots\left\|b_{\sigma(i)}\right\|_{*} .
$$

If $\sigma=\{1,2, \cdots, m\}$, then σ^{\prime} is an empty set, we denote $\left\|\vec{b}_{\sigma}\right\|_{*}$ simply by $\|\vec{b}\|_{*}$.
Let m be a positive integer, $b, b_{i} \in \operatorname{RBMO}(\mu)(1 \leq i \leq m)$ and $\vec{b}=\left(b_{1}, b_{2}, \cdots, b_{m}\right)$, we define the multilinear commutators $\mathcal{M}_{\vec{b}}$ by

$$
\begin{equation*}
\mathcal{M}_{\vec{b}}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t} K(x, y) f(y) \times \prod_{i=1}^{m}\left(b_{i}(x)-b_{i}(y)\right) \mathrm{d} y\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{1}{2}} \tag{1.5}
\end{equation*}
$$

for $x \in \mathbf{R}^{d}$ with kernel K satisfying (1.2) and the following Hörmander-type condition that

$$
\sup _{\substack{\left|y-y^{\prime}\right| \leq r r \\ r \gg, y^{\prime} \in \mathbf{R}^{d}}} \sum_{l=1}^{\infty} l^{m} \int_{2^{l} r<|x-y| \leq 2^{l+1 r}}\left(\left|K(x, y)-K\left(x, y^{\prime}\right)\right|+\left|K(y, x)-K\left(y^{\prime}, x\right)\right|\right) \frac{1}{|x-y|} \mathrm{d} \mu(x)
$$

$$
\begin{equation*}
\leq C \tag{1.6}
\end{equation*}
$$

which is slightly stronger than (1.3). In what follows, if $m=1$ and $\vec{b}=b$, we denote $\mathcal{M}_{\vec{b}}(f)$ simply by $\mathcal{M}_{b}(f)$; and when $b_{1}=b_{2}=\cdots=b_{m}=b$, we denote $\mathcal{M}_{\vec{b}}(f)$ simply by $\mathcal{M}_{b, m}(f)$ which is called the m th order commutator.

Let $B_{k}=\left\{x \in \mathbf{R}^{d}:|x| \leq 2^{k}\right\}$ and $A_{k}=B_{k} \backslash B_{k-1}$ for $k \in \mathbf{Z}$. And let $\chi_{k}=\chi_{A_{k}}$ for $k \in \mathbf{Z}$ be the characteristic function of the set A_{k}.
Definition 1.3. (see [23]) Let $\alpha \in \mathbf{R}, 0<p \leq \infty, 0<q<\infty$ and $\lambda \geq 0$. The homogeneous Morrey-Herz spaces $M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)$ are defined by

$$
M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)=\left\{f \in L_{l o c}^{q}\left(\mathbf{R}^{d} \backslash\{0\}, \mu\right):\|f\|_{M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)}<\infty\right\},
$$

where

$$
\|f\|_{M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)}=\sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \alpha p}\left\|f \chi_{k}\right\|_{L^{q}(\mu)}^{p}\right)^{\frac{1}{p}}
$$

with the usual modifications made when $p=\infty$.
Compare the homogeneous Morrey-Herz spaces $M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)$ with the homogeneous Herz spaces $\dot{K}_{q}^{\alpha, p}(\mu)$ (see [25]), where

$$
\dot{K}_{q}^{\alpha, p}(\mu)=\left\{f \in L_{l o c}^{q}\left(\mathbf{R}^{d} \backslash\{0\}, \mu\right): \sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left\|f \chi_{k}\right\|_{L^{q}(\mu)}^{p}<\infty\right\} .
$$

Obviously, $M \dot{K}_{p, q}^{\alpha, 0}(\mu)=\dot{K}_{q}^{\alpha, p}(\mu)$. Moreover, it is easy to observe that $\dot{K}_{q}^{0, q}(\mu)=L^{q}(\mu)$.
Throughout this paper, C denotes a constant that is independent of the main parameters involved but whose value may differ from line to line. For any index $p \in[1, \infty]$, we denote by p^{\prime} its conjugate index, namely, $1 / p+1 / p^{\prime}=1$. For $A \sim B$, we mean that there is a constant $C>0$ such that $C^{-1} B \leq A \leq C B$.

2 Main result and its proof

The following theorem is the main result of this paper, which is new even when $b_{1}=b_{2}=$ $\cdots=b_{m}=b$, namely, Theorem 2.1 is also new even for the commutator of the m-th order.

Theorem 2.1. Let $\lambda \geq 0,0<p<\infty, 1<q<\infty$. If \mathcal{M} in (1.4) is bounded on $L^{2}(\mu)$ when $K(x, y)$ satisfies (1.2) and (1.6), then for any positive integer m and $b_{i} \in \operatorname{RBMO}(\mu)(1 \leq i \leq m)$, the multilinear commutator $\mathcal{M}_{\vec{b}}$ in (1.5) is bounded on $M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)$ with

$$
-\frac{n}{q}+\lambda<\alpha<n\left(1-\frac{1}{q}\right)+\lambda
$$

Proof. Let $f \in M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)$. Write

$$
f(x)=\sum_{j=-\infty}^{\infty} f(x) \chi_{j}(x) \equiv \sum_{j=-\infty}^{\infty} f_{j}(x)
$$

Then, we have

$$
\begin{aligned}
\left\|\mathcal{M}_{\vec{b}}(f)\right\|_{M \dot{R}_{p, q}^{\alpha, \lambda}(\mu)}= & \sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \alpha p}\left\|\mathcal{M}_{\vec{b}}(f) \chi_{k}\right\|_{L^{q}(\mu)}^{p}\right)^{\frac{1}{p}} \\
\leq & C \sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k+1}\left\|\chi_{k} \mathcal{M}_{\vec{b}}\left(f_{j}\right)\right\|_{L^{q}(\mu)}\right)^{p}\right)^{\frac{1}{p}} \\
& +C \sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \alpha p}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k} \mathcal{M}_{\vec{b}}\left(f_{j}\right)\right\|_{L^{q}(\mu)}\right)^{p}\right)^{\frac{1}{p}} \\
\equiv & E_{1}+E_{2} .
\end{aligned}
$$

To estimate E_{1}, we first consider

$$
\begin{aligned}
\left\|\chi_{k} \mathcal{N}_{\vec{b}}\left(f_{j}\right)\right\|_{L^{q}(\mu)} \leq & \left(\int_{A_{k}}\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t} K(x, y) f_{j}(y) \cdot \prod_{i=1}^{m}\left(b_{i}(x)-b_{i}(y)\right) \mathrm{d} \mu(y)\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{q}{2}} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
\leq & \left(\int_{A_{k}}\left(\int_{0}^{|x|}\left(\int_{|x-y| \leq t}\left|K(x, y) f_{j}(y)\right| \cdot \prod_{i=1}^{m}\left|b_{i}(x)-b_{i}(y)\right| \mathrm{d} \mu(y)\right)^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{q}{2}} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
& +\left(\int_{A_{k}}\left(\int_{|x|}^{\infty}\left(\int_{|x-y| \leq t}\left|K(x, y) f_{j}(y)\right| \cdot \prod_{i=1}^{m}\left|b_{i}(x)-b_{i}(y)\right| \mathrm{d} \mu(y)\right)^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{q}{2}} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
= & E_{11}+E_{12} .
\end{aligned}
$$

Note that when $x \in A_{k}, y \in A_{j}$ and $j \leq k+1$, we have $|x| \sim|x-y|$. Therefore, for $x \in A_{k}$, by the mean-value theorem of differentials, we have

$$
\begin{equation*}
\left|\frac{1}{|x|^{2}}-\frac{1}{|x-y|^{2}}\right| \leq C \frac{|y|}{|x-y|^{3}} . \tag{2.1}
\end{equation*}
$$

Let Q_{j} be the smallest cube which contains A_{j} with center at the origin. For $j \leq k+1$, by (1.2), (2.1), $|x| \sim|x-y|$, Minkowski's inequality and with the aid of the fact

$$
\prod_{i=1}^{m}\left(b_{i}(x)-b_{i}(y)\right)=\sum_{i=0 \sigma \in \mathrm{C}_{i}^{m}}^{m}\left(b(x)-m_{\tilde{Q}_{j}}(b)\right)_{\sigma}\left(m_{\tilde{Q}_{j}}(b)-b(y)\right)_{\sigma^{\prime}}
$$

we have

$$
\begin{aligned}
E_{11} \leq & C\left(\int_{A_{k}}\left(\int_{A_{j}} \frac{|f(y)| \prod_{i=1}^{m}\left|b_{i}(x)-b_{i}(y)\right|}{|x-y|^{n-1}} \frac{|y|^{\frac{1}{2}}}{|x-y|^{\frac{3}{2}}} \mathrm{~d} \mu(y)\right)^{q} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
\leq & C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}\right)}\left(\int_{A_{k}}\left(\int_{A_{j}}|f(y)| \prod_{i=1}^{m}\left|b_{i}(x)-m_{\tilde{Q}_{j}}\left(b_{i}\right)\right| \mathrm{d} \mu(y)\right)^{q} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
& +C 2^{\frac{1}{2}-k\left(n+\frac{1}{2}\right)}\left(\int _ { A _ { k } } ^ { m - 1 } \sum _ { i = 1 } ^ { m - 1 } \sum _ { \sigma \in \mathcal { C } _ { i } ^ { m } } \left(\int_{A_{j}} \mid\left(b(x)-m_{\tilde{Q}_{j}}(b)\right)_{\sigma}\right.\right. \\
& \left.\left.\times\left(m_{\tilde{Q}_{j}}(b)-b(y)\right)_{\sigma^{\prime}}|f(y)| \mathrm{d} \mu(y)\right)^{q} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \\
& +C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}\right)}\left(\int_{A_{k}}\left(\int_{A_{j}}|f(y)| \prod_{i=1}^{m}\left|m_{\tilde{Q}_{j}}\left(b_{i}\right)-b_{i}(y)\right| \mathrm{d} \mu(y)\right)^{q} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}}+E_{112}+E_{113} .
\end{aligned}
$$

We first estimate the term E_{111}. With the aid of the fact $K_{\tilde{Q}_{j} \tilde{E}_{k}} \leq C(k-j)$ (see Lemma 2.1 in [20]), by (1.1), Minkowski's inequality, Hölder's inequality and the property of RBMO function, we have

$$
\begin{aligned}
& E_{111} \leq C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}\right)}\left(\int_{A_{j}}|f(y)|\left(\int_{A_{k}} \prod_{i=1}^{m}\left|b_{i}(x)-m_{\tilde{Q}_{j}}\left(b_{i}\right)\right|^{q} \mathrm{~d} \mu(x)\right)^{\frac{1}{q}} \mathrm{~d} \mu(y)\right) \\
& \leq C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}\right)}\left(\int_{A_{j}}|f(y)| \prod_{i=1}^{m}\left(\int_{A_{k}}\left|b_{i}(x)-m_{\tilde{Q}_{j}}\left(b_{i}\right)\right|^{r_{i q}} \mathrm{~d} \mu(x)\right)^{\frac{1}{r_{i q}}} \mathrm{~d} \mu(y)\right) \\
& \leq C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}\right)}\left(\int_{A_{j}}|f(y)| \prod_{i=1}^{m}\left(2^{\frac{k n}{r_{i} \dagger}}\left\|b_{i}\right\|_{*}+2^{\frac{k n}{r_{i}{ }^{n}}} K_{\tilde{Q}_{j} \cdot \tilde{\mathscr{E}}_{k}}\left\|b_{i}\right\|_{*}\right) \mathrm{d} \mu(y)\right) \\
& \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{q}\right)}\left\|f_{j}\right\|_{L q(\mu)},
\end{aligned}
$$

where $1 / r_{1}+\cdots+1 / r_{m}=1\left(r_{i}>1, i \in[1, m]\right)$.

Now, let us consider E_{112}. Similar to the estimate for E_{111}, we have

$$
\begin{aligned}
E_{112} & \leq C 2^{\frac{j}{2}-k\left(n+\frac{1}{2}-\frac{n}{q}\right)}\left(\sum_{i=1}^{m-1} \sum_{\sigma \in \in_{i}^{m}}(k-j)^{i}\left\|\vec{b}_{\sigma}\right\|_{*} \int_{A_{j}}\left|\left(m_{\tilde{Q}_{j}}(b)-b(y)\right)_{\sigma^{\prime}}\right||f(y)| \mathrm{d} \mu(y)\right) \\
& \leq C(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{q^{\prime}}\right)}\left(\sum_{i=1}^{m-1} \sum_{\sigma \in \mathrm{C}_{i}^{m}}\left\|\vec{b}_{\sigma}\right\|_{*}\left\|\vec{b}_{\sigma^{\prime}}\right\|_{*}\left\|f_{j}\right\|_{L^{q}(\mu)}\right) \\
& \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{\left.q^{\prime}\right)}\right.}\left\|f_{i}\right\|_{L^{q}(\mu)} .
\end{aligned}
$$

For E_{113}, similar to the estimate for E_{111} and E_{112}, we also have

$$
E_{113} \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{q^{\prime}}\right)}\left\|f_{i}\right\|_{L^{q}(\mu)}
$$

Combining the estimates above then gives

$$
E_{11} \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{q^{\prime}}\right)}\left\|f_{i}\right\|_{L^{q}(\mu)}
$$

For E_{12}, similar to the estimate for E_{11}, we can get

$$
E_{12} \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{\left.q^{\prime}\right)}\right.}\left\|f_{i}\right\|_{L^{q}(\mu)}
$$

Then, when $j \leq k+1$, we obtain

$$
\left\|\chi_{k} \mathcal{M}_{\vec{b}}\left(f_{j}\right)\right\|_{L^{q}(\mu)} \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}(k-j)^{m} 2^{(j-k)\left(\frac{1}{2}+\frac{n}{q^{\prime}}\right)}\left\|f_{i}\right\|_{L^{q}(\mu)}
$$

Therefore, using the fact for

$$
\left\|f_{j}\right\|_{L^{q}(\mu)}^{p} \leq 2^{-j \alpha p} \sum_{i=-\infty}^{j} 2^{i \alpha p}\left\|f_{i}\right\|_{L^{q}(\mu)^{\prime}}^{p}
$$

we get

$$
\begin{aligned}
E_{1} & \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*} \sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k+1}(k-j)^{m} 2^{(j-k) \frac{n}{q^{\prime}}}\left\|f_{j}\right\|_{L^{q}(\mu)}\right)^{p}\right)^{\frac{1}{p}} \\
& \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*} \sup _{k_{0} \in \mathbf{Z}} 2^{-k_{0} \lambda}\left(\sum_{k=-\infty}^{k_{0}} 2^{k \lambda \lambda}\right)^{\frac{1}{p}}\|f\|_{M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)} \\
& \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}\|f\|_{M K_{p, q}^{\alpha, \lambda}(\mu)} .
\end{aligned}
$$

An argument similar to the estimate for E_{1}, and note that when $x \in A_{k}, y \in A_{j}$ and $j \geq k+2,|y| \sim|x-y|$. For $x \in A_{k}$, via the mean-value theorem of differentials gives

$$
\begin{equation*}
\left|\frac{1}{|y|^{2}}-\frac{1}{|x-y|^{2}}\right| \leq C \frac{|x|}{|x-y|^{3}} . \tag{2.2}
\end{equation*}
$$

We thus obtain

$$
E_{2} \leq C \prod_{i=1}^{m}\left\|b_{i}\right\|_{*}\|f\|_{M \dot{K}_{p, q}^{\alpha, \lambda}(\mu)}
$$

Combining the estimate above for E_{1} and E_{2}, we complete the proof of Theorem 2.1.
The result of Theorem 2.1 for $\lambda=0$ is also new on homogeneous Herz spaces $\dot{K}_{q}^{\alpha, p}(\mu)$. Furthermore, when $\alpha=\lambda=0$ and $p=q$ in Theorem 2.1 we can obtain the following corollary.

Corollary 2.1. Let $1<q<\infty$. If \mathcal{M} in (1.4) is bounded on $L^{2}(\mu)$ when $K(x, y)$ satisfies (1.2) and (1.6), then for any positive integer m and $b_{i} \in \operatorname{RBMO}(\mu)(1 \leq i \leq m)$, the multilinear commutator $\mathcal{M}_{\vec{b}}$ in (1.5) is bounded on $L^{q}(\mu)$.

Remark 2.1. The result above is also new for any $b_{i} \in \operatorname{Osc}_{\exp L^{r_{i}}}(\mu) \subset \operatorname{RBMO}(\mu)$, where $1 \leq r_{i}<\infty$ and $i=1,2, \cdots, m$.

Acknowledgments

Supported in part by the NSF (A200913) of Heilongjiang Provincethe Scientific and Technical Research Project (12531720) of the Education Department of Heilongjiang Province, the Pre-Research Project (SY201224) of Provincial Key Innovation and the NSF (11161042) of China.

References

[1] J. Marcinkiewicz, Sur Quelques Intégrales du type de Dini, Ann. Soc. Polon. Math., 17 (1938), 42-50.
[2] A. Zygmund, Trigonometric Series, 3rd Edition, Cambridge University Press, Cambridge, 2002.
[3] E. M. Stein, On the functions of littlewood-paley, lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 88(1958), 430-466.
[4] A. Al-Salman, H. Al-Qassem, L. C. Cheng and Y. Pan, L^{p} bounds for the function of Marcinkiewicz, Math. Res. Lett., 9 (2002), 697-700.
[5] D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels, Tôhoku Math. J., 53(2) (2001), 265-284.
[6] N. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia. Math., 135 (1999), 103-142.
[7] H. Wu, On Marcinkiewicz integrals operators with rough kernels, Integral Equations and Operator Theory, 52 (2005), 285-298.
[8] A. Torchinsky and S. Wang, A note on the Marcinkiewicz integrals, Colloq. Math., 60/61 (1990), 235-243.
[9] G. Hu, $L^{p}\left(\mathbf{R}^{n}\right)$ boundedness for a class of g-functions and applications, Hokkaido Math. J., 32 (2003), 497-521.
[10] G. Hu and D. Yan, On the commutator of the Marcinkiewicz integral, J. Math. Anal. Appl., 283 (2003), 351-361.
[11] Y. Ding, S. Lu and P. Zhang, Weighted weak type estimates for commutators of the Marcinkiewicz integrals, Sci. China Ser. A, 47(1) (2004), 83-95.
[12] P. Zhang, Weighted estimates for multilinear commutators of Marcinkiewicz integrals, Acta Math. Sin., 24(8) (2008), 1387-1400.
[13] P. Zhang, J. L. Wu and Q. G. Liu, Weighted endpoint estimates for multilinear commutators of Marcinkiewicz integrals, Acta Mathematica Scientia Ser. A, 32(5) (2012), 892-903.
[14] P. Zhang, Weighted endpoint estimates for commutators of Marcinkiewicz integrals, Acta Math. Sin., 26(9) (2010), 1709-1722.
[15] D. X. Chen, P. Zhang and J. C. Chen, Boundedness of Marcinkiewicz integrals on homogeneous kernel with high order commutators on Herz-Hardy spaces, Appl. Math. J. Chinese Univ. Ser. A, 19(1) (2004), 109-117.
[16] D. X. Chen and P. Zhang, The Marcinkiewicz integral with homogeneous kernel on the Herztype hardy spaces, Chinese Ann. Math. Ser. A, 25(3) (2004), 367-372.
[17] P. Zhang and S. H. Lan, Weak type estimates for commutators of the Marcinkiewicz integral on Herz-type spaces, Adv. Math., 36(1) (2007), 108-114.
[18] J. Orobitg and C. Pérez, A_{p} weights for non doubling measures in \mathbf{R}^{n} and applications, Trans. Amer. Math. Soc., 354 (2002), 2013-2033.
[19] G. E. Hu, H. B. Lin and D. C. Yang, Marcinkiewicz integrals with non-doubling measures, Integral Equations and Operator Theory, 58 (2007), 205-238.
[20] X. Tolsa, BMO, \mathbf{H}^{1} and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89-149.
[21] X. Tolsa, Painlevé's problem and the semiadditivity of analytic capacity, Acta Math., 190(1) (2003), 105-149.
[22] G. E. Hu, Y. Meng and D. C. Yang, Multilinear commutators of singular integrals with non doubling measures, Integral Equations and Operator Theory, 51(2) (2005), 235-255.
[23] J. L. Wu, Boundedness of fractional multilinear commutators on homogeneous Morrey-Herz spaces with non-doubling measures, Math. Pract. Theory, 39(7) (2009), 163-169.
[24] J. L. Wu and Q. G. Liu, Boundedness of Marcinkiewicz integral on Morrey-Herz spaces with non-doubling measures, Math. Pract. Theory, 42(9) (2012), 196-202.
[25] Y. Guo and Y. Meng, Boundedness of some operators and commutators in Herz space with non doubling measures, J. Beijing Normal University, 40(6) (2004), 725-731.
[26] C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65(2) (2002), 672-692.

[^0]: ${ }^{*}$ Corresponding author. Email addresses: j1-wu@163.com (J. L. Wu), liuqingguo1980@gmail.com (Q. G. Liu)

