ON THE LOCATION OF ZEROS OF A POLYNOMIAL

M. H. Gulzar
(University of Kashmir, India)

Received June 29, 2011

Abstract

In this paper we extend Enestrom -Kakeya theorem to a large class of polynomials with complex coefficients by putting less restrictions on the coefficients. Our results generalise and extend many known results in this direction.

Key words: polynomial, zero, bound
AMS (2010) subject classification: 30C10, 30C15

1 Introduction and Statement of Results

Let $P(z)$ be a polynomial of degree n. A classical result due to Enestrom and Kakeya ${ }^{[8]}$ concerning the bound for the moduli of the zeros of polynomials having positive coefficients is often stated as in the following theorem(see [8]) :

Theorem A (Enestrom-Kakeya). Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n whose coefficients satisfy

$$
0 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n}
$$

Then $P(z)$ has all its zeros in the closed unit disk $|z| \leq 1$.
In the literature there exist several generalisations of this result (see [1], [3], [4], [7], [8]). Recently Aziz and Zargar ${ }^{[2]}$ relaxed the hypothesis in several ways and proved:

Theorem B. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k \geq 1$

$$
k a_{n} \geq a_{n-1} \geq \ldots \geq a_{0}
$$

Then all the zeros of $P(z)$ lie in

$$
|z+k-1| \leq \frac{k a_{n}+\left|a_{0}\right|-a_{0}}{\left|a_{n}\right|}
$$

For ploynomials, whose coeffiencents are not necessarily real, Govil and Rehman ${ }^{[6]}$ proved the following generalisation of Theorem A:

Theorem C. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$, such that

$$
\alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{0} \geq 0
$$

where $\alpha_{n}>0$, then $P(z)$ has all its zeros in

$$
|z| \leq 1+\left(\frac{2}{\alpha_{n}}\right)\left(\sum_{j=0}^{n}\left|\beta_{j}\right|\right)
$$

More recently, Govil and Mc-tume ${ }^{[5]}$ proved the follwoing generalisations of Theorems B and C :

Theorem D. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some $k \geq 1$,

$$
k \alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{0}
$$

then $P(z)$ has all its zeros in

$$
|z+k-1| \leq \frac{k \alpha_{n}-\alpha_{0}+\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}
$$

Theorem E. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some $k \geq 1$,

$$
k \beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{0}
$$

then $P(z)$ has all its zeros in

$$
|z+k-1| \leq \frac{k \beta_{n}-\beta_{0}+\left|\beta_{0}\right|+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|}{\left|\beta_{n}\right|}
$$

In this paper we shall present some interesting generalizations of Theorems D and E and consequently of Enestrom-Kakeya Theorem. Our first result in this direction is the following:

Theorem 1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some $\rho \geq 0$,

$$
\rho+\alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{0}
$$

then $P(z)$ has all its zeros in the disk

$$
\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}-\alpha_{0}+\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|} .
$$

Remark 1. Taking $\rho=(k-1) \alpha_{n}$, Theorem 1 reduces to Thoerem D. Theorem C is a special case of theorem 1. To see this we take $\rho=0, \alpha_{0}>0$.

The following corollary is obtained by taking $\rho=\alpha_{n-1}-\alpha_{n}$ and $\alpha_{0} \geq 0$ in Thoerem 1.
Corollary 1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. Iffor some $k \geq 1$,

$$
\alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{0}>0
$$

then $P(z)$ has all its zeros in

$$
\left|z+\frac{\alpha_{n-1}}{\alpha_{n}}-1\right| \leq \frac{\alpha_{n-1}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}
$$

Applying Theorem 1 to $P(t z)$, we obtain the following result:
Corollary 2. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some real numbers $\rho \geq 0$ and $t>0$,

$$
\rho+t^{n} \alpha_{n} \geq t^{n-1} \alpha_{n-1} \geq \ldots \geq t \alpha_{1} \geq \alpha_{0}
$$

then $P(z)$ has all its zeros in the disk

$$
\left|z+\frac{\rho}{t^{n-1} \alpha_{n}}\right| \leq \frac{\rho+t^{n} \alpha_{n}-\alpha_{0}+\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right| t^{j}}{t^{n-1}\left|\alpha_{n}\right|}
$$

In Theorem 1, if we take $\alpha_{0} \geq 0$, we get the following result:
Corollary 3. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some real number $\rho \geq 0$,

$$
\rho+\alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq \alpha_{0} \geq 0
$$

then $P(z)$ has all its zeros in the disk

$$
\left|z+\frac{\rho}{\alpha_{n}}\right| \leq 1+\frac{\rho+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}
$$

If we apply Theorem 1 to the polynomial $-i P(z)$, we easily get the following result:
Theorem 2. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some $\rho \geq 0$,

$$
\rho+\beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{0}
$$

then $P(z)$ has all its zeros in the disk

$$
\left|z+\frac{\rho}{\beta_{n}}\right| \leq \frac{\rho+\beta_{n}-\beta_{0}+\left|\beta_{0}\right|+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|}{\left|\beta_{n}\right|}
$$

On applying Theorem 2 to the polynomial $P(t z)$, one gets the following result:
Corollary 4. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$ and $\operatorname{Im}\left(a_{j}\right)=$ $\beta_{j}, j=0,1, \cdots, n$. If for some $\rho \geq 0$ and $t>0$

$$
\rho+t^{n} \beta_{n} \geq t^{n-1} \beta_{n-1} \geq \cdots \geq t \beta_{1} \geq \beta_{0}
$$

then $P(z)$ has all its zeros in the disk

$$
\left|z+\frac{\rho}{t^{n-1} \beta_{n}}\right| \leq \frac{\rho+t^{n} \beta_{n}-\beta_{0}+\left|\beta_{0}\right|+2 \sum_{j=0}^{n}\left|\alpha_{j}\right| t^{j}}{t^{n-1}\left|\beta_{n}\right|}
$$

2 Proofs of the Theorems

Proof of the Theorem 1. Consider the polynomial

$$
\begin{aligned}
F(z)= & (1-z) P(z)=(1-z)\left(a_{n} z^{n}+\left(a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right)\right. \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\cdots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0}-i \beta_{n} z^{n+1} \\
& +i\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\cdots+i\left(\beta_{1}-\beta_{0}\right) z+i \beta_{0} \\
= & -\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\cdots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0} \\
& -i\left\{-\beta_{n} z^{n+1}+\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\cdots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
|F(z)|= & \mid-\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\cdots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0} \\
& -i\left\{-\beta_{n} z^{n+1}+\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\} \mid \\
\geq & |z|^{n}\left\{\left|\alpha_{n} z+\rho\right|-\left|\rho+\alpha_{n}-\alpha_{n-1}\right|-\left|\alpha_{0}\right| \frac{1}{|z|^{n}}-\sum_{j=1}^{n-1}\left|\alpha_{j}-\alpha_{j-1}\right| \frac{1}{|z|^{n-j}}\right\} \\
& -\left|-\beta_{n} z^{n+1}+\ldots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right| .
\end{aligned}
$$

Thus, for $|z|>1$,

$$
\begin{aligned}
|F(z)|> & |z|^{n}\left\{\left|\alpha_{n} z+\rho\right|-\left(\rho+\alpha_{n}-\alpha_{n-1}\left|-\left|\alpha_{0}\right|-\left(\alpha_{n-1}-\alpha_{n-2}\right) \cdots-\left(\alpha_{1}-\alpha_{0}\right)\right\}\right.\right. \\
& \left.-\left(\left|-\beta_{n}\right|+\left|\beta_{0}\right|\right)-\sum_{j=0}^{n}\left(\beta_{j}\right)+\beta_{j-1} \mid\right) \\
= & |z|^{n}\left\{\left|\alpha_{n} z+\rho\right|-\left(\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0}\right)-2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}>0
\end{aligned}
$$

if

$$
\left|\alpha_{n} z+\rho\right|>\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right| .
$$

Hence all the zeros of $F(z)$ whose modulus is greater than 1 lie in the disk

$$
\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}
$$

But those zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the above inequlity. Therefore, all the zeros of $F(z)$ lie in the disk

$$
\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}
$$

Since all the zeros of $P(z)$ are also the zeros of $F(z)$, it follows that all the zeros of $P(z)$ lie in the disk

$$
\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|} .
$$

This completes the proof of Theorem 1.

References

[1] Anderson, N., Saff, E. B. and Verga, R. S., An Extension of the Enestrom-Kakeya Theorem and its Sharpness, SIAM. Math. Anal., 12(1981), 10-22.
[2] Aziz, Z. and Zargar, B. A., Some Extensions of the Enestrom-Kakeya Theorem, Glasnik Mathematiki, 31(1996), 239-244.
[3] Dewan, K. K. and Govil, N. K., On the Enestrom-Kakeya Theorem, J. Approx. Theory, 42(1984), 239-244.
[4] Gardner, R. B. and Govil, N. K., Some Generalisations of the Enestrom-Kakeya Theorem, Acta Math. Hungar, 74(1997), 125-134.
[5] Govil, N. K. and Mc-tume, G. N., Some Extensions of the Enestrom-Kakeya Theorem, Int. J. Appl. Math., 11(3)(2002), 246-253.
[6] Govil, N. K. and Rehman, Q. I., On the Enestrom-Kakeya Theorem, Tohku Math. J., 20(1968), 126-136.
[7] Joyal, A., Labelle, G. and Rahman, Q. I., On the Location of Zeros of Polynomials, Canadian Math. Bull., 10(1967), 55-63.
[8] Marden, M., Geometry of Polynomials, IInd Ed. Math. Surveys, Amer. Math. Soc. Providence, R.I., 3(1996).
[9] Milovanoic, G. V., Mitrinovic, D. S. and Rassias, Th. M., Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co. Singapore, New York, London, hong-Kong, 1994.

Department of Mathematics

University of Kashmir
Srinagar-190006
India
E-mail: gulzarmh@gmail.com

