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Abstract. In this paper, some weighted estimates for the multivariate Hausdorff operators

are obtained. It is proved that the multivariate Hausdorff operators are bounded on Lp spaces

with power weights, which is based on the boundedness of multivariate Hausdorff operators

on Herz spaces, and are bounded on weighted Lp spaces with the weights satisfying the

homogeneity of degree zero.
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1 Introduction

The notion of the Hausdorff operator with respect to a positive measure on the unit interval

[0,1] is introduced by Hardy in [1]. The operator with respect to a complex measure in the real

line R is defined and studied by Brown and Móricz in [2]. Following that, the multivariate Haus-

dorff operator with respect to complex Borel measures on Rn is introduced in a more general

framework in [3].

Let µ be a σ−finite complex Borel measure on Rn and c be a Borel measurable function on

Rn, which is nonzero µ-a.e. Assume that A := [a jk] is an n×n matrix whose entries a jk : Rn →C

are all Borel measurable functions and such that A is nonsingular µ-a.e. For a measurable

complex valued function f on Rn, the multivariate Hausdorff operator H = H(µ ,c,A) is defined
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by:

H f (x) :=
∫

Rn
c(s) f (A(s)x)dµ(s). (1.1)

The operator H
∗ adjoint to H is given by

H
∗ f (x) :=

∫

Rn
c(s)|detA−1(s)| f (A−1(s)x)dµ(s). (1.2)

Both the above two integrals on the right hand side exist as Lebesgue-Stieltjes integrals [4,5]. It

is obvious that H
∗ is also a Hausdorff operator corresponding to the triple µ(s),c(s)|det A−1(s)|,

A
−1(s), that is

H
∗ = H(µ ,c|detA−1|,A−1). (1.3)

In [3], Brown and Móricz obtained the boundedness of the multivariate Hausdorff operator

on Lp(Rn) :

Theorem A. If µ is a complex measure on Rn and

kp :=

∫

Rn
|c(s)||detA−1(s)|

1
p d|µ |(s) < ∞ (1.4)

for some 1 ≤ p ≤ ∞, then the Hausdorff operator H = H(µ ,c,A) defined in (1.1) is bounded on

Lp(Rn):

‖H f‖p ≤ kp|| f ||p, (1.5)

where |µ | is the total variation of µ .

In [6], Móricz proved that the multivariate Hausdorff operator is bounded on the real Hardy

space H1(Rn) and BMO(Rn).

In this paper, we will generalize some results in [3] to the weighted Lp space and obtain

some useful estimates for multivariate Hausdorff operators.

Note that the Herz space is a natural generalization of the Lp space with power weights (see

[7]). We will firstly consider the boundedness of the multivariate Hausdorff operator on the Herz

space. As a direct corollary of it, we can obtain the estimates for the operator on the Lp space

with power weights. Next, we will estimate the multivariate Hausdorff operator on the weighted

Lp space, where the weight functions are homogeneous of degree zero.

2 Main Results

Assume 1 ≤ p ≤ ∞ and denote the exponent conjugate to p by p∗, that is, let
1

p
+

1

p∗
= 1

with the agreement that
1

∞
= 0. Let k ∈ Z, Bk = {x ∈ Rn : |x| ≤ 2k}, Dk = Bk\Bk−1, and χk = χ

Dk

is the characteristic function of Dk.
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Definition 2.1. Let −∞ < α < ∞, 0 < p ≤ ∞ and 0 < q ≤ ∞.

(1) The homogeneous Herz space K̇
α ,p
q (Rn) is defined by

K̇α ,p
q (Rn) = { f ∈ L

q

loc(R
n\{0}) : ‖ f‖K̇

α,p
q (Rn) < ∞},

where

‖ f‖K̇
α,p
q (Rn) =

{

∞

∑
k=−∞

2kα p‖ f χk‖
p

Lq(Rn)

}
1
p

< ∞.

(2) The nonhomogeneous Herz space K
α ,p
q (Rn) is defined by

Kα ,p
q (Rn) = { f ∈ L

q
loc(R

n : ‖ f‖K
α,p
q (Rn) < ∞},

where

‖ f‖K
α,p
q (Rn) =

{

‖ f χ
B0
‖p

Lq(Rn)
+

∞

∑
k=1

2kα p‖ f χk‖
p

Lq(Rn)

}
1
p

< ∞.

With the usual modification made when p = ∞ or q = ∞ (See [7] for more information of Herz

space).

Our first result is stated as follows.

Theorem 2.1. Let −∞ < α < ∞, 1≤ p≤∞ and 1≤ q < ∞. Assume µ is a complex measure

on Rn and A(s) := diag(a(s), · · · ,a(s)), where a(s) : Rn → C is a Borel measurable function and

a(s) 6= 0 µ-a. e. If

C(α ,q) =
∫

Rn
|a(s)|−nα− n

q |c(s)|d|µ |(s) < ∞, (2.1)

then the Hausdorff operator H = H(µ ,c,A) is bounded on K̇
α ,p
q (Rn).

In particular, when α = 0 and p = q, it is clear that C(α ,q) reduces to kp defined in (1.4)

and the Herz space K̇
α ,p
q reduces to Lp(Rn). So, Theorem 2.1 implies Theorem A.

Note that Lq(Rn, |x|β ) = K̇
β
q
,q

q (Rn), where β ∈R. The following weighted estimate for Haus-

dorff operators is an immediate consequence of Theorem 2.1, which generalizes the result in [3]

to Lp spaces with power weights.

Corollary 2.1. Let −∞ < β < ∞ and 1 ≤ q < ∞. Assume µ and A(s) are the same as those

of Theorem 2.1. If

C(
β

q
,q) =

∫

Rn
|a(s)|−

nβ
q
− n

q |c(s)|d|µ |(s) < ∞,

then the Hausdorff operator H = H(µ ,c,A) is bounded on Lq(Rn, |x|β ).

Since H
∗ is also a Hausdorff operator, the following estimate for H

∗ is worthy to be formu-

lated.
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Corollary 2.2. Let −∞ < α < ∞, 1 ≤ p ≤ ∞ and 1 < q ≤ ∞. Assume µ and A(s) are the

same as those of Theorem 2.1. If the condition (2.1) is satisfied for some α ,q, then the operator

H
∗ is bounded on K̇

−α ,p
q∗ (Rn).

Proof. By assumption we have

C(−α ,q∗)(H∗) =

∫

Rn
|a(s)|−nα+ n

q∗
∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣d|µ |(s)

=
∫

Rn
|a(s)|−nα− n

q

∣

∣c(s)
∣

∣d|µ |(s)

=C(α ,q)(H) < ∞.

It follows from Theorem 2.1 that the operator H
∗ = H(µ ,c|detA−1|,A−1) is bounded on the

Herz space K̇
−α ,p
q∗ (Rn).

There are some similar results for the nonhomogeneous Herz spaces. We omit the details

here.

Another weighted estimate for the multivariate Hausdorff operators is stated as follows.

Theorem 2.2. Let µ be a complex measure on Rn and A(s) = diag(a(s),a(s), . . . ,a(s)),

where a(s) : Rn → C is a Borel measurable function and a(s) 6= 0 µ-a.e. Assume that the non-

negative weight function ω(x) satisfies

ω(λx) = ω(x), λ 6= 0. (2.2)

If the condition (1.4) is satisfied for some 1≤ p≤∞, then the Hausdorff operator H = H(µ ,c,A)

is bounded on L
p
ω(Rn):

‖H f‖L
p
ω
≤ kp‖ f‖L

p
ω
. (2.3)

Corollary 2.3. Assume µ ,A(s) and ω(x) are the same as those of Theorem 2.2. If the

condition (1.4) is satisfied for some 1 ≤ p ≤ ∞, then the operator H
∗ defined in (1.2) is bounded

on L
p∗

ω (Rn).

Corollary 2.3 can be proved by the same way as that of Corollary 2.2.

The relation of the weighted norm of Hausdorff operator H and its adjoint operator H
∗ is

formulated in the following theorem.

Theorem 2.3. Assume A(s) and ω(x) are the same as those of Theorem 2.2. If the condi-

tion (1.4) is satisfied for some 1 ≤ p ≤ ∞, then

‖H‖L
p
ω

= ‖H∗‖
L

p∗
ω

. (2.4)

From Theorem 2.3, we can also conclude that the operator H
∗ = H(µ ,c|det A−1|,A−1) is

bounded on the conjugate space L
p∗

ω (Rn) if H is bounded on L
p
ω(Rn). Corollary 2.3 is demon-

strated again.
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3 Proof of Theorems

Proof of Theorem 2.1. Using Minkowski’s inequality and setting v = A(s)x, we get

‖(H f )χk‖Lq =
{

∫

Dk

∣

∣H f (x)
∣

∣

q
dx

}
1
q

=
{

∫

Dk

∣

∣

∫

Rn
c(s) f (A(s)x)dµ(s)

∣

∣

q
dx

}
1
q

≤
∫

Rn

{

∫

2k−1<|x|≤2k

∣

∣c(s) f (A(s)x)
∣

∣

q
dx

}
1
q

d|µ |(s)

=

∫

Rn

{

∫

2k−1|a(s)|n<|v|≤2k |a(s)|n

∣

∣c(s) f (v)
∣

∣

q∣
∣detA−1(s)

∣

∣dv
}

1
q

d|µ |(s)

=

∫

Rn

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q

{

∫

2k−1|a(s)|n<|v|≤2k |a(s)|n

∣

∣ f (v)
∣

∣

q
dv

}
1
q

d|µ |(s).

For each s ∈ Rn, there exists an integer m such that 2m−1 < |a(s)|n ≤ 2m. Setting

Em = {s ∈ Rn : 2m−1
< |a(s)|n ≤ 2m},

Ak,m = {v ∈ Rn : 2k+m−1
< |v| ≤ 2k+m},

then we have

‖(H f )χk‖Lq ≤

∫

Rn

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q

{

∫

Ak−1,m

∣

∣ f (v)
∣

∣

q
dv+

∫

Ak,m

∣

∣ f (v)
∣

∣

q
dv

}
1
q

d|µ |(s)

≤
∫

Rn

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q
(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)

d|µ |(s).

It follows that

‖H f‖K̇
α,p
q

=
{

∑
k∈Z

2kα p‖(H f )χk‖
p
Lq

}
1
p

≤
{

∑
k∈Z

2kα p
[

∫

Rn

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q
(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)

d|µ |(s)
]p

}
1
p

=
{

∑
k∈Z

2kα p
[

∑
m∈Z

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q
(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)

d|µ |(s)
]p

}
1
p

=
{

∑
k∈Z

2kα p
[

∑
m∈Z

(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

]p
}

1
p

.

If 1 < p < ∞, then it follows from Minkowski’s inequality that
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‖H f‖K̇
α,p
q

≤
{

∑
k∈Z

2kα p
[

∑
m∈Z

(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

]p
}

1
p

≤ ∑
m∈Z

[

∑
k∈Z

2kα p
(

‖ f χk+m−1‖Lq +‖ f χk+m‖Lq

)p(
∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p
]

1
p

≤ ∑
m∈Z

[

∑
k∈Z

2kα p2p
(

‖ f χk+m−1‖
p
Lq +‖ f χk+m‖

p
Lq

)(

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p
]

1
p

=2 ∑
m∈Z

[

∑
k∈Z

2kα p‖ f χk+m−1‖
p
Lq

(

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p

+ ∑
k∈Z

2kα p‖ f χk+m‖
p
Lq

(

∫

Em

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p
]

1
p

=2 ∑
m∈Z

[

∑
k∈Z

2(k+m−1)α p‖ f χk+m−1‖
p
Lq

(

∫

Em

2(1−m)α
∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p

+ ∑
k∈Z

2(k+m)α p‖ f χk+m‖
p
Lq

(

∫

Em

2−mα
∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p
]

1
p

≤2 ∑
m∈Z

[

(1+ 2|α |p)
(

∫

Em

|a(s)|−nα
∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
q d|µ |(s)

)p
‖ f‖p

K̇
α,p
q

]
1
p

=2(1+ 2|α |p)
1
p C(α ,q)‖ f‖K̇

α,p
q

.

In the case p = 1, the above argument works with Fubini’s theorem instead of Minkowski’s

inequality. The case of p = ∞ is trivial.

This finishes the proof of Theorem 2.1.

Proof of Theorem 2.2. For 1 < p < ∞, use Minkowski’s inequality and setting v = A(s)x,

we have

‖H f‖L
p
ω

=
{

∫

Rn

∣

∣

∫

Rn
c(s) f (A(s)x)dµ(s)

∣

∣

p
ω(x)dx

}
1
p

≤
∫

Rn

{

∫

Rn

∣

∣c(s) f (A(s)x)
∣

∣

p
ω(x)dx

}
1
p

d|µ |(s)

=

∫

Rn

∣

∣c(s)
∣

∣

{

∫

Rn

∣

∣ f (v)
∣

∣

p
ω(A−1(s)v)|detA−1(s)|dv

}
1
p

d|µ |(s)

=

∫

Rn

∣

∣c(s)
∣

∣

∣

∣detA−1(s)
∣

∣

1
p

{

∫

Rn

∣

∣ f (v)
∣

∣

p
ω(v)dv

}
1
p

d|µ |(s)

=kp‖ f‖L
p
ω
.

If p = 1, the above argument works with Fubini’s theorem instead of Minkowski’s inequality.

The case of p = ∞ is trivial.

The proof of Theorem 2.2 is completed.
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To prove Theorem 2.3, we need the following lemma.

Lemma 3.1. Let

H = H(µ ,c,A)

be a Hausdorff operator satisfying the condition (1.4) for some 1 ≤ p ≤ ∞ and

H
∗ f (x) := H(µ ,c|detA−1|,A−1)

be the adjoint operator of H. Assume that ω(x) is the same as that of Theorem 2.2. If f ∈ L
p
ω(Rn)

and g ∈ L
p∗

ω (Rn), then

∫

Rn
[H f (x)]g(x)ω(x)dx =

∫

Rn
f (x)[H∗g(x)]ω(x)dx. (3.1)

Proof. By the Hölder inequality, we have

∫

Rn
[H f (x)]g(x)ω(x)dx ≤

{

∫

Rn

∣

∣H f (x)
∣

∣

p
ω(x)dx

}
1
p
{

∫

Rn

∣

∣g(x)
∣

∣

p∗

ω(x)dx
}

1
p∗

= ‖H f‖L
p
ω
‖g‖

L
p∗
ω

.

∫

Rn
f (x)[H∗g(x)]ω(x)dx ≤

{

∫

Rn

∣

∣ f (x)
∣

∣

p
ω(x)dx

}
1
p
{

∫

Rn

∣

∣H
∗g(x)

∣

∣

p∗

ω(x)dx
}

1
p∗

= ‖ f‖L
p
ω
‖H∗g‖

L
p∗
ω

.

Applying Fubini’s theorem we get
∫

Rn
[H f (x)]g(x)ω(x)dx =

∫

Rn

{

∫

Rn
c(s) f (A(s)x)dµ(s)

}

g(x)ω(x)dx

=

∫

Rn
c(s)

{

∫

Rn
f (A(s)x)g(x)ω(x)dx

}

dµ(s)

=

∫

Rn
c(s)

{

∫

Rn
f (v)g(A−1(s)v)ω(A−1(s)v)

∣

∣detA−1(s)
∣

∣dv
}

dµ(s)

=
∫

Rn
f (v)

{

∫

Rn
c(s)g(A−1(s)v)

∣

∣detA−1(s)
∣

∣dµ(s)
}

ω(v)dv

=

∫

Rn
f (v)[H∗g(v)]ω(v)dv.

Now, we prove Theorem 2.3 by Lemma 3.1.

Proof of Theorem 2.3.

‖H‖L
p
ω

=sup
{

‖H f‖L
p
ω

: ‖ f‖L
p
ω
≤ 1

}

=sup
{

sup
{

∫

Rn
[H f (x)]g(x)ω(x)dx : ‖g‖

L
p∗
ω
≤ 1

}

: ‖ f‖L
p
ω
≤ 1

}

=sup
{

sup
{

∫

Rn
f (x)[H∗g(x)]ω(x)dx : ‖ f‖L

p
ω
≤ 1

}

: ‖g‖
L

p∗
ω
≤ 1

}

=sup
{

‖H∗g‖
L

p∗
ω

: ‖g‖
L

p∗
ω
≤ 1

}

=‖H∗‖
L

p∗
ω

.

Theorem 2.3 is proved.
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