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Abstract. In this paper, we consider the following subadditive set-valued map F : X —
P()(Y) .
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where r and s are two natural numbers. And we discuss the existence and unique problem
of additive selection maps for the above set-valued map.
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1 Introduction and Preliminaries

The stability problem of functional equations was originated from a question of Ulam!!l
concerning the stability of group homomorphisms. In 1941, D.H Hyers?! gave a first affirmative
partial answer to the question of Ulam for Banach spaces. The famous stability theorem is as
follows:

Theorem 0. Let E| be a normed vector space and E> a Banach space. Suppose that the
mapping f : E| — E, satisfies the inequality

Ife+y) =) —f)l < e (0)
forall x,y € Ey, with € > 0 a constant. Then the limit

g(x) = lim 27" f(2"x)

n—oo
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exists for each x € E| and g is the unique additive mapping satisfying

1f(x) —g)| <&

forall x € E.

Later, Hyers’ Theorem has been generalized by many authors 8.

Let X a real vector space. We denote by Py(X) the family of all nonempty subsets of X.

If Y is a topological vector space, the family of all closed convex subsets of ¥ denoted by
cel(Y).

Let A and B are two nonempty subsets of the real vector space X, A and u are two real
numbers. Define

A+B={xlx=a+b,ac A,b e B};
AA = {x|x = Aa,a € A}.

The next properties are obvious:
Lemma. [fA and B are two nonempty subsets of the real vector space X, A and |l are two
real numbers, then

A(A+B)=AA+AB; (A +u)A CAA+ uA.
Furthermore, if A is a convex subset and AL > 0, then we have the following formula®:
(A+u)A=AA+ uA.

A subset A C X is said tobe acone if A+A C A, and AA C A forall A > 0.

If the zero in X belongs to A, we say that A is a zero cone.

Let X and Y be two real vector spaces, f: X — Y a single-valued map, and F : X — Py(Y)
a set-valued map. f is called an additive selection of F, if f(x+y) = f(x)+ f(y) forall x,y € X,
and f(x) € F(x) forall x € X.

Let B(0,€) denote the open ball with center 0 and radius € in E> in Theorem 0, then the
inequality (0) may be written as

flx+y) € B(0,&) + f(x) + f(¥),

and hence
flx+y)+B(0,€) C f(x)+B(0,€) + f(v) +B(0,¢).

where B(0, €) + x denote the open ball with center x and radius € in Ej.
Thus, if we define a set-valued mapping F by F(x) = f(x) + B(0,¢€) for each x € E}, then
we get
F(x+y) CF(x)+F(y)

and
g(x) € F(x)
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forall x,y € Ej.

Hence, Theorem 0 shows that g(x) is the unique additive selection of the set-valued mapping
F(x) with the property F(x+y) C F(x)+ F(y) , where F is determined by f.

In [10], the author introduced the concept of subadditive set-valued map and proved that
such a map has a unique additive selection.

The result improves and generalizes the corresponding conclusions in [11] and [12]. The
definition of this map is stated as follows:

Let X and Y be two real vector spaces, K C X be a zero cone, r e Nwithr > 1, oy, 0, -, 0 >
Oand @y, 0, -+, 0, >0witho; + @y +---+ @, > 0. A set-valued map F : K — Py(Y) is called
(0,0, ,0)-(01,q,- -+, C,)-type subadditive set-valued map, if for any x;,xp,--- ,x, € K,
the following holds:

F(Yi_yaix;) C Y OiF (x;).

In this paper, we define a new subadditive set-valued mapping satisfying some inclusion
relation on a zero cone in a real vector space, and then prove that the map has a unique additive
selection map.

2 Main Results

Theorem 1. Let K be a zero cone of a real vector space X, Y a Banach space, r and
s two given positive integers. If a set-valued map F : K — ccl(Y) satisfies that for any
X1,X2,+  Xpy Xpa 1,0+, Xras € K, the following holds

r N

F(Yx+ Y xay) € e (B2 gp (R m
i=1 j=1

and for each x € K, sup{diam(F (x) : x € K} < +oo, then F has a unique additive selection map.
Proof. Take an element x € K and let x; =x, = -+ = X,4.] = -+ = X4y = X, then (1)
becomes the following

F((r+s)x) CrF(x)+sF(x) = (r+s)F(x).
For any fixed n € N, replacing x by (r+ s)"x, then the above formula becomes
F((r+5)""x) C (r+s)F((r+s)"x),

hence we obtain

F((r+s)"'x) c F((r+s)"x)
(r_|_s)n+1 - (}’+S)n :
F n
Let F,(x) = % for each x € K and n € N, then for each fixed x € K, {F,,(x) }nxu{o

is a decreasing sequence of closed convex subsets of a Banach space Y, and the following holds

diam(Fy,(x)) = ﬁ diamF ((r+s)")x), VxeK, neN.
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Hence by given condition, 1ir£ diam(F;,(x)) = 0 for all x € K. Using Cantor theorem for the
n—-+oo

sequence {F,(x)},enuo}» we can conclude that for each x € K, the intersection () F,(x) is a
singleton set. Let f(x) denote the intersection for each x € K, then we can obtain a single valued
map f: K — Y, and f is also a selection of F since f(x) € Fy(x) = F(x) for all x € K.

For any x1,xp, -+ ,Xp, Xp11, %42, -+, Xrps € K, by the definition of F,,,

Fu(xp +x2+ X+ 2000+ X2 o Xyg)
F((r+9)" (e 42+ 2 4+ Xt Fg2 4+ 2r4))

(r+s)"
CF((r4s) x4 (r+s) x4 (4 8) "+ (r ) X 44 (1) X, 4)
N (r+s)"
F ( (r+s)"x +(r+s)’;x2+---+(r+s)”xr ) +sF ( (V+S)"xr+1+(rJrS)");rJrz+---+(r+s)”xr+s )
C
- (r+s)"
X1+x2+-+x, Xppl + X2+ X
:an( 1 2 ; )+an( +1 +2S +S).

Hence

r s oo r s
f(zxi+zxr+j) = ﬂFn(in+ Zxr+j)
i=1 i=1 n=0 =1 i=1
~+oo

C [ (EE) foar (FE].

n=0

On the other hand, for each n € NU {0},

f(M) epn(@)’

r

(Z§':1xr+j) cF

n

! (L)

)
N

hence we obtain
ix’ Z
If zx,+2xrﬂ rr(E) s ()T
Z)C,' Zxr-‘rj

grdiam[Fn(izlr )}+sdiam[Fn(j:1s )] —0, asn—0.

And therefore, we obtain the following equation

Z)C, Zxr+j
Z% zuw—v’lyﬂﬂﬁ

). (2)
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If r =5 =1, then it is easy to know from (2) that f is additive. From now on , suppose that
r>2ors>?2.

Letx; =xp =+ =X, =X, =+ = X5 = 0, then (2) becomes f(0) =rf(0)+sf(0), hence
f(0) =0. For any x € K, take x; =xp = --- =x, =x and x,,| = -+ -,y = 0, then (2) becomes
f(rx) = rf(x), and replacing x by E, then we obtain rf ({) = f(x), and therefore

r r

()

N S I=

PI(5) =l ()] = rf (3) = 1)

Repeating the process, we obtain its general form r* f (ik) = f(x) for any k € N and x € K.
r
Similarly, let x; =x, =--- =x, =0 and x,4; = --- = x4y = x, then we obtain from (2) that

flx)= sf(f), hence we have its general form skf(ik) = f(x) forany k € Nand x € K.
s s

If r > 2, then we will obtain from (2) that

x4+,
f()q er )C)
:f(XI+xz+“’;+xr_l+0—|—xr+0tm+0)(thenumberofO is s)
X1 +x2 4 X Xr
=r ( ! 2 rz 1)+Sf(;)
+xo 44X
= () A ()
:f(XI+xz+mjxr72+o+o+xr71+O+m+o)+f(x—rr)(thenumberofO iss)
+Xxo+ X _
= [rf () s () ()

Xi1+x2+--+x2 Xr—1 Xr
= (PRI () 4 ()
X1 X2 Xr—1 Xy
= 1Y ) 4 (Y 4 (), )
hence
+x2+ -+ X, r— r
rf () =[G+ ) A () ()],

and therefore,
f(xl +XZ+"'+Xr) :f(xl) +f(x2) +"'+f(xr—1) +f(xr)-

Thus, f is additive.



Anal. Theory Appl., Vol. 28, No.3 (2012) 299

Similarly, if s > 2, then we have

f(xr-‘rl +';'+XV+S)
- (O+O+---s+0+x,+1 +O+Xr+2‘|;"’+xr+S) (the number of 0 isr)
:rf(X:-gl)+sf(Xr+2+Xr+3S;""+Xr+S)
:f(errl)+f(xr+2+xr+3+"‘+xr+S)
N S
:f(xr;rl ) +f(0+0—|—---s+0+xr+2 + O+O+xr+3s—|—---+x,+s) (the number of 0 is r)
= P 4 (B2 (R
r T r +-+ r
:f(x +1)+f(x +2)+f(x +3 x+s>
N N N
Xr Xr Xy
=S () (), @
Hence Xp+Xpp1+-+X X X X
Sf( r r+1 - r+s>zs[f( :H)‘i‘f( r;—2)++f( V;-S)]’

that is,
f(xr X1 +~xr+s) = f(xr—H) +f(xr+2) + - +f(xr+s) .
This shows that f is additive.
Next, let us prove the uniqueness of the additive selection maps of F.

Suppose that f; and f, are two additive selection maps of F, then for each n € N and x € K,
we have

nfix) = film) € F(nx),  i=1.2,

hence n || fi(x) = f2(x) [|=I| fi(nx) = fa(nx) || < diamF (nx), i.e., || fi(x) = f2(x) [|[< %diamF (nx).
Let n — oo, then by (ii), fi(x) = f2(x) for each x € K. This shows that the additive selection
map of F is unique.

Using the same method as in Theorem 1, we can obtain more general form than Theorem 1,
but we omit its proof.

Theorem 2. Let K be a zero cone of a real vector space X, Y a Banach space and

ri,r2,- -+ 1 given positive integers. If a set-valued map F : K — ccl(Y) satisfies that for any
X15X2, 5 Xy X155 Xrydras 3 X4yt € K, the following holds
Iy mn Tk
F(in+zxrl+i+"'+ xr1+rz+~~~+rk71+i)
i=1 i=1 =1 N 5)
, Zxr1+i Zxr]+r2+~~+rk,1+i (
e (R () (3 )

r rn Tk
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and for each x € K, sup{diam(F (x) : x € K} < +oo, then F has an unique additive selection

map.
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