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Abstract. In this paper, the notion ofp-wavelet packets on the positive half-lineR
+ is in-

troduced. A new method for constructing non-orthogonal wavelet packets related to Walsh

functions is developed by splitting the wavelet subspaces directly instead of using the low-

pass and high-pass filters associated with the multiresolution analysis as used in the classi-

cal theory of wavelet packets. Further, the method overcomes the difficulty of constructing

non-orthogonal wavelet packets of the dilation factorp > 2.
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1 Introduction

In the early nineties a general scheme for the construction of wavelets was defined. This

scheme is based on the notion of multiresolution analysis (MRA) introduced by Mallat[16]. Im-

mediately specialists started to implement new wavelet systems and in recent years, the concept

MRA of Rn has been extended to many different setups, for example, Dahlke introduced mul-

tiresolution analysis and wavelets on locally compact Abelian groups[5], Lang[14] constructed

compactly supported orthogonal wavelets on the locally compact Cantor dyadic groupC by

following the procedure of Daubechies[6] via scaling filters and these wavelets turn out to be

certain lacunary Walsh series on the real line. On the otherhand, Jiang et al.[13] pointed out

a method for constructing orthogonal wavelets on local fieldK with a constant generating se-

quence and derived necessary and sufficient conditions for asolution of the refinement equation

to generate a multiresolution analysis ofL2(K). Subsequently, the tight wavelet frames on local
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fields were constructed by Li and Jiang in[15]. Farkov[7] extended the results of Lang[14] on the

wavelet analysis on the Cantor dyadic groupC to the locally compact Abelian groupGp which

is defined for an integerp ≥ 2 and coincides withC when p = 2. Concerning the construc-

tion of wavelets on a half-line, Farkov[8] has given the general construction of all compactly

supported orthogonalp-wavelets inL2(R+) and proved necessary and sufficient conditions for

scaling filters withpn many terms(p,n ≥ 2) to generate ap-MRA analysis inL2(R+). These

studies were continued by Farkov and his colleagues in [9,10], where they have given some new

algorithms for constructing the corresponding biorthogonal and nonstationary wavelets related

to the Walsh functions on the positive half-lineR+. On the otherhand, Shah and Debnath[21]

have constructed dyadic wavelet frames on the positive half-line R+ using the Walsh-Fourier

transform and have established a necessary condition and a sufficient condition for the system
{

2 j/2ψ(2 jx⊖k) : j ∈ Z,k∈ Z+
}

to be a frame forL2(R+).

It is well-known that the classical orthonormal wavelet bases have poor frequency localiza-

tion. For example, if the waveletψ is band limited, then the measure of the supp of(ψ j,k)
∧ is

2 j -times that of supp̂ψ . To overcome this disadvantage, Coifman et al.[4] constructed univariate

orthogonal wavelet packets. The fundamental idea of wavelet packet analysis is to construct a

library of orthonormal bases forL2(R), which can be searched in real time for the best expansion

with respect to a given application.

Let ϕ(x) andψ(x) be the scaling function and the wavelet function associatedwith a mul-

tiresolution analysis
{

Vj
}

j∈Z . LetWj be the corresponding wavelet subspaces:

Wj = span
{

ψ j,k : k∈ Z
}

.

Using the low-pass and high-pass filters associated with theMRA, the spaceWj can be split

into two orthogonal subspaces, each of them can further be split into two parts. Repeating this

processj times,Wj is decomposed into 2j subspaces each generated by integer translates of

a single function. If we apply this to eachWj , then the resulting basis ofL2(R) which will

consist of integer translates of a countable number of functions, will give a better frequency

localization. This basis is called thewavelet packet basis. To describe this more formally, we

introduce a parametern to denote the frequency. Setω0 = ϕ and define recursively

ω2n(x) = ∑
k∈Z

hkωn(2x−k), ω2n+1(x) = ∑
k∈Z

gkωn(2x−k),

where{hk}k∈Z and{gk}k∈Z are the low-pass filter and high-pass filter corresponding toϕ(x)

andψ(x), respectively. Chui and Li[2] generalized the concept of orthogonal wavelet packets to
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the case of non-orthogonal wavelet packets so that they can be applied to the spline wavelets and

so on. The introduction of biorthogonal wavelet packets attributes to Cohen and Daubechies[3] .

Shen[24] generalized the notion of univariate orthogonal wavelet packets to the case of multi-

variate wavelet packets for the dilation factorp = 2, however this construction does not work

for p > 2. Other notable generalizations are the orthogonal version of vector-valued wavelet

packets[1], non-orthogonal wavelet packets withr-scaling functions[11] and theM-band framelet

packets[23].

Recently, Shah[20] has constructedp-wavelet packets related to the Walsh functions on the

positive half-lineR+. He proved lemmas on the so-called splitting trick and several theorems

concerning the Walsh-Fourier transform of thep-wavelet packets and the construction ofp-

wavelet packets to show that their translates form an orthonormal basis ofL2(R+). Subsequently,

the corresponding biorthogonalp-wavelet packets andp-wavelet frame packets onR+ were

studied by the author and Debnath in [18,19,22].

As one of a series of works on the positive half-lineR+, the objective of this paper is to

construct non-orthogonalp-wavelet packets related to Walsh functions onR+ using the splitting

trick of wavelets. The splitting trick in our method decomposes the wavelet subspaces directly

instead of using the low-pass and high-pass filters as used inthe classic theory of wavelet pack-

ets, and thus gives the Riesz basis of the wavelet subspaces.

We have organized the article as follows. In Section 2, we state some basic preliminaries,

notation and definitions including Walsh functions, the Walsh-Fourier transform andp-MRA. In

Section 3, we prove a crucial lemma called thesplitting lemmawhich decomposes the wavelet

subspaces directly instead of using the low-pass and high-pass filters. By virtue of this lemma,

we construct thep-wavelet packets and prove that they generate Reisz basis for L2(R+).

2 Preliminaries and p-Wavelet Packets on R+

Let p be a fixed natural number greater than 1. As usual, letR
+

= [0,+∞), Z
+

= {0,1,2, · · · }

andN = Z+ −{0}. SetΩ0 = {0,1,2, · · · , p−1} andΩ = Ω0−{0}. Denote by[x] the integer

part ofx. Forx∈ R
+

and any positive integerj, we set

x j = [p jx](modp), x− j = [p1− jx](modp). (2.1)

We consider onR
+

the addition defined as follows:

z= ∑
j<0

ζ j p
− j−1 + ∑

j>0

ζ j p
− j
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with ζ j = x j +y j(mod p) ( j ∈ Z \{0}), whereζ j ∈ Ω0 andx j , y j are calculated by (2.1). Note

thatz= x⊖y if z⊕y = x, where⊖ denotes subtraction modulop in R
+
.

For x∈ [0,1), let r0(x) be given by

r0(x) =











1, if x∈ [0,1/p)

εℓ
p, if x∈ [ℓp−1,(ℓ+1)p−1), ℓ ∈ Ω,

whereεp = exp(2π i/p). The extension of the functionr0 to R
+

is given by the equalityr0(x+

1) = r0(x), x∈ R
+
. Then, thegeneralized Walsh functions{wm(x) : m∈ Z+} are defined by

w0(x) ≡ 1, wm(x) =
k

∏
j=0

(

r0(p jx)
)µ j

wherem=
k

∑
j=0

µ j p
j , µ j ∈ Ω0, µk 6= 0. They have many properties similar to those of the Haar

functions and trigonometric series, and form a complete orthogonal system. Further, by a Walsh

polynomial we shall mean a finite linear combination of Walshfunctions.

For x,y∈ R
+
, let

χ(x,y) = exp

(

2π i
p

∞

∑
j=1

(x jy− j +x− jy j)

)

, (2.2)

wherex j ,y j are given by (2.1). Note thatχ(x,m/pn−1) = χ(x/pn,m) = wm(x/pn) for all x ∈

[0, pn), m,n∈ Z
+
. Also, if x,y,ξ ∈ R

+
andx⊕y is p-adic irrational, then

χ(x⊕y,ξ ) = χ(x,ξ )χ(y,ξ ), and χ(x⊖y,ξ ) = χ(x,ξ )χ(y,ξ ).

It is shown by Golubov et al[12] that both the systems{χ(α , .)}∞
α=0 and{χ(.,α)}∞

α=0 are

orthonormal bases inL2[0,1].

By p-adic intervalI ⊂ R+ of rangen we mean the intervals of the form

I = Ik
n =

[

kp−n,(k+1)p−n), k∈ Z+.

The p-adic topology is generated by the collection ofp-adic intervals and eachp-adic inter-

val is both open and closed under thep-adic topology (see [17]). The family
{

[0, p− j) : j ∈ Z
}

forms a fundamental system of thep-adic topology onR+. Therefore, for each 0≤ j,k < pn,

the Walsh functionw j(x) is piecewise constant and hence continuous. Thusw j(x) = 1 for x∈ I0
n .

The Walsh-Fourier transform of a functionf ∈ L1(R+)∩L2(R+) is defined by

f̂ (ξ ) =
∫

R+
f (x)χ(x,ξ )dx, (2.3)
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whereχ(x,ξ ) is given by (2.2). The Walsh-Fourier operatorF : L1(R+)∩L2(R+)→L2(R+), F f =

f̂ , extends uniquely to the whole spaceL2(R+). The properties of the Walsh-Fourier trans-

form are quite similar to those of the classic Fourier transform (see[12,17]). In particular, if

f ∈ L2(R+), then f̂ ∈ L2(R+) and

‖ f̂ ‖L2(R+)
= ‖ f‖L2(R+).

Definition 2.1. LetH be a Hilbert space. A sequence{ fk}
∞
k=1 of H is said to be a Riesz ba-

sis forH if there exist constantsA andB, 0< A≤ B< ∞ such that anyf ∈ H can be represented

as a seriesf =
∞

∑
k=1

ck fk converging inH with

A‖ f‖2 ≤
∞

∑
k=1

|ck|
2 ≤ B‖ f‖2, (2.4)

where‖.‖ is the norm ofL2(R+).

A function f ∈ L2(R+) is said to be stable if there exist positive constantsc1 andc2 such

that

c1

(

∑
k∈Z+

|ak|
2

)1/2

≤

∥

∥

∥

∥

∥

∑
k∈Z+

ak f (x⊖k)

∥

∥

∥

∥

∥

≤ c2

(

∑
k∈Z+

|ak|
2

)1/2

,

for each sequence{ak}k∈Z+ ∈ l2(Z+). In other words,f is stable if the system of functions

{ f (x⊖k) : k∈ Z+} form a Riesz system inL2(R+). Moreover, we recall that (see [8]),f is

stable inL2(R+) with constantsc1 andc2 if and only if

c1 ≤ ∑
k∈Z+

| f̂ (ξ ⊕k)|2 ≤ c2, for a.e.ξ ∈ R+.

In the following subsection, we introduce the notion ofp-multiresolution analysis onR+

and give the formal definition ofp-wavelets of spaceL2(R+).

Definition2.2. A p-multiresolution analysis ofL2(R+) is a nested sequence of closed sub-

spaces
{

Vj
}

j∈Z such that

(i) Vj ⊂Vj+1 for all j ∈ Z,

(ii)
⋃

j∈ZVj is dense inL2(R+) and
⋂

j∈ZVj = {0},

(iii) f ∈Vj if and only if f (p.) ∈Vj+1 for all j ∈ Z,

(iv) there exists a functionϕ in V0, called the scaling function, such that the system of

functions{ϕ(.⊖k) : k∈ Z+} form a Riesz basis for subspaceV0.

Sinceϕ(x)∈V0 ⊂V1, by Definition 2.2, there exists a finitely supported sequence{ak}k∈Z+ ∈

l2(Z+) such that

ϕ(x) = ∑
k∈Z+

ak ϕ(px⊖k). (2.5)
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The Walsh-Fourier transform of (2.5) is given by

ϕ̂ (ξ ) = m0(p−1ξ ) ϕ̂(p−1ξ ), (2.6)

wherem0(ξ ) = ∑k∈Z+ ak χ(k,ξ ), is a generalized Walsh polynomial, called the mask or symbol

of the refinable functionϕ and is ap-adic step function.

Let W be the wavelet subspace, the complement ofV0 in V1. If ψ1,ψ2, ...,ψp−1 are inW

such that{ψℓ(x⊖k) : k∈ Z+, ℓ ∈ Ω} form a Riesz basis forW, then, we callψ1,ψ2, ...,ψp−1

the basicp-wavelets associated with the scaling functionϕ(x). Sinceψℓ ∈ W ⊂ V1, for each

ℓ ∈ Ω, there exists a sequence
{

aℓ
k

}

k∈Z+ with ∑k∈Z+ |aℓ
k|

2 < ∞ such that

ψℓ (x) = ∑
k∈Z+

aℓ
k ϕ(px⊖k). (2.7)

Implementing the Walsh- Fourier transform for both sides of(2.7) yields

ψ̂ℓ (ξ ) = mℓ(p−1ξ ) ϕ̂(p−1ξ ), (2.8)

where

mℓ(ξ ) = ∑
k∈Z+

aℓ
k χ(k,ξ ), ℓ ∈ Ω, (2.9)

are the integral-periodic functions inL2[0,1] and are called thewavelet masks.

By virtue of the property (ii) of Definition 2.2, we have

L2(R+) =
⊕

j∈Z

D
jW = V0⊕

(

⊕

j≥0

D
jW
)

(2.10)

whereD is the dilation operator such thatD f (x) = f (px), for any f ∈ L2(R+).

Setting

ω1 = ψ1(x),ω2 = ψ2(x), ...,ωp−1 = ψp−1(x).

For each integern∈ Z+, we defineωn as follows:

ωn(x) = ωpr+s(x) = ωr(px⊖µs), (2.11)

wherer andsare the unique numbers such thatn = pr +s, r ∈ Z+,s∈ Ω0.

The functions{ωn : n∈ Z+} will be called the basicp-wavelet packets related to the Walsh

functions on the positive half-lineR+ (see [20]).

Definition 2.3. Let{ωn : n∈ Z+} be the basicp-wavelet packets associated with thep-

MRA
{

Vj
}

j∈Z of L2(R+). The collection of functions

P =
{

ωn(p jx⊖k) : n∈ Z+, j ∈ Z,k∈ Z+
}

(2.12)

is called the generalp-wavelet packets corresponding to thep-MRA
{

Vj
}

j∈Z .
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3 Splitting Trick and the Non-orthogonal p-Wavelet Packets

For anyn∈ Z+, define

Un =

{

f (x) : f (x) = ∑
k∈Z+

bkωn(x⊖k), {bk}k∈Z+ ∈ l2(Z+)

}

. (3.1)

Lemma 3.1. Let{ωn : n∈ Z+} be the basic p-wavelet packets associated with the p-MRA
{

Vj
}

j∈Z. Then, for all n∈ Z+, {ωn(x⊖k) : k∈ Z+} form a Riesz basis of Un.

Proof. We prove this result by induction onn. Since{ψ1,ψ2, · · · ,ψp−1} is the basic set of

p-wavelets inW and{ψ1(x⊖k),ψ2(x⊖k), · · · ,ψp−1(x⊖k) : k∈ Z+} constitutes Riesz basis of

W, therefore,
{

ψ1(px⊖k),ψ2(px⊖k), ...,ψp−1(px⊖k) : k∈ Z+
}

form a Riesz basis ofDW. By virtue of Riesz basis and Definition 2.3, the system
{

ω1(x⊖k),ω2(x⊖k), ...,ωp−1(x⊖k) : k∈ Z+
}

constitutes Riesz basis ofW, and thus{ωn(x⊖k) : 1≤ n≤ p−1,k∈ Z+} form a Riesz basis

of Un. Therefore, the claim is true when 1≤ n ≤ p− 1. Assume that the result is true for

n < ℓ,(ℓ ≥ p).

Now, for n = ℓ, there exist two unique numbersr ands such thatn = pr +s,s∈ Ω0, r ∈ Z+

andr < n = ℓ. Sincer < n = ℓ, the family of functions{ωr(x⊖k) : k∈ Z+} form a Riesz basis

of Un. Therefore, there exist constantsc1 andc2, 0< c1 ≤ c2 < ∞ such that

c1 ≤ ∑
k∈Z+

∣

∣ω̂r(ξ ⊕k)
∣

∣

2
≤ c2.

Further, we have

∑
k∈Z+

∣

∣ω̂n(ξ ⊕k)
∣

∣

2
=

1
p ∑

k∈Z+

∣

∣ω̂r(p−1(ξ ⊕k))
∣

∣

2∣
∣χ(p−1ξ ,k)

∣

∣

2

=
1
p ∑

k∈Z+

∣

∣ω̂r(p−1ξ ⊕ p−1k)
∣

∣

2

=
1
p ∑

k′∈Z+

∣

∣ω̂r(p−1ξ ⊕k′)
∣

∣

2
+

1
p ∑

k′∈Z+

∣

∣ω̂r(p−1ξ ⊕k′⊕ p−1s1)
∣

∣

2
+ · · ·+

×
1
p ∑

k′∈Z+

∣

∣ω̂r(p−1ξ ⊕k′⊕ p−1sp−1)
∣

∣

2

and hence

c1 = p
1
p
≤ ∑

k∈Z+

∣

∣ω̂n(ξ ⊕k)
∣

∣

2
≤ p

1
p

= c2.
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Thus, {ωn(x⊖k) : k∈ Z+} forms a Riesz basis ofUn. This completes the proof of the

lemma.

Now we establish the splitting trick of ourp-wavelet packets.

Lemma 3.2 (Splitting lemma). For every n∈ Z+, the family of functions

{

ωpn+s(x⊖k) : s∈ Ω0,k∈ Z+
}

constitutes Riesz basis ofDUn.

Proof. First, we claim that

DUn =

{

f (x) : f (x) = ∑
s∈Ω0

∑
k∈Z+

bs
kωpn+s(x⊖k), {bs

k}k∈Z+ ∈ l2(Z+)

}

. (3.2)

As for anys∈ Ω0, by (2.11) and (3.1),ωpn+s(x⊖k)∈DUn. Assume thatf (x) ∈DUn, then there

exists a sequence{ck}k∈Z+ ∈ l2(Z+) such that

f (x) = ∑
k∈Z+

ckωn(px⊖k). (3.3)

Further, if there exist sequences
{

bs
k

}

k∈Z+ ∈ l2(Z+),s∈ Ω0, as for f (x) ∈ DUn, such that

f (x) = ∑
s∈Ω0

∑
k∈Z+

bs
kωpn+s(x⊖k). (3.4)

Sincek∈ Z+, there exist unique numbersr andssuch thatk = pr+s, r ∈ Z+,s∈ Ω0. Then,

for this choice ofk∈ Z+, we obtain

f (x) = ∑
k∈Z+

ckωn(px⊖k)

= ∑
r∈Z+

cprωn(px⊖ pr)+ ∑
r∈Z+

cpr+s1ωn(px⊖ pr⊖s1)

+ · · ·+ ∑
r∈Z+

cpr+sp−1ωn(px⊖ pr⊖sp−1)

= ∑
r∈Z+

cprωpn(x⊖ r)+ ∑
r∈Z+

cpr+s1ωpn+1(x⊖ r)+ · · ·+ ∑
r∈Z+

cpr+sp−1ωpn+p−1(x⊖ r)

= ∑
s∈Ω0

∑
k∈Z+

bs
kωpn+s(x⊖k),

wherebs
k = cpr+sℓ

, ℓ ∈ Ω0 and hence the equality (3.2) follows.

We now show that the set of functions

{

ωpn+s(x⊖k) : s∈ Ω0,k∈ Z+
}
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form a Riesz basis ofDUn. In the light of Lemma 3.1, the family{ωn(x⊖k) : k∈ Z+} is a

Riesz basis ofUn. Therefore,{ωn(px⊖k) : k∈ Z+} constitutes a Riesz basis ofDUn. However,

{ωn(px⊖k) : k∈ Z+} can be splitted intop-disjoint subsets as:

{

ωn(px⊖ pk) : k∈ Z+
}

,
{

ωn(px⊖ pk⊖s1) : k∈ Z+
}

, · · · ,
{

ωn(px⊖ pk⊖sp−1) : k∈ Z+
}

,

which can be written as

{

ωpn(x⊖k) : k∈ Z+
}

,
{

ωpn+1(x⊖k) : k∈ Z+
}

, · · · ,
{

ωpn+p−1(x⊖k) : k∈ Z+
}

.

Hence,
{

ωpn+s(x⊖k) : s∈ Ω0,k∈ Z+
}

form a Riesz basis ofDUn.

This is the splitting trick of our method. This splitting trick decomposes the wavelet sub-

spaces directly instead of using the low-pass filterm0(ξ ) and the high-pass filtersmℓ(ξ ), ℓ ∈ Ω

by the theory ofp-wavelet packets (see [20,22]), and thus gives the Riesz basis of the wavelet

subspaces. Applying the splitting trick to the wavelet spaceW, we can divideW into p-subspaces

as follows:

Theorem 3.3. Let {ωn : n∈ Z+} be the p-wavelet packets associated with the scaling

functionϕ(x). Then the set of functions

{

ωn(x⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

forms a Riesz basis ofD jW.

Proof. We prove the theorem by induction onj. Since{ωn : 1≤ n≤ p−1} are the basic

p-wavelets related to the Walsh functions and the family{ωn(x⊖k) : 1≤ n≤ p−1,k∈ Z+}

form a Riesz basis ofW. Therefore, the claim is true forj = 1. Assume that it holds for

j( j ≥ 1), then
{

ωn(x⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

constitutes a Riesz basis ofD jW.

Using Splitting Lemma 3.2 for the casej +1, we get

{

ωpn(x⊖k),ωpn+1(x⊖k), ...,ωpn+p−1(x⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

form a Riesz basis ofD j+1W. So
{

ωn(x⊖k) : p j ≤ n≤ p j+1−1,k∈ Z+
}

form a Riesz basis

of D j+1W.

In the next two theorems, we provide various ways to construct Riesz basis ofL2(R+) which

is extracted out from thep-wavelet packetsP (see Eq.(2.12)).
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Theorem 3.4. For each fixed j> 0,k∈ Z+, the family of functions

{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1, ℓ ∈ Z,k∈ Z+
}

(3.5)

forms a Riesz basis of L2(R+).

Proof. Since
{

ωn(x⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

forms a Riesz basis ofD jW. By

Theorem 3.3, for eachℓ ∈ Z the set of functions

{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

(3.6)

constitutes Riesz basis ofD j+ℓW. Also, for each fixedj > 0, L2(R+) =
⊕

ℓ∈Z D j+ℓW, there-

fore, the set of functions
{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1, ℓ ∈ Z,k∈ Z+
}

forms a Riesz basis

of L2(R+).

It is clear from the above construction that the Riesz basis for L2(R+) varies with respect to

the integerj > 0. Thus, for the casej = 1, the sub-collection of

P =
{

ωn(pℓx⊖k) : n∈ Z+, ℓ ∈ Z,k∈ Z+
}

gives us the known basis
{

ψℓ(pℓx⊖k) : k∈ Z+, ℓ ∈ Z
}

. Furthermore, in the above construction,

the integerj is fixed and the dilation parameterℓ varies over all integers. In order to construct

the Riesz basis fromP, we allow j andℓ in P to vary simultaneously.

Let S= {( j, ℓ) : j ∈ N, ℓ ∈ Z} be a disjoint covering ofZ, then for eachr ∈ Z, there exist a

unique pair( j, ℓ)∈Ssuch thatr = j +ℓ. Moreover, this collectionSis called ann-finite covering

of Z if there exists a positive integerJ < ∞ such that for all( j, ℓ) ∈ S, j ≤ J.

Theorem 3.5. Suppose{ωn : n∈ Z+} are the p-wavelet packets associated with the scal-

ing functionϕ(x). Then, the family of functions

{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+,( j, ℓ) ∈ S
}

(3.7)

constitutes Riesz basis of L2(R+) if S is an n-finite cover ofZ.

Proof. Since for each fixedj, family of the functions

{

ωn(x⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

constitutes Riesz basis ofD jW and hence
{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+
}

form a

Riesz basis ofD j+ℓW.
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For each fixedj, let Sj = {( j, ℓ) : ( j, ℓ) ∈ S}. SinceS is n-finite, soS can be written as a

finite disjoint union ofSj . Therefore, by this property ofS, we have

L2(R+) =
⊕

j∈N

⊕

( j,ℓ)∈Sj

D
j+ℓW. (3.8)

Thus for each fixedj > 0, the family of functions

{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+,( j, ℓ) ∈ Sj

}

form a Riesz basis of
⊕

( j,ℓ)∈Sj

D
j+ℓW. Using (3.8), it follows that

{

ωn(pℓx⊖k) : p j−1 ≤ n≤ p j −1,k∈ Z+,( j, ℓ) ∈ S
}

form a Riesz basis ofL2(R+).
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