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Abstract. If p(z) is a polynomial of degree n having all its zeros on |z| = k,k ≤ 1, then it

is proved[5] that

max
|z|=1

|p′(z)| ≤
n

kn−1 + kn
max
|z|=1

|p(z)|.

In this paper, we generalize the above inequality by extending it to the polar derivative of a

polynomial of the type p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ ≤ n. We also obtain certain new

inequalities concerning the maximum modulus of a polynomial with restricted zeros.
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1 Introduction

If p(z) is a polynomial of degree n and p′(z) its derivative, then according to a famous result

known as Bernstein’s inequality (for reference see [2]), we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

The result is sharp and the equality in (1.1) holds for p(z) = λ zn, where |λ | = 1.

For the class of polynomials not vanishing in |z| < k, k ≥ 1, Malik[8] proved

max
|z|=1

|p′(z)| ≤
n

1+ k
max
|z|=1

|p(z)|. (1.2)

The result is sharp and the extremal polynomial is p(z) = (z+ k)n.

While seeking for an inequality analogous to (1.2) for polynomials not vanishing in |z| < k,

k ≤ 1, Govil[5] proved the following
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Theorem A. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then

max
|z|=1

|p′(z)| ≤
n

kn−1 + kn
max
|z|=1

|p(z)|. (1.3)

Let α be a complex number. If p(z) is a polynomial of degree n, then the polar derivative of

p(z) with respect to the point α , denoted by Dα p(z), is defined by

Dα p(z) = np(z)+ (α − z)p′(z). (1.4)

Clearly Dα p(z) is a polynomial of degree at most n−1 and it generalizes the ordinary derivative

in the sense that

lim
α→∞

[

Dα p(z)

α

]

= p′(z). (1.5)

In this paper, we first prove the following result which is an extension of Theorem A due to

Govil[5] to the polar derivative of a polynomial of the type p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ ≤ n.

Theorem 1. If p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ < n, is a polynomial of degree n having

all its zeros on |z| = k, k ≤ 1, then for every real or complex number α with |α | ≥ k, we have

max
|z|=1

|Dα p(z)| ≤
n(|α |+ kµ)

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|. (1.6)

Instead of proving Theorem 1 we prove the following theorem which gives a better bound over

the above theorem. More precisely, we prove.

Theorem 2. If p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ < n, is a polynomial of degree n having

all its zeros on |z| = k, k ≤ 1, then for every real or complex number α with |α | ≥ k, we have

max
|z|=1

|Dα p(z)| ≤
n(|α |+ Sµ)

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|, (1.7)

where

Sµ =
n|cn|k

2µ + µ |cn−µ |k
µ−1

n|cn|kµ−1 + µ |cn−µ |
. (1.8)

To prove that the bound obtained in the above theorem is better than the bound obtained in

Theorem 1, we show that

Sµ ≤ kµ or
n|cn|k

2µ + µ |cn−µ |k
µ−1

µ |cn−µ |+ n|cn|kµ−1
≤ kµ
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which is equivalent to

n|cn|k
2µ + µ |cn−µ |k

µ−1 ≤ µ |cn−µ |k
µ + n|cn|k

2µ−1

which implies

n|cn|(k
2µ − k2µ−1) ≤ µ |cn−µ |(k

µ − kµ−1)

or

n

µ

∣

∣

∣

∣

cn

cn−µ

∣

∣

∣

∣

≥
1

kµ

which is always true (see Lemma 5).

Remark 1. If we take µ = 1 and on dividing both sides of the inequalities (1.6) and (1.7)

by |α | and letting |α | → ∞, we obtain Theorem A due to Govil[5].

Dividing both sides of the inequality (1.7) by |α | and letting |α | → ∞, we get the following

result due to Dewan and Hans[4].

Corollary 1. If

p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j

, 1 ≤ µ < n,

is a polynomial of degree n having all its zeros on |z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤
n

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|. (1.9)

The following corollary immediately follows from Theorem 2 by taking µ = 1.

Corollary 2. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then for every real or complex number α with |α | ≥ k, we have

max
|z|=1

|Dα p(z)| ≤
n(|α |+ S1)

kn−1 + kn
max
|z|=1

|p(z)| , (1.10)

where

S1 =

(

n|cn|k
2 + |cn−1|

n|cn|+ |cn−1|

)

. (1.11)

We next prove the following interesting results for the maximum modulus of polynomials.

Theorem 3. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then for every real or complex number α with |α | ≥ k and 0 ≤ r ≤ k ≤ R, we have

max
|z|=R

|Dα p(z)| ≤
n(|α |+ RS′1)(R

2n−1 + kR2n−2)

kn−1Rrn + knRrn−1 + knrn + kn+1rn−1
max
|z|=r

|p(z)|, (1.12)
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where

S′1 =
1

R

n|cn|k
2 + R|cn−1|

n|cn|R + |cn−1|
. (1.13)

If we divide both sides of (1.12) by |α | and letting |α | → ∞, we obtain the following result.

Corollary 3. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| =

k,k ≤ 1, then for 0 ≤ r ≤ k ≤ R, we have

max
|z|=R

|p′(z)| ≤
n(R2n−1 + kR2n−2)

kn−1Rrn + knRrn−1 + knrn + kn+1rn−1
max
|z|=r

|p(z)|. (1.14)

By involving the coefficients c0 and c1 of p(z) =
n

∑
j=0

c jz
j, we prove the following general-

ization of Theorem 3.

Theorem 4. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then for every real or complex number α with |α | ≥ k and 0 ≤ r ≤ k ≤ R, we have

max
|z|=R

|Dα p(z)|

≤
n(|α |+ RS′1){2k2R2n−1|c1|+ R2n−2(R2 + k2)n|c0|}

2(kn+1Rrn + kn+2rn)|c1|+(knrn+1

+kn+2rn−1 + kn−1Rrn+1 + kn+1Rrn−1)n|c0|

max
|z|=r

|p(z)|, (1.15)

where S′1 is the same as defined in Theorem 3.

The following corollary immediately follows by dividing both sides of the inequality (1.15)

by |α | and letting |α | → ∞.

Corollary 4. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then for 0 ≤ r ≤ k ≤ R, we have

max
|z|=R

|p′(z)|

≤
n{2k2R2n−1|c1|+ R2n−2(R2 + k2)n|c0|}

2(kn+1Rrn + kn+2rn)|c1|+(knrn+1

+kn+2rn−1 + kn−1Rrn+1Rrn+1 + kn+1Rrn−1)n|c0|.

max
|z|=r

|p(z)|. (1.16)

2 Lemmas

We need the following lemmas for the proof of these theorems.
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Lemma 1. If p(z) is a polynomial of degree n, then for |z| = 1

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|, (2.1)

where here and throughout this paper q(z) = zn p

(

1

z̄

)

.

This is a special case of a result due to Govil and Rahman[6].

Lemma 2. Let

p(z) = cnzn +
n

∑
υ=µ

cn−υzn−υ
, 1 ≤ µ < n,

be a polynomial of degree n having no zero in the disk |z| < k, k ≤ 1. Then for |z| = 1

kn−µ+1 max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)| . (2.2)

The above lemma is due to Dewan and Hans[4].

Lemma 3. Let p(z) = c0 +
n

∑
υ=µ

cυzυ , 1 ≤ µ ≤ n be a polynomial of degree n having no

zero in the disk |z| < k, k ≥ 1. Then for |z| = 1

kµ |p′(z)| ≤ |q′(z)| . (2.3)

The above lemma is due to Chan and Malik[3].

Lemma 4. Let

p(z) = cnzn +
n

∑
v=µ

cn−vzn−v
, 1 ≤ µ ≤ n,

be a polynomial of degree n having all its zeros on |z| = k, k ≤ 1. Then for |z| = 1

kµ |p′(z)| ≥ |q′(z)| . (2.4)

Proof of Lemma 4. If p(z) has all its zeros on |z| = k, k ≤ 1, then q(z) has all its zeros on

|z| =
1

k
,

1

k
≥ 1. Now applying Lemma 3 to the polynomial q(z), we get the desired result.

Lemma 5. If

p(z) = cnzn +
n

∑
v=µ

cn−vzn−v
, 1 ≤ µ ≤ n,

be a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1. Then for |z| = 1

|q′(z)| ≤ Sµ |p
′(z)| , (2.5)

µ

n

∣

∣

∣

∣

cn−µ

cn

∣

∣

∣

∣

≤ kµ (2.6)
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and Sµ is the same as defined in Theorem 2.

The above lemma is due to Aziz and Rather[1].

Lemma 6. If p(z) =
n

∑
υ=0

cυzυ be a polynomial of degree n having all its zeros in the disk

|z| ≥ k, k > 0, then for r ≤ k and R ≥ k

M(p,r)

rn + krn−1
≥

M(p,R)

Rn + kRn−1
. (2.7)

The above lemma is due to Jain[7].

Lemma 7. If

p(z) =
n

∑
υ=0

cυ zυ

be a polynomial of degree n having all its zeros in the disk |z| ≥ k, k > 0, then for r ≤ k and

R ≥ k

M(p,r)

2k2rn|c1|+ rn−1(r2 + k2)n|c0|
≥

M(p,R)

2k2Rn|c1|+ Rn−1(R2 + k2)n|c0|
. (2.8)

The above lemma is due to Mir[9].

3 Proof of the Theorems

Proof of Theorem 1. The proof of Theorem 1 follows from the same lines as that of Theo-

rem 2, but instead of using Lemma 5, we use Lemma 4. We omit the details.

Proof of Theorem 2. Let

q(z) = zn p

(

1

z̄

)

.

Then it can be easily verified that

|q′(z)| = |np(z)− zp′(z)| for |z| = 1 .

Now for every real or complex number α , we have

Dα p(z) = np(z)+ (α − z)p′(z) .

This implies with the help of Lemma 5 that

|Dα p(z)| ≤ |α p′(z)|+ |np(z)− zp′(z)|

= |α ||p′(z)|+ |q′(z)|

≤ (|α |+ Sµ)|p′(z)| . (3.1)
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Let z0 be a point on |z| = 1, such that |q′(z0)| = max
|z|=1

|q′(z)|, then by Lemma 1, we get

|p′(z0)|+ max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)| . (3.2)

Combining the inequality (3.2) with Lemma 4, we have
(

1

kµ

)

|q′(z0)|+ max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)| ,

which is equivalent to
(

1

kµ
+ 1

)

max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)| . (3.3)

The above inequality when combined with Lemma 2, gives
(

1

kµ
+ 1

)

kn−µ+1 max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|,

which implies

max
|z|=1

|p′(z)| ≤
n

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)| . (3.4)

On combining the inequalities (3.1) and (3.4), we get the desired result.

Proof of Theorem 3. Let 0 ≤ r ≤ k ≤ R. Since p(z) has all its zero on |z| = k,k ≤ 1, then

the polynomial p(Rz) has all its zeros on |z| =
k

R
,

k

R
≤ 1, therefore applying Corollary 2 to the

polynomial p(Rz) with |α | ≥ k, we get

max
|z|=1

|D α
R

p(Rz)| ≤
n( |α |

R
+ S′1)

kn

Rn + kn−1

Rn−1

max
|z|=1

|p(Rz)|

or

max
|z|=1

∣

∣

∣

∣

np(Rz)+
(α

R
− z

)

Rp′(Rz)

∣

∣

∣

∣

≤
n( |α |

R
+ S′1)

kn

Rn + kn−1

Rn−1

max
|z|=R

|p(z)| ,

which is equivalent to

max
|z|=R

|Dα p(z)| ≤
nRn−1(|α |+ RS′1)

kn−1R + kn
max
|z|=R

|p(z)|.

For 0 ≤ r ≤ k ≤ R, the above inequality in conjunction with Lemma 6 yields

max
|z|=R

|Dα p(z)| ≤
nRn−1(|α |+ RS′1)

kn−1R + kn
×

Rn + kRn−1

rn + krn−1
max
|z|=r

|p(z)| ,

from which Theorem 3 follows.

Proof of Theorem 4. The proof follows along the same lines as that of Theorem 3 but

instead of using Lemma 6 we use Lemma 7.

Remark 2. For µ = n, Theorems 1 and 2 hold, if the polynomial satisfies the condition

|c0| ≤ k|cn|.
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