ON EXTREMAL PROPERTIES FOR THE POLAR DERIVATIVE OF POLYNOMIALS

K. K. Dewan and Arty Ahuja
(Natural Sciences Jamia Millia Islamia, Central Uniersity, India)

Received June 23, 2010
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

If $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then it is proved ${ }^{[5]}$ that $$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-1}+k^{n}} \max _{|z|=1}|p(z)|
$$

In this paper, we generalize the above inequality by extending it to the polar derivative of a polynomial of the type $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu \leq n$. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros.

Key words: polynomial, zeros, inequality, polar derivative
AMS (2010) subject classification: 30A10, 30C10, 30C15

1 Introduction

If $p(z)$ is a polynomial of degree n and $p^{\prime}(z)$ its derivative, then according to a famous result known as Bernstein's inequality (for reference see [2]), we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

The result is sharp and the equality in (1.1) holds for $p(z)=\lambda z^{n}$, where $|\lambda|=1$.
For the class of polynomials not vanishing in $|z|<k, k \geq 1$, Malik ${ }^{[8]}$ proved

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

The result is sharp and the extremal polynomial is $p(z)=(z+k)^{n}$.
While seeking for an inequality analogous to (1.2) for polynomials not vanishing in $|z|<k$, $k \leq 1$, Govil ${ }^{[5]}$ proved the following

Theorem A. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k$, $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-1}+k^{n}} \max _{|z|=1}|p(z)| \tag{1.3}
\end{equation*}
$$

Let α be a complex number. If $p(z)$ is a polynomial of degree n, then the polar derivative of $p(z)$ with respect to the point α, denoted by $D_{\alpha} p(z)$, is defined by

$$
\begin{equation*}
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) \tag{1.4}
\end{equation*}
$$

Clearly $D_{\alpha} p(z)$ is a polynomial of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z) \tag{1.5}
\end{equation*}
$$

In this paper, we first prove the following result which is an extension of Theorem A due to $\operatorname{Govil}^{[5]}$ to the polar derivative of a polynomial of the type $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu \leq n$.

Theorem 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n\left(|\alpha|+k^{\mu}\right)}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| \tag{1.6}
\end{equation*}
$$

Instead of proving Theorem 1 we prove the following theorem which gives a better bound over the above theorem. More precisely, we prove.

Theorem 2. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n\left(|\alpha|+S_{\mu}\right)}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\mu}=\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}+\mu\left|c_{n-\mu}\right|} \tag{1.8}
\end{equation*}
$$

To prove that the bound obtained in the above theorem is better than the bound obtained in Theorem 1, we show that

$$
S_{\mu} \leq k^{\mu} \quad \text { or } \quad \frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|+n\left|c_{n}\right| k^{\mu-1}} \leq k^{\mu}
$$

which is equivalent to

$$
n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1} \leq \mu\left|c_{n-\mu}\right| k^{\mu}+n\left|c_{n}\right| k^{2 \mu-1}
$$

which implies

$$
n\left|c_{n}\right|\left(k^{2 \mu}-k^{2 \mu-1}\right) \leq \mu\left|c_{n-\mu}\right|\left(k^{\mu}-k^{\mu-1}\right)
$$

or

$$
\frac{n}{\mu}\left|\frac{c_{n}}{c_{n-\mu}}\right| \geq \frac{1}{k^{\mu}}
$$

which is always true (see Lemma 5).
Remark 1. If we take $\mu=1$ and on dividing both sides of the inequalities (1.6) and (1.7) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we obtain Theorem A due to Govil ${ }^{[5]}$.

Dividing both sides of the inequality (1.7) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get the following result due to Dewan and Hans ${ }^{[4]}$.

Corollary 1. If

$$
p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, \quad 1 \leq \mu<n
$$

is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| \tag{1.9}
\end{equation*}
$$

The following corollary immediately follows from Theorem 2 by taking $\mu=1$.
Corollary 2. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k$, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n\left(|\alpha|+S_{1}\right)}{k^{n-1}+k^{n}} \max _{|z|=1}|p(z)| \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{1}=\left(\frac{n\left|c_{n}\right| k^{2}+\left|c_{n-1}\right|}{n\left|c_{n}\right|+\left|c_{n-1}\right|}\right) \tag{1.11}
\end{equation*}
$$

We next prove the following interesting results for the maximum modulus of polynomials.
Theorem 3. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k$, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$ and $0 \leq r \leq k \leq R$, we have

$$
\begin{equation*}
\max _{|z|=R}\left|D_{\alpha} p(z)\right| \leq \frac{n\left(|\alpha|+R S_{1}^{\prime}\right)\left(R^{2 n-1}+k R^{2 n-2}\right)}{k^{n-1} R r^{n}+k^{n} R r^{n-1}+k^{n} r^{n}+k^{n+1} r^{n-1}} \max _{|z|=r}|p(z)|, \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{1}^{\prime}=\frac{1}{R} \frac{n\left|c_{n}\right| k^{2}+R\left|c_{n-1}\right|}{n\left|c_{n}\right| R+\left|c_{n-1}\right|} \tag{1.13}
\end{equation*}
$$

If we divide both sides of (1.12) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we obtain the following result.
Corollary 3. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=$ $k, k \leq 1$, then for $0 \leq r \leq k \leq R$, we have

$$
\begin{equation*}
\max _{|z|=R}\left|p^{\prime}(z)\right| \leq \frac{n\left(R^{2 n-1}+k R^{2 n-2}\right)}{k^{n-1} R r^{n}+k^{n} R r^{n-1}+k^{n} r^{n}+k^{n+1} r^{n-1}} \max _{|z|=r}|p(z)| \tag{1.14}
\end{equation*}
$$

By involving the coefficients c_{0} and c_{1} of $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$, we prove the following generalization of Theorem 3.

Theorem 4. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k$, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$ and $0 \leq r \leq k \leq R$, we have

$$
\begin{align*}
& \max _{|z|}=R\left|D_{\alpha} p(z)\right| \\
& \leq \frac{n\left(|\alpha|+R S_{1}^{\prime}\right)\left\{2 k^{2} R^{2 n-1}\left|c_{1}\right|+R^{2 n-2}\left(R^{2}+k^{2}\right) n\left|c_{0}\right|\right\}}{2\left(k^{n+1} R r^{n}+k^{n+2} r^{n}\right)\left|c_{1}\right|+\left(k^{n} r^{n+1}\right.} \max _{|z|=r}|p(z)| \tag{1.15}\\
&\left.\quad+k^{n+2} r^{n-1}+k^{n-1} R r^{n+1}+k^{n+1} R r^{n-1}\right) n\left|c_{0}\right|
\end{align*}
$$

where S_{1}^{\prime} is the same as defined in Theorem 3.
The following corollary immediately follows by dividing both sides of the inequality (1.15) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$.

Corollary 4. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k$, $k \leq 1$, then for $0 \leq r \leq k \leq R$, we have

$$
\begin{align*}
& \max _{|z|=R}\left|p^{\prime}(z)\right| \\
& \leq \frac{n\left\{2 k^{2} R^{2 n-1}\left|c_{1}\right|+R^{2 n-2}\left(R^{2}+k^{2}\right) n\left|c_{0}\right|\right\}}{2\left(k^{n+1} R r^{n}+k^{n+2} r^{n}\right)\left|c_{1}\right|+\left(k^{n} r^{n+1}\right.} \max _{|z|=r}|p(z)| \tag{1.16}\\
& \left.\quad+k^{n+2} r^{n-1}+k^{n-1} R r^{n+1} R r^{n+1}+k^{n+1} R r^{n-1}\right) n\left|c_{0}\right|
\end{align*}
$$

2 Lemmas

We need the following lemmas for the proof of these theorems.

Lemma 1. If $p(z)$ is a polynomial of degree n, then for $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{2.1}
\end{equation*}
$$

where here and throughout this paper $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$.
This is a special case of a result due to Govil and Rahman ${ }^{[6]}$.
Lemma 2. Let

$$
p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, \quad 1 \leq \mu<n
$$

be a polynomial of degree n having no zero in the disk $|z|<k, k \leq 1$. Then for $|z|=1$

$$
\begin{equation*}
k^{n-\mu+1} \max _{|z|=1}\left|p^{\prime}(z)\right| \leq \max _{|z|=1}\left|q^{\prime}(z)\right| \tag{2.2}
\end{equation*}
$$

The above lemma is due to Dewan and Hans ${ }^{[4]}$.
Lemma 3. Let $p(z)=c_{0}+\sum_{v=\mu}^{n} c_{v} z^{v}, 1 \leq \mu \leq n$ be a polynomial of degree n having no zero in the disk $|z|<k, k \geq 1$. Then for $|z|=1$

$$
\begin{equation*}
k^{\mu}\left|p^{\prime}(z)\right| \leq\left|q^{\prime}(z)\right| \tag{2.3}
\end{equation*}
$$

The above lemma is due to Chan and Malik ${ }^{[3]}$.
Lemma 4. Let

$$
p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, \quad 1 \leq \mu \leq n
$$

be a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$. Then for $|z|=1$

$$
\begin{equation*}
k^{\mu}\left|p^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right| \tag{2.4}
\end{equation*}
$$

Proof of Lemma 4. If $p(z)$ has all its zeros on $|z|=k, k \leq 1$, then $q(z)$ has all its zeros on $|z|=\frac{1}{k}, \frac{1}{k} \geq 1$. Now applying Lemma 3 to the polynomial $q(z)$, we get the desired result.

Lemma 5. If

$$
p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, \quad 1 \leq \mu \leq n
$$

be a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$. Then for $|z|=1$

$$
\begin{align*}
& \left|q^{\prime}(z)\right| \leq S_{\mu}\left|p^{\prime}(z)\right|, \tag{2.5}\\
& \frac{\mu}{n}\left|\frac{c_{n-\mu}}{c_{n}}\right| \leq k^{\mu} \tag{2.6}
\end{align*}
$$

and S_{μ} is the same as defined in Theorem 2.
The above lemma is due to Aziz and Rather ${ }^{[1]}$.
Lemma 6. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ be a polynomial of degree n having all its zeros in the disk $|z| \geq k, k>0$, then for $r \leq k$ and $R \geq k$

$$
\begin{equation*}
\frac{M(p, r)}{r^{n}+k r^{n-1}} \geq \frac{M(p, R)}{R^{n}+k R^{n-1}} \tag{2.7}
\end{equation*}
$$

The above lemma is due to Jain ${ }^{[7]}$.
Lemma 7. If

$$
p(z)=\sum_{v=0}^{n} c_{v} z^{v}
$$

be a polynomial of degree n having all its zeros in the disk $|z| \geq k, k>0$, then for $r \leq k$ and $R \geq k$

$$
\begin{equation*}
\frac{M(p, r)}{2 k^{2} r^{n}\left|c_{1}\right|+r^{n-1}\left(r^{2}+k^{2}\right) n\left|c_{0}\right|} \geq \frac{M(p, R)}{2 k^{2} R^{n}\left|c_{1}\right|+R^{n-1}\left(R^{2}+k^{2}\right) n\left|c_{0}\right|} \tag{2.8}
\end{equation*}
$$

The above lemma is due to $\mathrm{Mir}^{[9]}$.

3 Proof of the Theorems

Proof of Theorem 1. The proof of Theorem 1 follows from the same lines as that of Theorem 2, but instead of using Lemma 5, we use Lemma 4. We omit the details.

Proof of Theorem 2. Let

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

Then it can be easily verified that

$$
\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right| \quad \text { for }|z|=1
$$

Now for every real or complex number α, we have

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)
$$

This implies with the help of Lemma 5 that

$$
\begin{align*}
\left|D_{\alpha} p(z)\right| & \leq\left|\alpha p^{\prime}(z)\right|+\left|n p(z)-z p^{\prime}(z)\right| \\
& =|\alpha|\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \\
& \leq\left(|\alpha|+S_{\mu}\right)\left|p^{\prime}(z)\right| \tag{3.1}
\end{align*}
$$

Let z_{0} be a point on $|z|=1$, such that $\left|q^{\prime}\left(z_{0}\right)\right|=\max _{|z|=1}\left|q^{\prime}(z)\right|$, then by Lemma 1, we get

$$
\begin{equation*}
\left|p^{\prime}\left(z_{0}\right)\right|+\max _{|z|=1}\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{3.2}
\end{equation*}
$$

Combining the inequality (3.2) with Lemma 4, we have

$$
\left(\frac{1}{k^{\mu}}\right)\left|q^{\prime}\left(z_{0}\right)\right|+\max _{|z|=1}\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|
$$

which is equivalent to

$$
\begin{equation*}
\left(\frac{1}{k^{\mu}}+1\right) \max _{|z|=1}\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{3.3}
\end{equation*}
$$

The above inequality when combined with Lemma 2, gives

$$
\left(\frac{1}{k^{\mu}}+1\right) k^{n-\mu+1} \max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|
$$

which implies

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| \tag{3.4}
\end{equation*}
$$

On combining the inequalities (3.1) and (3.4), we get the desired result.
Proof of Theorem 3. Let $0 \leq r \leq k \leq R$. Since $p(z)$ has all its zero on $|z|=k, k \leq 1$, then the polynomial $p(R z)$ has all its zeros on $|z|=\frac{k}{R}, \frac{k}{R} \leq 1$, therefore applying Corollary 2 to the polynomial $p(R z)$ with $|\alpha| \geq k$, we get

$$
\max _{|z|=1}\left|D_{\frac{\alpha}{R}} p(R z)\right| \leq \frac{n\left(\frac{|\alpha|}{R}+S_{1}^{\prime}\right)}{\frac{k^{n}}{R^{n}}+\frac{k^{n-1}}{R^{n-1}}} \max _{|z|=1}|p(R z)|
$$

or

$$
\max _{|z|=1}\left|n p(R z)+\left(\frac{\alpha}{R}-z\right) R p^{\prime}(R z)\right| \leq \frac{n\left(\frac{|\alpha|}{R}+S_{1}^{\prime}\right)}{\frac{k^{n}}{R^{n}}+\frac{k^{n-1}}{R^{n-1}}} \max _{|z|=R}|p(z)|
$$

which is equivalent to

$$
\max _{|z|=R}\left|D_{\alpha} p(z)\right| \leq \frac{n R^{n-1}\left(|\alpha|+R S_{1}^{\prime}\right)}{k^{n-1} R+k^{n}} \max _{|z|=R}|p(z)|
$$

For $0 \leq r \leq k \leq R$, the above inequality in conjunction with Lemma 6 yields

$$
\max _{|z|=R}\left|D_{\alpha} p(z)\right| \leq \frac{n R^{n-1}\left(|\alpha|+R S_{1}^{\prime}\right)}{k^{n-1} R+k^{n}} \times \frac{R^{n}+k R^{n-1}}{r^{n}+k r^{n-1}} \max _{|z|=r}|p(z)|
$$

from which Theorem 3 follows.
Proof of Theorem 4. The proof follows along the same lines as that of Theorem 3 but instead of using Lemma 6 we use Lemma 7.

Remark 2. For $\mu=n$, Theorems 1 and 2 hold, if the polynomial satisfies the condition $\left|c_{0}\right| \leq k\left|c_{n}\right|$.

References

[1] Aziz, A. and Rather, N. A., Some Zygmund type L^{q} Inequalities for Polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
[2] Bernstein, S., Lecons Sur Les Propriétés Extrémales et la Meilleure Approximation Desfonctions Analytiques D'une Variable réele, Gauthier Villars, Paris, 1926.
[3] Chan, T. N. and Malik, M. A., On Erdös-Lax Theorem, Proc. Indian Acad. Sci., 92:3(1983), 191-193.
[4] Dewan, K. K. and Sunil Hans, On Extremal Properties for the Derivative of a Polynomials, Mathematica Balkanica, New Series, 23:1-2(2009), 27-36.
[5] Govil, N. K., On the Theorem of S. Bernstein, J. Math. and Phy. Sci., 14:2(1980), 183-187.
[6] Govil, N. K. and Rahman, Q. I., Functions of Exponential type not Vanishing in a Half-plane and Related Polynomials, Trans. Amer. Math. Soc., 137(1969), 501-517.
[7] Jain, V. K., On Polynomials Having Zeros in Closed Exterior or Interior of a Circle, Indian J. Pure Appl. Math., 30 (1999), 153-159.
[8] Malik, M. A., On the Derivative of Polynomial, J. London Math. Soc., 1(1969), 57-60.
[9] Mir, A., On Extremal Properties and Location of Zeros of Polynomials, Ph.D. Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.

Department of Mathematics
 Faculty of Natural Sciences Jamia Millia Islamia(Central University)
 New Delhi-110025
 India

K. K. Dewan

E-mail: kkdewan123@yahoo.co.in

Arty Ahuja
E-mail: aarty_ahuja@yahoo.com

