A NOTE ON H_w^p -BOUNDEDNESS OF RIESZ TRANSFORMS AND θ -CALDERÓN-ZYGMUND OPERATORS THROUGH MOLECULAR CHARACTERIZATION

Luong Dang Ky

(University of Orleans, France)

Received Mar. 5, 2011; Revised Mar. 21, 2011

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. Let 0 and <math>w in the Muckenhoupt class A_1 . Recently, by using the weighted atomic decomposition and molecular characterization, Lee, Lin and Yang^[11] established that the Riesz transforms $R_j, j = 1, 2, \cdots, n$, are bounded on $H_w^p(\mathbf{R}^n)$. In this note we extend this to the general case of weight w in the Muckenhoupt class A_∞ through molecular characterization. One difficulty, which has not been taken care in [11], consists in passing from atoms to all functions in $H_w^p(\mathbf{R}^n)$. Furthermore, the H_w^p -boundedness of θ -Calderón-Zygmund operators are also given through molecular characterization and atomic decomposition.

Key words: Muckenhoupt weight, Riesz transform, Calderón-Zygmund operator

AMS (2010) subject classification: 42B20, 42B25, 42B30

1 Introduction and Preliminaries

Calderón-Zygmund operators and their generalizations on Euclidean space \mathbb{R}^n have been extensively studied, see for example^[7,14,18,15]. In particular, Yabuta^[18] introduced certain θ -Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-differential operator.

Definition 1.1. Let θ be a nonnegative nondecreasing function on $(0, \infty)$ satisfying

$$\int_0^1 \frac{\theta(t)}{t} \mathrm{d}t < \infty.$$

A continuous function $K : \mathbf{R}^n \times \mathbf{R}^n \setminus \{(x,x) : x \in \mathbf{R}^n\} \to \mathbf{C}$ is said to be a θ -Calderón-Zygmund

singular integral kernel if there exists a constant C > 0 such that

$$|K(x,y)| \le \frac{C}{|x-y|^n}$$

for all $x \neq y$,

$$|K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \le C \frac{1}{|x-y|^n} \theta\left(\frac{|x-x'|}{|x-y|}\right)$$

for all $2|x-x'| \leq |x-y|$.

A linear operator $T: \mathcal{S}(\mathbf{R}^n) \to \mathcal{S}'(\mathbf{R}^n)$ is said to be a θ -Calderón-Zygmund operator if T can be extended to a bounded operator on $L^2(\mathbf{R}^n)$ and there exists a θ -Calderon-Zygmund singular integral kernel K such that for all $f \in C_c^{\infty}(\mathbf{R}^n)$ and all $x \notin \text{supp } f$, we have

$$Tf(x) = \int_{\mathbf{R}^n} K(x, y) f(y) dy.$$

When

$$K_j(x,y) = \pi^{-(n+1)/2} \Gamma\left(\frac{n+1}{2}\right) \frac{x_j - y_j}{|x - y|^{n+1}}, \qquad j = 1, 2, \dots, n,$$

then they are the classical Riesz transforms denoted by R_j .

It is well-known that the Riesz transforms R_j , $j = 1, 2, \dots, n$, are bounded on unweighted Hardy spaces $H^p(\mathbf{R}^n)$. There are many different approaches to prove this classical result (see [11, 9]). Recently, by using the weighted molecular theory (see [10]) and combined with García-Cuerva's atomic decomposition [5] for weighted Hardy spaces $H_w^p(\mathbf{R}^n)$, the authors in [11] established that the Riesz transforms R_j , $j=1,2,\cdots,n$, are bounded on $H_w^p(\mathbf{R}^n)$. More precisely, they proved that $||R_j f||_{H^p_w} \le C$ for every $w - (p, \infty, ts - 1)$ -atom where $s, t \in \mathbb{N}$ satisfy $n/(n+s) and <math>((s-1)r_w+n)/(s(r_w-1))$ with r_w is the critical index of w for the reverse Hölder condition. Remark that this leaves a gap in the proof. Similar gaps exist in some litteratures, for instance in [10, 15] when the authors establish H_{ν}^{p} -boundedness of Calderón-Zygmund type operators. Indee d, it is now well-known that (see [1]) the argument "the operator T is uniformly bounded in $H_w^p(\mathbf{R}^n)$ on w- (p, ∞, r) -atoms, and hence it extends to a bounded operator on $H_w^p(\mathbb{R}^n)$ " is wrong in general. However, Meda, Sjögren and Vallarino [13] establishes that (in the setting of unweighted Hardy spaces) this is correct if one replaces L^{∞} -atoms by L^q -atoms with $1 < q < \infty$. Later, the authors in [2] extended these results to the weighted anisotropic Hardy spaces. More precisely, it is claimed in [2] that the operator T can be extended to a bounded operator on $H_w^p(\mathbf{R}^n)$ if it is uniformly bounded on w-(p,q,r)-atoms for $q_w < q < \infty, r \ge [n(q_w/p - 1)]$ where q_w is the critical index of w.

Motivated by [11, 10, 15, 1, 2], in this paper, we extend *Theorem 1* in [11] to A_{∞} weights (see *Theorem 1.1*); *Theorem 4* in [10] (see *Theorem 1.2*), *Theorem 3* in [15] (see *Theorem 3.1*) to θ -Calderón-Zygmund operators; and fill the gaps of the proofs by using the atomic decomposition and molecular characterization of $H_w^p(\mathbf{R}^n)$ as in [11].

Throughout the whole paper, C denotes a positive geometric constant which is independent of the main parameters, but may change from line to line. In \mathbb{R}^n , we denote by B = B(x,r) an open ball with center x and radius r > 0. For any measurable set E, we denote by |E| its Lebesgue measure, and by E^c the set $\mathbb{R}^n \setminus E$.

Let us first recall some notations, definitions and well-known results.

Let $1 \le p < \infty$. A nonnegative locally integrable function w belongs to the *Muckenhoupt class* A_p , say $w \in A_p$, if there exists a positive constant C so that

$$\frac{1}{|B|} \int_{B} w(x) dx \left(\frac{1}{|B|} \int_{B} (w(x))^{-1/(p-1)} dx \right)^{p-1} \le C, \quad \text{if } 1$$

and

$$\frac{1}{|B|} \int_{B} w(x) dx \le C \operatorname{ess-inf}_{x \in B} w(x), \quad \text{if } p = 1,$$

for all balls B in \mathbb{R}^n . We say that $w \in A_{\infty}$ if $w \in A_p$ for some $p \in [1, \infty)$.

It is well known that $w \in A_p$, $1 \le p < \infty$, implies $w \in A_q$ for all q > p. Also, if $w \in A_p$, $1 , then <math>w \in A_q$ for some $q \in [1, p)$. We thus write $q_w := \inf\{p \ge 1 : w \in A_p\}$ to denote the critical index of w. For a measurable set E, we note $w(E) = \int_E w(x) dx$ its weighted measure.

The following lemma gives a characterization of the class A_p , $1 \le p < \infty$. It can be found in [6].

Lemma A. The function $w \in A_p$, $1 \le p < \infty$, if and only if, for all nonnegative functions and all balls B,

$$\left(\frac{1}{|B|}\int_B f(x)dx\right)^p \le C\frac{1}{w(B)}\int_B f(x)^p w(x)dx.$$

A close relation to A_p is the reverse Hölder condition. If there exist r > 1 and a fixed constant C > 0 such that

$$\left(\frac{1}{|B|}\int_{B}w^{r}(x)\mathrm{d}x\right)^{1/r}\leq C\left(\frac{1}{|B|}\int_{B}w(x)\mathrm{d}x\right)\qquad \textit{for every ball }B\subset\mathbf{R}^{n},$$

we say that w satisfies reverse Hölder condition of order r and write $w \in RH_r$. It is known that if $w \in RH_r$, r > 1, then $w \in RH_{r+\varepsilon}$ for some $\varepsilon > 0$. We thus write $r_w := \sup\{r > 1 : w \in RH_r\}$ to denote the critical index of w for the reverse Hölder condition.

The following result provides us the comparison between the Lebesgue measure of a set E and its weighted measure w(E). It also can be found in [6].

Lemma B. Let $w \in A_p \cap RH_r$, $p \ge 1$ and r > 1. Then there exist constants $C_1, C_2 > 0$ such that

$$C_1\left(\frac{|E|}{|B|}\right)^p \le \frac{w(E)}{w(B)} \le C_2\left(\frac{|E|}{|B|}\right)^{(r-1)/r},$$

for all balls B and measurable subsets $E \subset B$.

Given a weight function w on \mathbb{R}^n , as usual we denote by $L_w^q(\mathbb{R}^n)$ the space of all functions f satisfying

$$||f||_{L^q_w} := \left(\int_{\mathbf{R}^n} |f(x)|^q w(x) dx\right)^{1/q} < \infty.$$

When $q = \infty$, $L_w^{\infty}(\mathbf{R}^n)$ is $L^{\infty}(\mathbf{R}^n)$ and $||f||_{L_w^{\infty}} = ||f||_{L^{\infty}}$. Analogously to the classical Hardy spaces, the weighted Hardy spaces $H_w^p(\mathbf{R}^n), p > 0$, can be defined in terms of maximal functions. Namely, let ϕ be a function in $S(\mathbf{R}^n)$, the Schwartz space of rapidly decreasing smooth functions, satisfying $\int_{\mathbf{p}_n} \phi(x) dx = 1$. Define

$$\phi_t(x) = t^{-n}\phi(x/t), \quad t > 0, x \in \mathbf{R}^n,$$

and the maximal function f^* by

$$f^*(x) = \sup_{t>0} |f * \phi_t(x)|, \quad x \in \mathbf{R}^n.$$

Then $H_w^p(\mathbf{R}^n)$ consists of those tempered distributions $f \in \mathcal{S}'(\mathbf{R}^n)$ for which $f^* \in L_w^p(\mathbf{R}^n)$ with the (quasi-)norm

$$||f||_{H^p_{uv}} = ||f^*||_{L^p_{uv}}.$$

In order to show the H_{W}^{p} -boundedness of Riesz transforms, we characterize weighted Hardy spaces in terms of atoms and molecules in the following way.

Definition of a weighted atom. Let $0 and <math>p \ne q$ such that $w \in A_q$. Let q_w be the critical index of w. Set $[\cdot]$ the integer function. For $s \in \mathbb{N}$ satisfying $s \ge [n(q_w/p - 1)]$, a function $a \in L_w^q(\mathbf{R}^n)$ is called w-(p,q,s)-atom centered at x_0 if

- (i) supp $a \subset B$ for some ball B centered at x_0 ,
- (ii) $||a||_{L^q_w} \le w(B)^{1/q-1/p}$,

(iii) $\int_{\mathbf{R}^n} a(x)x^{\alpha} dx = 0$ for every multi-index α with $|\alpha| \leq s$. Let $H_w^{p,q,s}(\mathbf{R}^n)$ denote the space consisting of tempered distributions admitting a decomposition $f = \sum_{i=1}^{\infty} \lambda_j a_j$ in $S'(\mathbf{R}^n)$, where a_j 's are w-(p,q,s)-atoms and $\sum_{j=1}^{\infty} |\lambda_j|^p < \infty$. And for every $f \in H_w^{p,q,s}(\mathbf{R}^n)$, we consider the (quasi-)norm

$$||f||_{H^{p,q,s}_w} = \inf \Big\{ \Big(\sum_{j=1}^{\infty} |a_j|^p \Big)^{1/p} : f \stackrel{S'}{=} \sum_{j=1}^{\infty} \lambda_j a_j, \ \{a_j\}_{j=1}^{\infty} \text{ are } w - (p,q,s) - \text{atoms} \Big\}.$$

Denote by $H_{w,\text{fin}}^{p,q,s}(\mathbf{R}^n)$ the vector space of all finite linear combinations of w-(p,q,s)-atoms, and the (quasi-)norm of f in $H_{w,\text{fin}}^{p,q,s}(\mathbf{R}^n)$ is defined by

$$||f||_{H^{p,q,s}_{w,\mathrm{fin}}} := \inf \Big\{ \Big(\sum_{i=1}^k |\lambda_j|^p \Big)^{1/p} : f = \sum_{i=1}^k \lambda_j a_j, k \in \mathbb{N}, \{a_j\}_{j=1}^k \text{ are } w \cdot (p,q,s) \text{-atoms} \Big\}.$$

We have the following atomic decomposition for $H_w^p(\mathbf{R}^n)$. It can be found in [5] (see also [2, 8]).

Theorem A. If the triplet (p,q,s) satisfies the conditions of w-(p,q,s)-atoms, then $H_w^p(\mathbf{R}^n) = H_w^{p,q,s}(\mathbf{R}^n)$ with equivalent norms.

The molecules corresponding to the atoms mentioned above can be defined as follows.

Definition of a weighted molecule. For $0 and <math>p \ne q$, let $w \in A_q$ with critical index q_w and critical index r_w for the reverse Hölder condition. Set $s \ge [n(q_w/p-1)]$, $\varepsilon > \max\{sr_w(r_w-1)^{-1}n^{-1}+(r_w-1)^{-1},1/p-1\}$, $a=1-1/p+\varepsilon$, and $b=1-1/q+\varepsilon$. A w- (p,q,s,ε) -molecule centered at x_0 is a function $M \in L_w^q(\mathbf{R}^n)$ satisfying

- (i) $M.w(B(x_0, \cdot x_0))^b \in L_w^q(\mathbf{R}^n)$,
- (ii) $||M||_{L_w^q}^{a/b} ||M.w(B(x_0, -x_0))^b||_{L_w^q}^{1-a/b} \equiv \mathfrak{N}_w(M) < \infty,$
- (iii) $\int_{\mathbf{R}^n} M(x) x^{\alpha} dx = 0$ for every multi-index α with $|\alpha| \le s$.

The above quantity $\mathfrak{N}_w(M)$ is called the *w*-molecular norm of *M*.

In [10], Lee and Lin proved that every weighted molecule belongs to the weighted Hardy space $H_w^p(\mathbf{R}^n)$, and the embedding is continuous.

Theorem B. Let $0 and <math>p \ne q$, $w \in A_q$, and (p,q,s,ε) be the quadruple in the definition of molecule. Then, every w- (p,q,s,ε) -molecule M centered at any point in \mathbb{R}^n is in $H^p_w(\mathbb{R}^n)$, and $\|M\|_{H^p_w} \le C\mathfrak{N}_w(M)$ where the constant C is independent of the molecule.

Although, in general, one cannot conclude that an operator T is bounded on $H_w^p(\mathbf{R}^n)$ by checking that their norms have uniform bound on all of the corresponding w- (p, ∞, s) -atoms (cf. [1]). However, this is correct when dealing with w-(p,q,s)-atoms with $q_w < q < \infty$. Indeed, we have the following result (see [2, Theorem 7.2]).

Theorem C. Let $0 , <math>w \in A_{\infty}$, $q \in (q_w, \infty)$ and $s \in \mathbb{Z}$ satisfying $s \ge [n(q_w/p - 1)]$. Suppose that $T : H_{w,\text{fin}}^{p,q,s}(\mathbb{R}^n) \to H_w^p(\mathbb{R}^n)$ is a linear operator satisfying

$$\sup\{\|Ta\|_{H^p}: a \text{ is any } w-(p,q,s)-\text{atom}\}<\infty.$$

Then T can be extended to a bounded linear operator on $H_w^p(\mathbf{R}^n)$.

Our first main result, which generalizes *Theorem 1* in [11], is as follows:

Theorem 1.1. Let $0 and <math>w \in A_{\infty}$. Then, the Riesz transforms are bounded on $H_w^p(\mathbf{R}^n)$.

For the next result, we need the notion $T^*1 = 0$.

Definition 1.2. Let T be a θ -Calderón-Zygmund operator. We say that $T^*1 = 0$ if $\int_{\mathbb{R}^n} T f(x) dx = 0$ for all $f \in L^q(\mathbb{R}^n)$, $1 < q \le \infty$, with compact support and $\int_{\mathbb{R}^n} f(x) dx = 0$.

We now can give the H_w^p -boundedness of θ -Calderón-Zygmund type operators, which generalizes *Theorem 4* in [10] by taking q = 1 and $\theta(t) = t^{\delta}$, as follows:

Theorem 1.2. Given $\delta \in (0,1]$, $n/(n+\delta) , and <math>w \in A_q \cap RH_r$ with $1 \le q < p(n+\delta)/n, (n+\delta)/(n+\delta-nq) < r$. Let θ be a nonnegative nondecreasing function on $(0,\infty)$ with $\int_0^1 \frac{\theta(t)}{t^{1+\delta}} dt < \infty$, and T be a θ -Calderón-Zygmund operator satisfying $T^*1 = 0$. Then T is bounded on $H_w^p(\mathbf{R}^n)$.

2 Proof of Theorem 1.1

In order to prove the main theorems, we need the following lemma (see [6, page 412]).

Lemma C. Let $w \in A_r, r > 1$. Then there exists a constant C > 0 such that

$$\int_{B^c} \frac{1}{|x - x_0|^{nr}} w(x) \mathrm{d}x \le C \frac{1}{\sigma^{nr}} w(B)$$

for all balls $B = B(x_0, \sigma)$ in \mathbb{R}^n .

Proof of Theorem 1.1. For $q = 2(q_w + 1) \in (q_w, \infty)$, then $s := [n(q/p - 1)] \ge [n(q_w/p - 1)]$. We now choose (and fix) a positive number ε satisfying

$$\max\{sr_w(r_w-1)^{-1}n^{-1} + (r_w-1)^{-1}, q/p-1\} < \varepsilon < t(s+1)(nq)^{-1} + q^{-1} - 1, \qquad (2.1)$$
for some $t \in \mathbb{N}, t \ge 1$ and $\max\{sr_w(r_w-1)^{-1}n^{-1} + (r_w-1)^{-1}, q/p-1\} < t(s+1)(nq)^{-1} + q^{-1} - 1.$

Clearly, $\ell := t(s+1) - 1 \ge s \ge [n(q_w/p-1)]$. Hence, by Theorem B and Theorem C, it is sufficient to show that for every w- (p,q,ℓ) -atom f centered at x_0 and supported in ball $B = B(x_0,\sigma)$, the Riesz transforms $R_j f = K_j * f$, $j = 1,2,\cdots,n$, are w- (p,q,s,ε) -molecules with the norm $\mathfrak{N}_w(R_j f) \le C$.

Indeed, as $w \in A_q$ by $q = 2(q_w + 1) \in (q_w, \infty)$. It follows from L_w^q -boundedness of Riesz transforms that

$$||R_j f||_{L_w^q} \le ||R_j||_{L_w^q \to L_w^q} ||f||_{L_w^q} \le Cw(B)^{1/q - 1/p}.$$
 (2.2)

To estimate $||R_i f.w(B(x_0, |\cdot -x_0|))^b||_{L^q}$ where $b=1-1/q+\varepsilon$, we write

$$||R_{j}f.w(B(x_{0}, -x_{0}))^{b}||_{L_{w}^{q}}^{q} = \int_{|x-x_{0}| \leq 2\sqrt{n}\sigma} |R_{j}f(x)|^{q} w(B(x_{0}, |x-x_{0}|))^{bq} w(x) dx + \int_{|x-x_{0}| > 2\sqrt{n}\sigma} |R_{j}f(x)|^{q} w(B(x_{0}, |x-x_{0}|))^{bq} w(x) dx$$

$$= I + II.$$

By Lemma B, we have the following estimate,

$$\begin{split} I &= \int_{|x-x_0| \leq 2\sqrt{n}\sigma} |R_j f(x)|^q w (B(x_0, |x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq w (B(x_0, 2\sqrt{n}\sigma))^{bq} \int_{|x-x_0| \leq 2\sqrt{n}\sigma} |R_j f(x)|^q w(x) \mathrm{d}x \\ &\leq C w(B)^{bq} \|R_j\|_{L^q \to L^q}^q \|f\|_{L^q}^q \leq C w(B)^{(b+1/q-1/p)q}. \end{split}$$

To estimate II, as f is w- (p,q,ℓ) -atom, by the Taylor's fomular and Lemma A, we get

$$|K_{j} * f(x)| = \left| \int_{|y-x_{0}| \leq \sigma} \left(K_{j}(x-y) - \sum_{|\alpha| \leq \ell} \frac{1}{\alpha!} D^{\alpha} K_{j}(x-x_{0}) (x_{0}-y)^{\alpha} \right) f(y) dy \right|$$

$$\leq C \int_{|y-x_{0}| \leq \sigma} \frac{\sigma^{\ell+1}}{|x-x_{0}|^{n+\ell+1}} |f(y)| dy$$

$$\leq C \frac{\sigma^{n+\ell+1}}{|x-x_{0}|^{n+\ell+1}} w(B)^{-1/q} ||f||_{L_{w}^{q}},$$

for all $x \in (B(x_0, 2\sqrt{n}\sigma))^c$. As $b = 1 - 1/q + \varepsilon$, it follows from (2.1) that $(n + \ell + 1)q - q^2nb > nq$. Therefore, by combining the above inequality, Lemma B and Lemma C, we obtain

$$\begin{split} II &= \int_{|x-x_0|>2\sqrt{n}\sigma} |R_j f(x)|^q w(B(x_0,|x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq C\sigma^{(n+\ell+1)q} w(B)^{-1} \|f\|_{L^q_w}^q \int_{|x-x_0|>2\sqrt{n}\sigma} \frac{1}{|x-x_0|^{(n+\ell+1)q}} w(B(x_0,|x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq C\sigma^{(n+\ell+1)q-q^2nb} w(B)^{(b-1/p)q} \int_{|x-x_0|>2\sqrt{n}\sigma} \frac{1}{|x-x_0|^{(n+\ell+1)q-q^2nb}} w(x) \mathrm{d}x \\ &\leq Cw(B)^{(b+1/q-1/p)q}. \end{split}$$

Thus,

$$||R_j f.w(B(x_0,|\cdot -x_0|))^b||_{L^q_w} = (I+II)^{1/q} \le Cw(B)^{b+1/q-1/p}.$$
 (2.3)

Remark that $a = 1 - 1/p + \varepsilon$. Combining (2.2) and (2.3), we obtain

$$\mathfrak{N}_{w}(R_{i}f) \leq Cw(B)^{(1/q-1/p)a/b}w(B)^{(b+1/q-1/p)(1-a/b)} \leq C.$$

The proof will be concluded if we establish the vanishing moment conditions of $R_j f$. One first consider the following lemma.

Lemma. For every classical atom $(p,2,\ell)$ -atom g centered at x_0 , we have

$$\int_{\mathbf{R}^n} R_j g(x) x^{\alpha} dx = 0 \quad \text{for } 0 \le |\alpha| \le s, 1 \le j \le n.$$

Proof of the Lemma. Since $b=1-1/q+\varepsilon<(\ell+1)(nq)^{-1}<(\ell+1)n^{-1}$, we obtain $2(n+\ell+1)-2nb>n$. It is similar to the previous argument, we also obtain that R_jg and

 $R_jg.|\cdot -x_0|^{nb}$ belong to $L^2(\mathbf{R}^n)$. Now, we establish that $R_jg.(\cdot -x_0)^{\alpha} \in L^1(\mathbf{R}^n)$ for every multiindex α with $|\alpha| \leq s$. Indeed, since $\varepsilon > q/p-1$ by (2.1), implies that 2(s-nb) < (s-nb)q' < -nby $q=2(q_w+1)>2$, where 1/q+1/q'=1. We use Schwartz inequality to get

$$\int_{B(x_0,1)^c} |R_j g(x)(x-x_0)^{\alpha}| dx \le \int_{B(x_0,1)^c} |R_j g(x)| |x-x_0|^s dx
\le \left(\int_{B(x_0,1)^c} |R_j g(x)|^2 |x-x_0|^{2nb} dx\right)^{1/2} \left(\int_{B(x_0,1)^c} |x-x_0|^{2(s-nb)} dx\right)^{1/2}
\le C ||R_j g| \cdot -x_0|^{nb} ||_{L^2} < \infty,$$

and

$$\int_{B(x_0,1)} |R_j g(x) (x - x_0)^{\alpha}| \mathrm{d}x \le |B(x_0,1)|^{1/2} \left(\int_{B(x_0,1)} |R_j g(x)|^2 \mathrm{d}x \right)^{1/2} < \infty.$$

Thus, $R_jg.(\cdot - x_0)^{\alpha} \in L^1(\mathbf{R}^n)$ for any $|\alpha| \leq s$. Deduce that $R_jg(x)x^{\alpha} \in L^1(\mathbf{R}^n)$ for any $|\alpha| \leq s$. Therefore,

$$(R_j g(x) x^{\alpha}) (\xi) = C_{\alpha} . D^{\alpha} (\widehat{R_j g}) (\xi)$$

is continuous, with $|C_{\alpha}| \leq C_s$ (C_s depends only on s) for any $|\alpha| \leq s$, where \hat{h} is used to denote the fourier transform of h. Consequently,

$$\int_{\mathbf{R}^n} R_j g(x) x^{\alpha} dx = C_{\alpha} . D^{\alpha} \widehat{(R_j g)}(0) = C_{\alpha} . D^{\alpha} (m_j \hat{g})(0),$$

where $m_j(x) = -ix_j/|x|$. Moreover, since g is a classical $(p,2,\ell)$ -atom, it follows from [17, Lemma 9.1] that \hat{g} is ℓ th order differentiable and $\hat{g}(\xi) = O(|\xi|^{\ell+1})$ as $\xi \to 0$. We write e_j to be the jth standard basis vector of \mathbf{R}^n , $\alpha = (\alpha_1, ..., \alpha_n)$ a multi-index of nonnegative integers α_j , $\Delta_{he_j}\phi(x) = \phi(x) - \phi(x - he_j)$, $\Delta_{he_j}^{\alpha_j}\phi(x) = \Delta_{he_j}^{\alpha_{j-1}}\phi(x) - \Delta_{he_j}^{\alpha_{j-1}}\phi(x - he_j)$ for $\alpha_j \geq 2$, $\Delta_{he_j}^0\phi(x) = \phi(x)$, and $\Delta_h^\alpha = \Delta_{he_1}^{\alpha_1}...\Delta_{he_n}^{\alpha_n}$. Then, the boundedness of m_j , and $|C_\alpha| \leq C_s$ for $|\alpha| \leq s$, implies

$$\left| \int_{\mathbf{R}^n} R_j g(x) x^{\alpha} dx \right| = |C_{\alpha}| \left| \lim_{h \to 0} |h|^{-|\alpha|} \Delta_h^{\alpha}(m_j \hat{g})(0) \right|$$

$$\leq C \lim_{h \to 0} |h|^{\ell+1-|\alpha|} = 0,$$

for $|\alpha| \le s$ by $s \le \ell$. Thus, for any $j = 1, 2, \dots, n$, and $|\alpha| \le s$,

$$\int_{\mathbf{R}^n} R_j g(x) x^{\alpha} \mathrm{d}x = 0.$$

This complete the proof of the lemma.

Let us come back to the proof of Theorem 1.1. As $q/2 = q_w + 1 > q_w$, by Lemma A,

$$\left(\frac{1}{|B|}\int_{B}|f(x)|^{2}\mathrm{d}x\right)^{q/2}\leq C\frac{1}{w(B)}\int_{B}|f(x)|^{q}w(x)\mathrm{d}x.$$

Therefore, $g := C^{-1/q}|B|^{-1/p}w(B)^{1/p}f$ is a classical $(p,2,\ell)$ -atom since f is w- (p,q,ℓ) -atom associated with ball B. Consequently, by the above lemma,

$$\int_{\mathbf{R}^n} R_j f(x) x^{\alpha} dx = C^{1/q} |B|^{1/p} w(B)^{-1/p} \int_{\mathbf{R}^n} R_j g(x) x^{\alpha} dx = 0$$

for all $j = 1, 2, \dots, n$ and $|\alpha| \le s$. Thus, the theorem is proved.

Following a similar but easier argument, we also have the following H_w^p -boundedness of Hilbert transform. We leave details to readers.

Theorem 2.1. Let $0 and <math>w \in A_{\infty}$. Then, the Hilbert transform is bounded on $H_w^p(\mathbf{R})$.

3 Proof of Theorem 1.2

We first consider the following lemma

Lemma 3.1. Let $p \in (0,1], w \in A_q, 1 < q < \infty$, and T be a θ -Calderón-Zygmund operator satisfying $T^*1 = 0$. Then, $\int_{\mathbb{R}^n} Tf(x) \mathrm{d}x = 0$ for all $w \cdot (p,q,0)$ -atoms f. Proof of Lemma 3.1. Let f be an arbitrary $w \cdot (p,q,0)$ -ato m associated with ball B. It is

Proof of Lemma 3.1. Let f be an arbitrary w-(p,q,0)-ato m associated with ball B. It is well-known that there exists 1 < r < q such that $w \in A_r$. Therefore, it follows from Lemma A that

$$\int_{B} |f(x)|^{q/r} dx \le C|B|w(B)^{1/r} ||f||_{L_{w}^{q}}^{q/r} < \infty.$$

We deduce that f is a multiple of classical (p,q/r,0)-atom, and thus the condition $T^*1=0$ implies $\int_{\mathbb{R}^n} Tf(x) \mathrm{d}x = 0$.

Proof of Theorem 1.2. Because of the hypothesis, without loss of generality we can assume q > 1. Futhermore, it is clear that $[n(q_w/p - 1)] = 0$, and there exists a positive constant ε such that

$$\max\left\{\frac{1}{r_w-1}, \frac{1}{p}-1\right\} < \varepsilon < \frac{n+\delta}{nq}-1. \tag{3.1}$$

Similarly to the arguments in Theorem 1.1, it is sufficient to show that, for every w-(p,q,0)-atom f centered at x_0 and supported in ball $B = B(x_0, \sigma)$, Tf is a w- $(p,q,0,\varepsilon)$ -molecule with the norm $\mathfrak{N}_w(Tf) \leq C$. One first observe that $\int_{\mathbb{R}^n} Tf(x) dx = 0$ by Lemma 3.1, and

$$\sum_{k=0}^{\infty} \theta(2^{-k}) 2^{knbq} < \infty,$$

where $b = 1 - 1/q + \varepsilon$, by $\int_0^1 \frac{\theta(t)}{t^{1+\delta}} dt < \infty$ and (3.1). We deduce that

$$\sum_{k=0}^{\infty} \left(\theta(2^{-k})2^{knbq}\right)^q < \infty. \tag{3.2}$$

As $w \subset A_q$, $1 < q < \infty$, it follows from [18, Theorem 2.4] that

$$||Tf||_{L_w^q} \le C||f||_{L_w^q} \le Cw(B)^{1/q-1/p}.$$
 (3.3)

To estimate $||Tf.w(B(x_0,|\cdot-x_0|))^b||_{L^q_w}$, we write

$$||Tf.w(B(x_0, -x_0))^b||_{L_w^q}^q = \int_{|x-x_0| \le 2\sigma} |Tf(x)|^q w(B(x_0, |x-x_0|))^{bq} w(x) dx + \int_{|x-x_0| > 2\sigma} |Tf(x)|^q w(B(x_0, |x-x_0|))^{bq} w(x) dx = I + II.$$

By Lemma B, we have the following estimate,

$$I = \int_{|x-x_0| \le 2\sigma} |Tf(x)|^q w(B(x_0, |x-x_0|))^{bq} w(x) dx$$

$$\le w(B(x_0, 2\sigma))^{bq} \int_{|x-x_0| \le 2\sigma} |Tf(x)|^q w(x) dx$$

$$\le Cw(B)^{bq} ||f||_{L^q_w}^q \le Cw(B)^{(b+1/q-1/p)q}.$$

To estimate II, since f is of mean zero, by Lemma A, we have

$$|Tf(x)| = \left| \int_{|y-x_0| \le \sigma} (K(x,y) - K(x,x_0)) f(y) dy \right|$$

$$\le C \int_{|y-x_0| \le \sigma} \frac{1}{|x-x_0|^n} \theta\left(\frac{|y-x_0|}{|x-x_0|}\right) |f(y)| dy$$

$$\le C \frac{\sigma^n}{|x-x_0|^n} \theta\left(\frac{\sigma}{|x-x_0|}\right) w(B)^{-1/q} ||f||_{L^q_w},$$

for all $x \in (B(x_0, 2\sigma))^c$. Therefore, by combining the above inequality, Lemma B and (3.2), we obtain

$$\begin{split} II &= \int_{|x-x_0|>2\sigma} |Tf(x)|^q w(B(x_0,|x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq Cw(B)^{-1} \|f\|_{L^q_w}^q \int_{|x-x_0|>2\sigma} \frac{\sigma^{nq}}{|x-x_0|^{nq}} \left(\theta\left(\frac{\sigma}{|x-x_0|}\right)\right)^q w(B(x_0,|x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq Cw(B)^{-q/p} \sum_{k=1}^\infty \int_{2^k \sigma < |x-x_0| \le 2^{k+1} \sigma} \frac{\sigma^{nq}}{|x-x_0|^{nq}} \left(\theta\left(\frac{\sigma}{|x-x_0|}\right)\right)^q w(B(x_0,|x-x_0|))^{bq} w(x) \mathrm{d}x \\ &\leq Cw(B)^{(b+1/q-1/p)q} \sum_{k=0}^\infty \left(\theta(2^{-k}) 2^{knbq}\right)^q \le Cw(B)^{(b+1/q-1/p)q}. \end{split}$$

Thus,

$$||Tf.w(B(x_0,|\cdot-x_0|))^b||_{L^q_m} = (I+II)^{1/q} \le Cw(B)^{b+1/q-1/p}.$$
(3.4)

Remark that $a = 1 - 1/p + \varepsilon$. Combining (3.3) and (3.4), we obtain

$$\mathfrak{N}_w(Tf) \le Cw(B)^{(1/q-1/p)a/b}w(B)^{(b+1/q-1/p)(1-a/b)} \le C.$$

This finishes the proof.

It is well-known that the molecular theory of (unweighted) Hardy spaces of Taibleson and Weiss [17] is one of useful tools to establish boundedness of operators in Hardy spaces (cf. [17, 12]). In the setting of Muckenhoupt weight, this theory has been considered by the authors in [10], since then, they have been well used to establish boundedness of operators in weighted Hardy spaces (cf. [10, 11, 3]). However in some cases, the *weighted molecular characterization*, which obtained in [10], does not give the best possible results. For Calderón-Zygmund type operators in Theorem 1.2, for instance, it involves assumption on the *critical index of w for the reverse Hölder condition* as the following theorem does not.

Theorem 3.1. Given $\delta \in (0,1]$, $n/(n+\delta) , and <math>w \in A_q$ with $1 \le q < p(n+\delta)/n$. Let θ be a nonnegative nondecreasing function on $(0,\infty)$ with $\int_0^1 \frac{\theta(t)}{t^{1+\delta}} dt < \infty$, and T be a θ -Calderón-Zygmund operator satisfying $T^*1 = 0$. Then T is bounded on $H_w^p(\mathbb{R}^n)$.

The following corollary give the boundedness of the classical Calderón-Zygmund type operators on weighted Hardy spaces (see [15, Theorem 3]).

Corollary 3.1. Let $0 < \delta \le 1$ and T be the classical δ -Calderón-Zygmund operator, i.e. $\theta(t) = t^{\delta}$, satisfying $T^*1 = 0$. If $n/(n+\delta) and <math>w \in A_q$ with $1 \le q < p(n+\delta)/n$, then T is bounded on $H_w^p(\mathbf{R}^n)$.

Proof of Corollary 3.1. By taking $\delta' \in (0, \delta)$ which is close enough δ . Then, we apply Theorem 3.1 with δ' instead of δ .

Proof of Theorem 3.1. Without loss of generality we can assume $1 < q < p(n+\delta)/n$. Fix $\phi \in \mathcal{S}(\mathbf{R}^n)$ with $\int_{\mathbf{R}^n} \phi(x) dx \neq 0$. By Theorem C, it is sufficient to show that for every w - (p,q,0)-atom f centered at x_0 and supported in ball $B = B(x_0,\sigma)$, $\|(Tf)^*\|_{L^p_w} \leq C$. In order to do this, one write

$$||(Tf)^*||_{L_w^p}^p = \int_{|x-x_0| \le 4\sigma} \left((Tf)^*(x) \right)^p w(x) dx + \int_{|x-x_0| > 4\sigma} \left((Tf)^*(x) \right)^p w(x) dx$$
$$= L_1 + L_2.$$

By Hölder inequality, L_w^q -boundedness of the maximal function and Lemma B, we get

$$L_{1} \leq \left(\int_{|x-x_{0}|\leq 4\sigma} \left((Tf)^{*}(x)\right)^{q} w(x) dx\right)^{p/q} \left(\int_{|x-x_{0}|\leq 4\sigma} w(x) dx\right)^{1-p/q}$$

$$\leq C \|f\|_{L_{w}^{q}}^{p} w(B(x_{0}, 4\sigma))^{1-p/q} \leq C.$$

To estimate L_2 , we first estimate $(Tf)^*(x)$ for $|x-x_0| > 4\sigma$. For any t > 0, since $\int_{\mathbb{R}^n} Tf(x) d =$

0 by Lemma 3.1, we get

$$|Tf * \phi_{t}(x)| = \left| \int_{\mathbf{R}^{n}} Tf(y) \frac{1}{t^{n}} \left(\phi \left(\frac{x - y}{t} \right) - \phi \left(\frac{x - x_{0}}{t} \right) \right) dy \right|$$

$$\leq \frac{1}{t^{n}} \int_{|y - x_{0}| < 2\sigma} |Tf(y)| \left| \phi \left(\frac{x - y}{t} \right) - \phi \left(\frac{x - x_{0}}{t} \right) \right| dy$$

$$+ \frac{1}{t^{n}} \int_{2\sigma \leq |y - x_{0}| < \frac{|x - x_{0}|}{2}} \dots + \frac{1}{t^{n}} \int_{|y - x_{0}| \geq \frac{|x - x_{0}|}{2}} \dots$$

$$= E_{1}(t) + E_{2}(t) + E_{3}(t).$$

As $|x-x_0| > 4\sigma$, by the mean value theorem, Lemma A and Lemma B, we get

$$E_{1}(t) = \frac{1}{t^{n}} \int_{|y-x_{0}|<2\sigma} |Tf(y)| \left| \phi\left(\frac{x-y}{t}\right) - \phi\left(\frac{x-x_{0}}{t}\right) \right| dy$$

$$\leq \frac{1}{t^{n}} \int_{|y-x_{0}|<2\sigma} |Tf(y)| \frac{|y-x_{0}|}{t} \sup_{\lambda \in (0,1)} \left| \nabla \phi\left(\frac{x-x_{0}+\lambda(y-x_{0})}{t}\right) \right| dy$$

$$\leq C \frac{\sigma}{|x-x_{0}|^{n+1}} \int_{|y-x_{0}|<2\sigma} |Tf(y)| dy$$

$$\leq C \frac{\sigma}{|x-x_{0}|^{n+1}} |B(x_{0},2\sigma)| w(B(x_{0},2\sigma))^{-1/q} ||Tf||_{L_{w}^{q}}$$

$$\leq C \frac{\sigma^{n+1}}{|x-x_{0}|^{n+1}} w(B)^{-1/q} ||f||_{L_{w}^{q}} \leq C \frac{\sigma^{n+1}}{|x-x_{0}|^{n+1}} w(B)^{-1/p}.$$

Similarly, we also get

$$\begin{split} E_{2}(t) & \leq \frac{1}{t^{n}} \int_{2\sigma \leq |y-x_{0}| < \frac{|x-x_{0}|}{2}} \left| \int_{\mathbf{R}^{n}} f(z) \Big(K(y,z) \right. \\ & \left. - K(y,x_{0}) \Big) \mathrm{d}z \right| \frac{|y-x_{0}|}{t} \times \sup_{\lambda \in (0,1)} \left| \nabla \phi \left(\frac{x-x_{0}+\lambda (y-x_{0})}{t} \right) \right| \mathrm{d}y \\ & \leq C \frac{1}{|x-x_{0}|^{n+1}} \int_{2\sigma \leq |y-x_{0}| < \frac{|x-x_{0}|}{2}} |y-x_{0}| \int_{|z-x_{0}| < \sigma} |f(z)| \frac{1}{|y-x_{0}|^{n}} \theta \left(\frac{|z-x_{0}|}{|y-x_{0}|} \right) \mathrm{d}z \mathrm{d}y \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n+1} \int_{2\sigma/|x-x_{0}|}^{1/2} \frac{\theta(t)}{t^{2}} \mathrm{d}t w(B)^{-1/p} \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n+1} \left(\frac{|x-x_{0}|}{2\sigma} \right)^{1-\delta} \int_{2\sigma/|x-x_{0}|}^{1/2} \frac{\theta(t)}{t^{1+\delta}} \mathrm{d}t w(B)^{-1/p} \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n+\delta} w(B)^{-1/p}. \end{split}$$

Next, let us look at L_3 . Similarly, we also have

$$\begin{split} E_{3}(t) & \leq \frac{1}{t^{n}} \int_{|y-x_{0}| \geq \frac{|x-x_{0}|}{2}} \left| \int_{\mathbf{R}^{n}} f(z) \Big(K(y,z) - K(y,x_{0}) \Big) \mathrm{d}z \right| \left(\left| \phi \left(\frac{y-x_{0}}{t} \right) \right| + 2 \left| \phi \left(\frac{x-x_{0}}{t} \right) \right| \right) \mathrm{d}y \\ & \leq C \frac{1}{|x-x_{0}|^{n}} \int_{|y-x_{0}| \geq \frac{|x-x_{0}|}{2}} \int_{|z-x_{0}| < \sigma} |f(z)| \frac{1}{|y-x_{0}|^{n}} \theta \left(\frac{|z-x_{0}|}{|y-x_{0}|} \right) \mathrm{d}z \mathrm{d}y \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n} \int_{0}^{2\sigma/|x-x_{0}|} \frac{\theta(t)}{t} \mathrm{d}t w(B)^{-1/p} \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n} \int_{0}^{2\sigma/|x-x_{0}|} \frac{\theta(t)}{t^{1+\delta}} \mathrm{d}t \left(\frac{2\sigma}{|x-x_{0}|} \right)^{\delta} w(B)^{-1/p} \\ & \leq C \left(\frac{\sigma}{|x-x_{0}|} \right)^{n+\delta} w(B)^{-1/p}. \end{split}$$

Therefore, for all $|x - x_0| > 4\sigma$,

$$(Tf)^*(x) = \sup_{t>0} (E_1(t) + E_2(t) + E_3(t)) \le C\left(\frac{\sigma}{|x-x_0|}\right)^{n+\delta} w(B)^{-1/p}.$$

Combining this, Lemma C and Lemma B, we obtain that

$$L_{2} = \int_{|x-x_{0}|>4\sigma} \left((Tf)^{*}(x) \right)^{p} w(x) dx \leq C \int_{|x-x_{0}|>4\sigma} \frac{\sigma^{(n+\delta)p}}{|x-x_{0}|^{(n+\delta)p}} w(B)^{-1} w(x) dx$$

$$\leq C w(B)^{-1} w(B(x_{0}, 4\sigma)) \leq C,$$

since $(n + \delta)p > nq$. This finishes the proof.

References

- [1] Bownik, M., Boundedness of Operators on Hardy Spaces via Atomic Decompositions, Proc. Amer. Math. Soc., 133 (2005), 3535-3542.
- [2] Bownik, M., Li, B., Yang, D. and Zhou, Y., Weighted Anisotropic Hardy Spaces and Their Applications in Boundedness of Sublinear Operators, Indiana Univ. Math. J., 57:7(2008), 3065-3100.
- [3] Ding, Y., Lee, M. Y. and Lin, C. C., Fractional Integrals on Weighted Hardy Spaces, J. Math. Anal. Appl., 282(2003), 356-368.
- [4] Fefferman, C. and Stein, E. M., H^p Spaces of Several Variables, Acta Math., 129 (1972), 137-193.
- [5] García-Cuerva, J., Weighted H^p Spaces, Dissertations Math., 162 (1979), 1-63.
- [6] García-Cuerva, J. and Rubio de Francia, J. L., Weighted norm Inequalities and Related Topics, North-Holland Math. Stud. 116, 1985.
- [7] Journé, J. L., Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture notes in Math. 994, Springer-Verlag, Berlin, 1983.
- [8] Ky, L. D., New Hardy Spaces of Musielak-Orlicz type and boundedness of Sublinear Operators, submitted, arXiv:1103.3757.

- [9] Lee, M. Y., Different Approaches to the H^p Boundedness of Riesz Transforms, Commun. Math. Anal., 1:2 (2006), 101-108.
- [10] Lee, M. Y. and Lin, C. C., The Molecular Characterization of Weighted Hardy Spaces, J. Funct. Anal., 188 (2002), 442-460.
- [11] Lee, M. Y. Lin, C. C. and Yang, W. C., H_w^p -boundedness of Riesz Transforms, J. Math. Anal. Appl., 301 (2005), 394-400.
- [12] Lu, S. Z., Four Lectures on Real H^p Spaces, World Scientific Publishing Co. Pte. Ltd, 1995.
- [13] Meda, S., Sjögren, P. and Vallarino, M., On the H^1 - L^1 Boundedness of Operators, Proc. Amer. Math., Soc. 136 (2008), 2921-2931.
- [14] Meyer, Y. and Coifman, R., Wavelets, Calderón-Zygmund and Multilinear Operators, Advanced Mathematics. Cambridge University Press, 1997.
- [15] Quek, T. and Yang, D., Calderón-Zygmund-type Operators on Weighted weak Hardy Spaces over \mathbb{R}^n , Acta Math. Sin. (Engl. Ser.), 16 (2000), 141-160.
- [16] Strömberg, J. O. and Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Mathematics, Vol. 1381, Springer-Verlag, Berlin/New York, 1989.
- [17] Taibleson, M. H. and Weiss, G., The Molecular Characterization of Certain Hardy Spaces; Astérisque., 77 (1980), 67-149.
- [18] Yabuta, K., Generalizations of Calderón-Zygmund Operators, Studia Math., 82 (1985) 17-31.
- [19] Yang, D. and Zhou, Y., A Boundedness Criterion via Aboms for Linear Operators in Hardy Spaces, Constr. Approx., 29(2009), 207-218.

Département de Mathématiques Université D'Orleans 45067 Orléans Cedex 2

France

E-mail: dangky@math.cnrs.fr