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Abstract. Let 0 < p <1 and w in the Muckenhoupt class A;. Recently, by using the
weighted atomic decomposition and molecular characterization, Lee, Lin and Yang[“] es-
tablished that the Riesz transforms R, j = 1,2,--- ,n, are bounded on HJ(R"). In this note
we extend this to the general case of weight w in the Muckenhoupt class Ao through molec-
ular characterization. One difficulty, which has not been taken care in [11], consists in
passing from atoms to all functions in H}(R"). Furthermore, the H}-boundedness of 6-
Calder6n-Zygmund operators are also given through molecular characterization and atomic

decomposition.
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1 Introduction and Preliminaries

Calderén-Zygmund operators and their generalizations on Euclidean space R" have been
extensively studied, see for examplel”'418:151  In particular, Yabutal'8l introduced certain 6-
Calder6n-Zygmund operators to facilitate his study of certain classes of pseudo-differential op-
erator.

Definition 1.1. Ler 0 be a nonnegative nondecreasing function on (0,0) satisfying
Lot
/ er < oo,
0 t

A continuous function K : R" x R"\ {(x,x) : x € R"} — C is said to be a 0-Calderon-Zygmund
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singular integral kernel if there exists a constant C > 0 such that

C
x —y|

K(x,y)] <

forall x #y,

1 |x — x|
K(x,y) =KX, y)|+ |K(y,x)—K(y,x)| <C 0
K () =KW )|+ K Ou0) = KOu)] < O 0 (T—1)

Sorall 2|x—x'| < |x—y|.
A linear operator 7 : §(R") — 8'(R") is said to be a 6-Calder6n-Zygmund operator if T can
be extended to a bounded operator on L?(R") and there exists a 8-Calderon-Zygmund singular

integral kernel K such that for all f € C°(R") and all x ¢supp f, we have

T = [ K0y

When

(TN Xy, .
K](x’y)_ﬂ’- (” )/ F( 2 >|x_y|n+1’ ]_1)2)"'5’15

then they are the classical Riesz transforms denoted by R;.

It is well-known that the Riesz transforms R;,j = 1,2,--- ,n, are bounded on unweighted
Hardy spaces H?(R"). There are many different approaches to prove this classical result (see
[11, 9]). Recently, by using the weighted molecular theory (see [10]) and combined with Garcia-
Cuerva’s atomic decomposition [5] for weighted Hardy spaces H(R"), the authors in [11]
established that the Riesz transforms R;,j = 1,2,---,n, are bounded on HP(R"). More pre-
cisely, they proved that ||R;f[|z» < C for every w-(p,oo,ts — 1)-atom where s,t € N satisfy
n/(n+s)<p<n/(n+s—1)and ((s—1)r, +n)/(s(r, — 1)) with r, is the critical index of
w for the reverse Holder condition. Remark that this leaves a gap in the proof. Similar gaps
exist in some litteratures, for instance in [10, 15] when the authors establish H.-boundedness
of Calderén-Zygmund type operators. Indee d, it is now well-known that (see [1]) the argument
"the operator T is uniformly bounded in HE(R") on w-(p, o, r)-atoms, and hence it extends to
a bounded operator on HJ(R")" is wrong in general. However, Meda, Sjogren and Vallarino
[13] establishes that (in the setting of unweighted Hardy spaces) this is correct if one replaces
L”-atoms by L7-atoms with 1 < g < co. Later, the authors in [2] extended these results to the
weighted anisotropic Hardy spaces. More precisely, it is claimed in [2] that the operator 7" can
be extended to a bounded operator on Hj,(R") if it is uniformly bounded on w-(p,q,r)-atoms

for g, < g < oo,r > [n(g,,/p — 1)] where g, is the critical index of w.
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Motivated by [11, 10, 15, 1, 2], in this paper, we extend Theorem 1 in [11] to A, weights (see
Theorem 1.1); Theorem 4 in [10] (see Theorem 1.2), Theorem 3 in [15] (see Theorem 3.1) to 6-
Calder6n-Zygmund operators; and fill the gaps of the proofs by using the atomic decomposition
and molecular characterization of Hf(R") as in [11].

Throughout the whole paper, C denotes a positive geometric constant which is independent
of the main parameters, but may change from line to line. In R”, we denote by B = B(x,r)
an open ball with center x and radius » > 0. For any measurable set E, we denote by |E| its
Lebesgue measure, and by E€ the set R" \ E.

Let us first recall some notations, definitions and well-known results.

Let 1 < p < . A nonnegative locally integrable function w belongs to the Muckenhoupt

class Ap, say w € A, if there exists a positive constant C so that

1 1 e\ ,
@/Bw(x)dx <H/B(w(x)) 1 1)dx> <C, ifl<p<eo,

and

1
b - r e
B /Bw(x)dx < Cesxse}gnfw(x), ifp=1,

for all balls B in R". We say that w € A, if w € A, for some p € [1,00).

It is well known that w € A, 1 < p < oo, implies w € A, for all ¢ > p. Also, if w € A,
1 < p <oo, thenw € A, for some g € [1,p). We thus write g,, :=inf{p > 1 :w € A, } to denote
the critical index of w. For a measurable set E, we note w(E) = [, w(x)dx its weighted measure.

The following lemma gives a characterization of the class A,, 1 < p < oo. It can be found in
[6].

Lemma A. The function w € A,, 1 < p < oo, if and only if, for all nonnegative functions
and all balls B,

(7 #0x)" < o [ ot

A close relation to A, is the reverse Holder condition. If there exist r > 1 and a fixed constant

C > 0 such that
1 P /r 1 .
(—/w (x)dx) < C(—/w(x)dx) for every ball B C R",
Bl /5 1B /s
we say that w satisfies reverse Holder condition of order r and write w € RH,. It is known that if
w € RH,, r > 1, then w € RH,, for some € > 0. We thus write r,, := sup{r > 1 : w € RH,} to
denote the critical index of w for the reverse Hdlder condition.
The following result provides us the comparison between the Lebesgue measure of a set £

and its weighted measure w(E). It also can be found in [6].
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LemmaB. Letw € A,NRH,, p>1andr> 1. Then there exist constants C1,C > 0 such

W —1)/r
Cl(g) <%1§))§C2(%>( "

for all balls B and measurable subsets E C B.

that

Given a weight function w on R”, as usual we denote by L},(R") the space of all functions f

1£is = (] brimwoas) R

When g = oo, L;(R") is L*(R") and || f||zz = [|f|/z=- Analogously to the classical Hardy

spaces, the weighted Hardy spaces H}(R"), p > 0, can be defined in terms of maximal func-

satisfying

tions. Namely, let ¢ be a function in S(R"), the Schwartz space of rapidly decreasing smooth

functions, satisfying / ¢(x)dx = 1. Define
R”
o (x) =t"9(x/t), t>0,xeR",
and the maximal function f* by

f (x) =sup|f=¢(x)], xeR"

>0

Then H}(R") consists of those tempered distributions f € 8'(R") for which f* € L}, (R") with

the (quasi-)norm
1z = 11N g

In order to show the H}-boundedness of Riesz transforms, we characterize weighted Hardy
spaces in terms of atoms and molecules in the following way.

Definition of a weighted atom. Let0 < p <1<g <o and p # gsuchthatw cA,. Letg,
be the critical index of w. Set [-] the integer function. For s € N satisfying s > [n(q,,/p—1)], a
function a € L{,(R") is called w-(p, q,s)-atom centered at x if

(i) supp a C B for some ball B centered at xo,

(ii) [|all g < w(B)"/a~"/7,

(iii) / a(x)x%dx = 0 for every multi-index o with |a| < s.

Let H" S(R”) denote the space consisting of tempered d1str1but10ns admitting a decompo-

sition f = Z Ajajin 8'(R"), where a;’s are w-(p, g, s)-atoms and Z |A;|? < eo. And for every
=1 =1
f € HP"*(R™), we consider the (quasi-)norm

) o 1/[7 S/ ) -
Pl =inf { (X Jajl”) s f2 Y Agay, {aghy are w-(p,g.s)-atoms }.
j=1 Jj=1
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Denote by H”"*(R") the vector space of all finite linear combinations of w-(p,q,s)-atoms, and
the (quasi-)norm of f in H”¢"*(R") is defined by

w,fin
- k 1/p k .
1A llpgs = inf L (L I417) "1 £ = Y Ajajok €N {ag}ie are w-(p, g.s)-atoms |
‘ j=1 j=1

We have the following atomic decomposition for Hf(R"). It can be found in [5] (see also
(2, 8]).

Theorem A. Ifthe triplet (p,q,s) satisfies the conditions of w-(p,q,s)-atoms, then Hi)(R") =
HE?* (R™) with equivalent norms.

The molecules corresponding to the atoms mentioned above can be defined as follows.

Definition of a weighted molecule. For 0 < p <1<g <ocoand p # g, let w € A, with
critical index ¢,, and critical index r,, for the reverse Holder condition. Set s > [n(g,/p —1)],
e > max{sr,(r, — 1) 'n '+ (r,— )" 1/p—1},a=1—-1/p+e,andb=1—1/g+e. A
w-(p,q,s,€)-molecule centered at xg is a function M € L},(R") satisfying

(i) M.w(B(xo,- — x0))? € LL(R"),

Gi) (177 1M w(Bxo. —0))" 13 " = 9 (M) < oo,

(iii) / M (x)x*dx = 0 for every multi-index o with |a| < s.

The agz)ve quantity N,,(M) is called the w-molecular norm of M.

In [10], Lee and Lin proved that every weighted molecule belongs to the weighted Hardy
space H}(R"), and the embedding is continuous.

Theorem B. Ler0<p<1<g<ooandp+#q w €A, and (p,q,s,€) be the quadruple
in the definition of molecule. Then, every w-(p,q,s,€)-molecule M centered at any point in R"
is in HY)(R"), and ||M||zp < CN,,(M) where the constant C is independent of the molecule.

Although, in general, one cannot conclude that an operator T is bounded on H}(R™) by
checking that their norms have uniform bound on all of the corresponding w-(p,ee,s)-atoms (cf.
[1]). However, this is correct when dealing with w-(p,q,s)-atoms with q,, < q < . Indeed, we
have the following result (see [2, Theorem 7.2]).

Theorem C. Let0<p <1, w€ Aw, g € (gy,) and s € Z satisfying s > [n(q,/p —1)].
Suppose that T : HP*(R") — HL(R™) is a linear operator satisfying

w,fin
sup{||Tal|g» : a is any w—(p,q,s)—atom} < oo.

Then T can be extended to a bounded linear operator on HL (R™).

Our first main result, which generalizes Theorem 1 in [11], is as follows:

Theorem 1.1. Let 0 < p <1 and w € Aw. Then, the Riesz transforms are bounded on
HE(R").
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For the next result, we need the notion T*1 = 0.

Definition 1.2. Let T be a 0-Calderén-Zygmund operator. We say that T*1 =0 if [ga T f (x)dx =

Oforall f € L1(R"),1 < g < oo, with compact support and / f(x)dx=0.
We now can give the H)-boundedness of 9—Ca1derén—Zylgmund type operators, which gen-
eralizes Theorem 4 in [10] by taking ¢ = 1 and 0(z) = 1%, as follows:
Theorem 1.2. Given 6 € (0,1}, n/(n+6) < p <1, and w € A,NRH, with 1 < g <
p(n+9) / n n +96)/(n+ 0 —ng) < r. Let 0 be a nonnegative nondecreasing function on (0,)
with / 5 dt < oo, and T be a 0-Calderon-Zygmund operator satisfying T*1 =0. Then T is
bounded on HY(R™).

2 Proof of Theorem 1.1

In order to prove the main theorems, we need the following lemma (see [6, page 412]).
Lemma C. Letw € A,,r > 1. Then there exists a constant C > 0 such that
1
Be |x —xo|"™"
for all balls B= B(xy,0) in R".
Proof of Theorem 1.1.  For ¢ =2(q,,+1) € (gy,), then s := [n(q/p—1)] > [n(gw/p—1)].

We now choose (and fix) a positive number € satisfying

w(x)dx < C%w(B)

max{sr, (r, — 1) n 4 (n,— 1)L g/p—1} <e<t(s+1)(ng) ' +q ' -1, (2.1
for some ¢ € N,z > 1 and max{sr,(r, — 1)~ 'n= '+ (r, —1)"' q/p — 1} <t(s+1)(ng)~" +
o1

Clearly, ¢ :=t(s+1)—1> s> [n(gy/p—1)]. Hence, by Theorem B and Theorem C,

it is sufficient to show that for every w-(p,q,/)-atom f centered at xo and supported in ball

B = B(xg,0), the Riesz transforms R;f = K; = f, j = 1,2,--- ,n, are w-(p,q,s,€&)-molecules
with the norm 0,,(R; f) <C.

Indeed, as w € A, by ¢ = 2(gy, + 1) € (gy,0). It follows from Li-boundedness of Riesz

transforms that
IR fllzg < IRl o1 fll g < Cw(B)/41/P, (2.2)

To estimate ||R; f.w(B(xo, |- —xo|))?|| .2 where b=1—1/q+ €, we write

IR f-w(B(xo,- —x0))’[Ify = IR f (x)|"w(B(xo, bx —xo])) w (x)dx +

/;c—xo ‘ SZ\/EO'

+/ R 9 ] —x0)) 4w (x)dx
S [R;.f ()T w (B (x0, [x —x0[))"w(x)
= I+II.
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By Lemma B, we have the following estimate,

I = /|x_x()|§2\/r—w|ij(x)|qW(B(xO,|X—x0|))bqw(x)dx
< w(B(xo,2\/ﬁo))bq/|xx0|<2ﬁG IR £ (x)]Tw(x)dx

b b+1/g—1
< Cw(BY IR Y, ol F1Y, < Cw(B)+am117),
To estimate II, as f is w-(p, g, £)-atom, by the Taylor’s fomular and Lemma A, we get

Kierl = [ (KGey- X DK (xx0) (30 —)%) F)
y—xo|<0 al<e ™
41

c ’x_(;om’f(y)\dy

[y—xo|<o
Gn+€+1 1
iz ™(B) 41

IN

q
Ly>

for all x € (B(x9,2y/n0))¢. Asb=1—1/q+ ¢, it follows from (2.1) that (n+4 ¢+ 1)g — ¢*nb >

ng. Therefore, by combining the above inequality, Lemma B and Lemma C, we obtain

= R (3) 90 (B, bt — o)) ()
[x—x0|>2+/noc
., B 1
< Cott By ”Zﬁ/ 2 o Te o " (B0, [ = 30])) ()
x—Xx0 n —
1

< (n+e+1)g—gnb (bfl/p)q/

= Co W(B) k—xo|>2v/nC |x_)CO|(nJrerl)qfqznbW(x)d)C

< Cw(B)b+1/a1/pa,
Thus,

IR, fw(B(xo, |- —xo]))’ | g = (I +11)'/4 < Cw(B)" /4117, 2.3)
Remark that a = 1 — 1 /p + €. Combining (2.2) and (2.3), we obtain
N, (R f) < Cw(B)\V/a=1/P)a/by,(gy(b+1/a=1/p)(1=a/b) <

The proof will be concluded if we establish the vanishing moment conditions of R;f. One
first consider the following lemma.

Lemma. For every classical atom (p,2,0)-atom g centered at xy, we have
/RnRjg(x)xadx:O for 0 <|a|<s,1<j<n.

Proof of the Lemma. Since b =1—1/g+¢& < ({+1)(ng)~" < (¢+1)n"!, we obtain

2(n+{+1)—2nb > n. It is similar to the previous argument, we also obtain that R;g and
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Rjg.| - —x0|™ belong to L?(R"). Now, we establish that R;g.(- —x9)* € L'(R") for every multi-
index o with |ct| <'s. Indeed, since € > g/p—1by (2.1), implies that 2(s —nb) < (s—nb)q' < —n
by ¢ =2(gy+ 1) > 2, where 1/q+1/¢' = 1. We use Schwartz inequality to get

| IR —x0)dr < [ IRl = ds
B(xo,1)° B(xo,1)¢

1/2 1/2
< _ 2 o [2nb / o (2(s—nb)
< ([ RSO a) ([P a)

< ClIRjg.| - —xo[" 2 < o,

and

/B(XOJ) IRjg(x)(x —x0)%|dx < |B(xo, 1)’1/2(/

5\ 12
Rjg(x)dx) <o,
B(xoﬂ)
Thus, R;g.(- — x0)* € L'(R") for any |a| <s. Deduce that R;g(x)x* € L!(R") for any
|a| <'s. Therefore,
(Rjg(x)x*)(&) = Ca-D*(R;8)(E)
is continuous, with |Cy| < C (Cy depends only on s) for any |e| < s, where / is used to denote

the fourier transform of 4. Consequently,

|, Rig(@)x%dx = Cq.D%(R;g)(0) = Ca.D%(m;8)(0),

where m(x) = —ix;/|x|. Moreover, since g is a classical (p,2,¢)-atom, it follows from [17,
Lemma 9.1] that ¢ is ¢th order differentiable and (&) = O(|&|**!) as &€ — 0. We write ¢; to be
the jth standard basis vector of R”, a = (a1, ..., @,) a multi-index of nonnegative integers o;,
Ao, 9 (x) = 0(x) — @ (x—hej), Ayl 9 (x) = A~ 9(x) = Ay 9 (x — he;) for oy > 2, AY, ¢(x) =
¢(x), and AY = Az‘;l ...AZ‘K”". Then, the boundedness of m;, and |Cy| < C; for || < s, implies

‘/ Rjg(x)xadx‘ = |Cql
Rfl

< Clim |p|*!71el = 0,
h—0

lim [1| A% () 0)

for || < s by s < {. Thus, forany j=1,2,--- ,n,and |a| <,

/ R;g(x)x%dx = 0.
Rn

This complete the proof of the lemma.

Let us come back to the proof of Theorem 1.1. As ¢/2 = ¢,, + 1 > ¢,,, by Lemma A,

(1 e < e [
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Therefore, g := C~'/4|B|~"/Pw(B)"/P f is a classical (p,2,)-atom since f is w-(p,q,)-atom

associated with ball B. Consequently, by the above lemma,
[ Ryf(oxde=CalB| ()7 /R Rjg(x)x%dr =0

forall j=1,2,--- ,nand || <s. Thus, the theorem is proved.

Following a similar but easier argument, we also have the following HJ-boundedness of
Hilbert transform. We leave details to readers.

Theorem 2.1. Let 0 < p <1 and w € Aw.. Then, the Hilbert transform is bounded on
HE(R).

3 Proof of Theorem 1.2

We first consider the following lemma

Lemma3.1. Letp e (0,1},w €A, 1< g <oo, and T be a 0-Calderon-Zygmund operator
satisfying T*1 = 0. Then, / T f(x)dx = 0 for all w-(p,q,0)-atoms f.

Proof of Lemma 3.1. RLnet f be an arbitrary w-(p,q,0)-ato m associated with ball B. It is
well-known that there exists 1 < r < g such that w € A,. Therefore, it follows from Lemma A
that

[ e < clBw®) s <o
We deduce that f is a multiple of classical (p,q/r,0)-atom, and thus the condition 71 = 0
implies / Tf(x)dx=0.

ProofR(;f Theorem 1.2. Because of the hypothesis, without loss of generality we can assume
g > 1. Futhermore, it is clear that [n(g,,/p — 1)] =0, and there exists a positive constant € such

that
n+o B

nq
Similarly to the arguments in Theorem 1.1, it is sufficient to show that, for every w-(p,¢,0)-

1 1
max{ ,——1}<8<

rw_l V4

1. 3.1)

atom f centered at xo and supported in ball B = B(xo,0), T f is a w-(p, q,0,€)-molecule with
the norm N,, (7 f) < C. One first observe that [g. 7 f(x)dx = 0 by Lemma 3.1, and
Z 9(27k)2kan < oo,
k=0
6(1)

1
where b=1—1/q+ €, by / mdl < oo and (3.1). We deduce that
0

oo

y (9(2—")2""b4)q < . 32)

k=0
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Asw C Ay, 1 < g < oo, it follows from [18, Theorem 2.4] that
1T fllg < ClIfllg < Cw(B)/4~17. (3.3)
To estimate || f.w(B(xo, |- —x0[))”| ¢, we write
IT fw(B(x0,- —x0))° |9, = / IT £ (x) |w(B(x0, |x —xo]))"w(x)dx +
v |x—xo|<20
+ T ) 990 (B0, ¢ — )P0 ()l = 1+ 11.

|x—xo|>20

By Lemma B, we have the following estimate,
Fo= [T mw(B, b xo])) ()
[x—x0|<20

< W(B(x0,2c))bq/ |T £(x)] 9w (x)dx
|x—xo|<20
< Cw(B)"| f]|%, < Cw(B)PYa-1ra,

To estimate /1, since f is of mean zero, by Lemma A, we have

Tl = [ K - Kx) 0]

1 Yy —Xo
< c (200 1)y
y—xo|<o [x —xo["  \|x —xo|
o" o
C ( > B)~1/a ’
- |X—XQ|” |X—)C()| W( ) HfHLﬁ

for all x € (B(x9,20))¢. Therefore, by combining the above inequality, Lemma B and (3.2), we
obtain

" /lx—xo|>zo I £ () [*w(B(xo, [x = xo|)) w(x)d

o™ o q

< CcwB)! q/ <9< )>wa,x—x bayy(x)dx

S ( ) Hf”[ﬁ] x| >20 |X—)C()|nq |X—)C()| ( ( 0 | 0|)) ( )
(o] q

< cwB) Y / o (e( © )> w(B(xo, [x — x0]))P 7w (x)dx
(=1 /2 o<h-nl <2t o [x —xo|" \ "\ x —xo

< CW(B)(b+1/q—1/P)q i (9(2—k)2kan>q < CW(B)(b'H/q—l/P)q.
k=0
Thus,
I fw(B(xo, |- =x0]))" llzg = (I+1D)"9 < Cw(B)PH1/ 411, (3.4)
Remark that a = 1 — 1 /p + €. Combining (3.3) and (3.4), we obtain

N, (T f) < Cw(B)/a=1/P)a/by, gy (b+1/a=1/p)(1=a/b) < .



Anal. Theory Appl., Vol. 27, No.3 (2011) 261

This finishes the proof.

It is well-known that the molecular theory of (unweighted) Hardy spaces of Taibleson and
Weiss [17] is one of useful tools to establish boundedness of operators in Hardy spaces (cf.
[17, 12]). In the setting of Muckenhoupt weight, this theory has been considered by the authors
in [10], since then, they have been well used to establish boundedness of operators in weighted
Hardy spaces (cf. [10, 11, 3]). However in some cases, the weighted molecular characterization,
which obtained in [10], does not give the best possible results. For Calderén-Zygmund type
operators in Theorem 1.2, for instance, it involves assumption on the critical index of w for the
reverse Holder condition as the following theorem does not.

Theorem 3.1. Given 6 € (0,1], n/(n+6) <p <1, andwec Ay with1 < q < p(n+96)/n.
Let 0 be a nonnegative nondecreasing function on (0,c0) with fol ﬁ%dl‘ < oo, and T be a 6-
Calderén-Zygmund operator satisfying T*1 = 0. Then T is bounded on HJ(R™).

The following corollary give the boundedness of the classical Calderén-Zygmund type op-
erators on weighted Hardy spaces (see [15, Theorem 3]).

Corollary 3.1. Let 0 < 6 <1 and T be the classical 6-Calderon-Zygmund operator, i.e.
0(t) =19, satisfying T*1 =0. Ifn/(n+8) < p< 1 andw € A, with 1 < g < p(n+ §)/n, then
T is bounded on HY(R").

Proof of Corollary 3.1. By taking 8’ € (0,8) which is close enough §. Then, we apply
Theorem 3.1 with 8’ instead of &.

Proof of Theorem 3.1.  Without loss of generality we can assume 1 < g < p(n+ 0)/n. Fix
¢ € 8(R") with [g. ¢ (x)dx # 0. By Theorem C, it is sufficient to show that for every w-(p,¢q,0)-
atom f centered at xo and supported in ball B = B(xo,0), ||(T f)*[|;» < C. In order to do this,

one write

iy = f (@) waes [ (@) s
— Li+L,

By Hélder inequality, Lf,-boundedness of the maximal function and Lemma B, we get

</|X—x0|§40' ((Tf)*(x)>qw(x)dx> " (/x_xog%w(x)dx) -l

< C|fl7yw(B(x0,40))' P/ < C.

Ly

IN

n

To estimate L, we first estimate (7 f)*(x) for |[x—xo| > 40. Forany ¢ > 0, since / Tf(x)d=
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0 by Lemma 3.1, we get

riesinl = |z (605 -9(52)) ]
I X—Yy X — X0
- " Iyxo|<26|Tf(y)|¢( t )_(P( t )‘dy
! 1
—_ B +_ 3
o Jaosly-n|<t5Y 1" Jly—xo|> 252
= Ei(t)+Ey(t) +E5(r).

As |x—xo| > 40, by the mean value theorem, Lemma A and Lemma B, we get

! X—=y X —Xp
E() = - !Tf(y)\‘d)(—)—(p( >dy
[y—x0|<20 t t
1 _ Ay
< Tl wp [op(EtAlmy
I hxl<20 I Ae() t
o
< Ci/ Tf(y)|d
= e — x| |y—x0|<20" f()|dy
G —
< O B0, 20) w(B(x0,20)) T Al
o"t! y n+1 y
- —1/q o —1/p
= C‘x_xo‘nJer(B) Hf||Lg,§C‘x_xO’nHw(B) ,

Similarly, we also get

Ext) < tl”/za<|yxo|<'*;0' /nf(Z)(K(y,Z)

_ —xn - Ay —
_K(y,x0)>dz‘ M x sup |Vo (x Yot (y XO)>'dy
t A€(0,1) 4
S ol [ @0 (2 ) azay
- lx —x0|" T Jao<|y—xp|< 50l |z—x0|<o ly—=xo0[" [y —xo|

IN

C(LYH/;/Z @le(B)fl/P

Jx — xol o/lx—xo| 12

o n+1 |X—)C()| 1-8 rl/2 O(t) “1/p
C(|x—x0|> ( 20 ) /ZG/X_XOUH‘SdtW(B)

C( c )HSW(B)’I/".

|x — xo]

IN

IN
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Next, let us look at L3. Similarly, we also have

IN

IN

IN

<

1

- [ 1@ (K2~ K )z <1¢(y )| +2fo (= xO)Ddy
Cm /Iy—x |> bl /Iz—x0|<c7 7l ly —1x0|” 9<||)Z’:z(())||)d1dy
) /Mx v 95 drw(B)~1/?
) /ZGAX " 9( dt(zic)éw(B)*l/p

|x — xo]

Jx=xp|
|=="

|x x0|

C(\x—xo\) W(B)_l/p

Therefore, for all |x — xo| > 40,

(1)) = sup(Ea (1) + Eale) + Ex(o)) < (0 ) " w(m) 7.

>0 |x — xo

Combining this, Lemma C and Lemma B, we obtain that

L[ (@) v

IN

o(n+8)p B
c / O (B) w()dx

x| >40 [x — xo|(HO)P

Cw(B) 'w(B(x0,40)) < C,

IN

since (n+ 6)p > nq. This finishes the proof.
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