# BMO BOUNDEDNESS FOR BANACH SPACE VALUED SINGULAR INTEGRALS 

Chunjie Zhang<br>(Hangzhou Dianzi University, China)

Received Nov. 24, 2010, Revised May 22, 2011
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011


#### Abstract

In this paper, we consider a class of Banach space valued singular integrals. The $L^{p}$ boundedness of these operators has already been obtained. We shall discuss their boundedness from BMO to BMO. As applications, we get BMO boundedness for the classic $g$-function and the Marcinkiewicz integral. Some known results are improved.


Key words: BMO, Banach space valued singular integral
AMS (2010) subject classification: 42B20

## 1 Introduction

Let $H$ be a Banach space. We denote by $L_{H}^{p}, 1 \leq p \leq+\infty$ the space of $H$-valued strongly measurable functions $g$ on $\mathbf{R}^{n}$ such that

$$
\|g\|_{L_{H}^{p}}=\left(\int_{\mathbf{R}^{n}}\|g\|_{H}^{p} \mathrm{~d} x\right)^{1 / p}<+\infty, \quad 1 \leq p<\infty
$$

and when $p=\infty$,

$$
\|g\|_{L_{H}^{\infty}}=\operatorname{ess} \sup \|g\|_{H}<+\infty .
$$

The corresponding sharp function is defined as

$$
g^{\sharp}(x)=\sup _{x \in B} \frac{1}{|B|} \int_{B}\left\|g(y)-g_{B}\right\|_{H} \mathrm{~d} y,
$$

[^0]where $B$ denotes any ball in $\mathbf{R}^{n}$ and $g_{B}$ is the average of $g$ over $B$. Finally we define $\mathrm{BMO}(H)$ to be the space of all $H$-valued locally integrable functions $g$ such that
$$
\|g\|_{\mathrm{BMO}(H)}=\left\|g^{\sharp}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}<+\infty .
$$

Now we introduce the concept of $H$-valued singular integral. Let $K(x)$ be an $H$-valued strongly measurable function defined on $\mathbf{R}^{n} \backslash\{0\}$, which is also locally integrable in this domain. As we shall take $K(x)$ as the kernel of singular integrals, we present the following continuity requirements which are first introduced by Rubio de Francia, Ruiz and Torrea in [8].

Given $1 \leq r \leq+\infty$, we call $K$ satisfies the condition $D_{r}$ if there is a sequence $\left\{c_{k}\right\}_{k=1}^{\infty} \in l^{1}$ such that for all $k \geq 1$ and $y \in \mathbf{R}^{n}$,

$$
\left(\int_{S_{k}(y)}\|K(x-y)-K(x)\|_{H}^{r} \mathrm{~d} x\right)^{1 / r} \leq c_{k}\left|S_{k}(y)\right|^{\frac{1}{r}-1}
$$

Here $S_{k}(y)$ denotes the spherical shell $\left\{x \in \mathbf{R}^{n}: 2^{k}|y| \leq|x| \leq 2^{k+1}|y|\right\}$. It is not hard to check that if

$$
\|K(x-y)-K(x)\|_{H} \leq C \frac{|y|}{|x|^{n+1}}, \quad|x|>2|y|
$$

then $K$ satisfies $D_{\infty}$. And $D_{1}$ condition is equivalent to the familiar Hömander's condition

$$
\int_{|x|>2|y|}\|K(x-y)-K(x)\|_{H} \mathrm{~d} x<+\infty .
$$

Besides, $D_{r_{1}}$ implies $D_{r_{2}}$ if $r_{1}>r_{2}$. Finally, we call a linear operator $T$ mapping functions into $H$-valued functions a singular integral operator if
(i) $T$ is bounded from $L^{2}\left(\mathbf{R}^{n}\right)$ to $L_{H}^{2}\left(\mathbf{R}^{n}\right)$;
(ii) There exists a kernel $K$ satisfying $D_{1}$ such that

$$
T f(x)=\int_{\mathbf{R}^{n}} K(x-y) f(y) \mathrm{d} y
$$

for every compactly supported $f$ and a.e. $x \notin \operatorname{supp}(f)$.
In [8], the authors proved that such operator can be extended to bounded operators on all $L^{p}\left(\mathbf{R}^{n}\right), 1<p<\infty$ and satisfy
(a) $\|T f\|_{L_{H}^{p}\left(\mathbf{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)}, 1<p<\infty$;
(b) $\|T f\|_{L_{H}^{1}} \leq C\|f\|_{H^{1}}$;
(c) $\|T f\|_{\mathrm{BMO}(H)} \leq C\|f\|_{L^{\infty}, f} f \in L_{c}^{\infty}\left(\mathbf{R}^{n}\right)$.

The aim of this paper is to obtain BMO to BMO boundedness for such singular operator. If T is the usual scalar valued singular integral, then it in fact already maps BMO to BMO with
$\|T f\|_{\text {вмо }} \leq C\|f\|_{\text {Вмо }}$, see [9], page 179. And for H -L maximal operator, $f \in \mathrm{BMO}$ still implies $M f \in \mathrm{BMO}$, but

$$
\|M f\|_{\text {вмо }} \leq C\left(\|f\|_{\text {вмо }}+\left|f_{B_{1}}\right|\right)
$$

where $f_{B_{1}}$ is the average of $f$ over the unit ball, see [2]. Thus it seems that the BMO boundedness for the above $H$-valued operator $T$ requires more continuity than $D_{1}$ on the kernel $K$. Below is our main theorem.

Theorem 1. Let $T$ be a singular integral associated to $K(x)$. Suppose

$$
\int_{\mathbf{R}^{n}} K(x) \mathrm{d} x=0
$$

and

$$
\begin{equation*}
\left(\int_{S_{k}(y)}\|K(x-y)-K(x)\|_{H}^{r} \mathrm{~d} x\right)^{1 / r} \leq c_{k}\left|S_{k}(y)\right|^{\frac{1}{r}-1}, r>1 \tag{1}
\end{equation*}
$$

for a sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ with $\sum_{k=1}^{+\infty} k c_{k}<+\infty$. Let $f \in \mathrm{BMO}$. If $\|T f\|_{H}$ is finite in a measurable set $E$ with $|E|>0$, then $\|T f\|_{H}<+\infty$ almost everywhere in $\mathbf{R}^{n}$. Furthermore,

$$
\|T f\|_{\mathrm{BMO}(H)} \leq C\|f\|_{\mathrm{BMO}}
$$

Remark. In [11], Wang found that the value of the classical $g$-functions, when acting on $L^{\infty}$ or BMO, might be infinite everywhere in $\mathbf{R}^{n}$. He also proved the BMO boundedness for $g$ function assuming the existence of $g(f)$ on a set of positive measure. The operators we consider here obviously contain $g$-function, thus suffer the same existence restriction.

In the following sections we shall first prove Theorem 1, and then discuss two special cases of the operator $T$, the $g$-function and the Marcinkiewicz integral.

## 2 Proof of Theorem 1

Proof. Let $x_{0}^{\prime}$ be a density point of $E$. Denote by $B$ the ball centered at $x_{0}^{\prime}$ with radius $d$, and $B^{*}$ the same centerd ball with radius $3 d$. We shall first show $\|T f(x)\|_{H}<\infty$, a.e. $x \in B$. For any $x \in B$ and $f \in \mathrm{BMO}$,

$$
f(x)=f_{B}+\left(f(x)-f_{B^{*}}\right) \chi_{B^{*}}+\left(f(x)-f_{B^{*}}\right)\left(1-\chi_{B^{*}}\right)=f_{1}+f_{2}+f_{3} .
$$

Since $\int_{\mathbf{R}^{n}} K(x) \mathrm{d} x=0, T f_{1} \equiv 0$. For $f_{2}(x)$, noting that

$$
\int_{\mathbf{R}^{n}}\left|f_{2}(x)\right|^{2} \mathrm{~d} x=\int_{B^{*}}\left|f(x)-f_{B^{*}}\right|^{2} \mathrm{~d} x \leq C|B|\|f\|_{\mathrm{BMO}}^{2},
$$

we get

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}\left\|T f_{2}(x)\right\|_{H}^{2} \mathrm{~d} x \leq C \int_{\mathbf{R}^{n}}|f(x)|^{2} \mathrm{~d} x \leq C|B|\|f\|_{\mathrm{BMO}}^{2} \tag{2}
\end{equation*}
$$

Therefore $\left\|T f_{2}(x)\right\|_{H}<+\infty$ almost everywhere in $\mathbf{R}^{n}$. Now we choose $x_{0} \in B \bigcap E$ (sufficiently close to $x_{0}^{\prime}$ ) such that $\left\|T f_{2}\left(x_{0}\right)\right\|_{H}<\infty$ and $\left\|T f\left(x_{0}\right)\right\|_{H}<\infty$. Then

$$
\begin{aligned}
\left\|T f_{3}\left(x_{0}\right)\right\|_{H} & =\left\|T f\left(x_{0}\right)-T f_{1}\left(x_{0}\right)-T f_{2}\left(x_{0}\right)\right\|_{H} \\
& \leq\left\|T f\left(x_{0}\right)\right\|_{H}+\left\|T f_{2}\left(x_{0}\right)\right\|_{H}<+\infty
\end{aligned}
$$

So if we can prove

$$
\begin{equation*}
\left\|T f_{3}(x)-T f_{3}\left(x_{0}\right)\right\|_{H}<+\infty, \quad \text { a.e. } x \in B \tag{3}
\end{equation*}
$$

then we reach $\|T f(x)\|_{H}<+\infty$, a.e. $x \in B$.
Next we are going to show (3). For $x \in B$,

$$
\begin{aligned}
& \left\|T f_{3}(x)-T f_{3}\left(x_{0}\right)\right\|_{H} \\
= & \left\|\int_{\left(B^{*}\right) c}\left(K(x-y)-K\left(x_{0}-y\right)\right) f_{3}(y) \mathrm{d}\right\|_{H} \\
\leq & \sum_{k=1}^{\infty} \int_{2^{k}\left|x_{0}-x\right|<\left|x_{0}-y\right|<2^{k+1}\left|x_{0}-x\right|}\left\|K(x-y)-K\left(x_{0}-y\right)\right\|_{H}\left|f_{3}(y)\right| \mathrm{d} y \\
\leq & \sum_{k=1}^{\infty}\left(\int_{x_{0}-S_{k}\left(x_{0}-x\right)}\left\|K(x-y)-K\left(x_{0}-y\right)\right\|_{H}^{r} \mathrm{~d} y\right)^{\frac{1}{r}}\left(\int_{x_{0}-S_{k}\left(x_{0}-x\right)}\left|f_{3}(y)\right|^{r^{\prime}} \mathrm{d} y\right)^{\frac{1}{r^{\prime}}} \\
\leq & \sum_{k=1}^{\infty} c_{k}\left(\frac{1}{\left|S_{k}\left(x_{0}-x\right)\right|} \int_{x_{0}-S_{k}\left(x_{0}-x\right)}\left|f_{3}(y)\right|^{r^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}}=\sum_{k=1}^{\infty} c_{k} I_{k}(x)
\end{aligned}
$$

Denote $d^{\prime}=\left|x-x_{0}\right|$ and

$$
T_{k}\left(x_{0}-x\right)=x_{0}-S_{k}\left(x_{0}-x\right)=\left\{y: 2^{k} d^{\prime}<\left|y-x_{0}\right|<2^{k+1} d^{\prime}\right\}
$$

Let $k_{0}$ be the integer such that $2^{k_{0}+2} d^{\prime} \geq 4 d$ and $2^{k_{0}+1} d^{\prime}<4 d$. When $k>k_{0}$,

$$
\begin{aligned}
I_{k}(x) \leq & \left(\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f(y)-f_{B^{*}}\right|^{r^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
\leq & \left(\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f(y)-f_{B\left(x_{0}, 2^{k+1} d^{\prime}\right)}\right|^{\prime} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
& +\left(\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f_{B\left(x_{0}, 2^{k+1} d^{\prime}\right)}-f_{B\left(x_{0}, 2^{k} d^{\prime}\right)}\right|^{\left.\right|^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
& +\cdots+\left(\left.\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}-f_{B^{*}}\right|\right|^{r^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
\leq & C\|f\|_{\text {BMO }}+J_{k}+J_{k+1}+\cdots+J_{k_{0}+1} .
\end{aligned}
$$

The terms $J_{k}, \cdots, J_{k_{0}+1}$ can be estimated similarly. Take $J_{k_{0}+1}$ for example,

$$
\begin{aligned}
\left|f_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}-f_{B^{*}}\right| & \leq \frac{1}{\left|B^{*}\right|} \int_{B^{*}}\left|f(y)-f_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}\right| \mathrm{d} y \\
& \leq \frac{2^{n}}{\left|B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)\right|} \int_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}\left|f(y)-f_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}\right| \mathrm{d} y \\
& \leq 2^{n}\|f\|_{\mathrm{BMO}} .
\end{aligned}
$$

Thus

$$
J_{k_{0}+1}=\left(\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f_{B\left(x_{0}, 2^{k_{0}+2} d^{\prime}\right)}-f_{B^{*}}\right|^{\prime} \mathrm{d} y\right)^{\frac{1}{\boldsymbol{p}}} \leq 2^{n}\|f\|_{\mathrm{BMO}}
$$

and

$$
I_{k}(x) \leq C\left(1+\left(k-k_{0}\right)\right)\|f\|_{\text {вмО }} .
$$

When $k \leq k_{0}$,

$$
\begin{aligned}
I_{k}(x) \leq & \left(\left.\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f(y)-f_{B\left(x_{0}, 2^{k+1} d^{\prime}\right)}\right|\right|^{\prime^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
& +\left(\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)}\left|f_{B\left(x_{0}, 2^{k+1} d^{\prime}\right)}-f_{B\left(x_{0}, 2^{k} d^{\prime}\right)}\right|^{\left.\right|^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
& +\cdots+\left(\left.\frac{1}{\left|T_{k}\left(x_{0}-x\right)\right|} \int_{T_{k}\left(x_{0}-x\right)} \right\rvert\, f_{B\left(x_{0}, 2^{\left.k_{0} d^{\prime}\right)}\right.}-f_{\left.B^{*}\right|^{\prime}} \mathrm{d} y\right)^{\frac{1}{\gamma}} \\
\leq & C\|f\|_{\text {BMO }+J_{k}^{\prime}+J_{k+1}^{\prime}+\cdots+J_{k_{0}-1}^{\prime} .}
\end{aligned}
$$

Similar argument shows

$$
I_{k}(x) \leq C\left(1+\left(k_{0}-k\right)\right)\|f\|_{\text {вмо }} .
$$

Collecting all, we have reached

$$
\begin{aligned}
\left\|T f_{3}(x)-T f_{3}\left(x_{0}\right)\right\|_{H} & \leq C \sum_{k=1}^{\infty} c_{k}\left(1+\left|k-k_{0}\right|\right)\|f\|_{\text {BMO }} \\
& \leq C\left(\sum_{k=1}^{\infty} k c_{k}+k_{0} \sum_{k=1}^{\infty} c_{k}\right)\|f\|_{\text {BMO }}
\end{aligned}
$$

Bearing in mind that $k_{0} \sim \log _{2} \frac{d}{d^{\prime}}=\log _{2} \frac{d}{\left|x-x_{0}\right|}$, we get

$$
\frac{1}{|B|} \int_{B} \log _{2} \frac{d}{\left|x-x_{0}\right|} \mathrm{d} x=C \int_{B(0,1)} \log _{2} \frac{1}{|z|} \mathrm{d} z=C_{n}
$$

And consequently,

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}\left\|T f_{3}(x)-T f_{3}\left(x_{0}\right)\right\|_{H}<C \sum_{k=1}^{\infty} k c_{k}\|f\|_{\text {вмо }} \tag{4}
\end{equation*}
$$

Finally we show $\|T f(x)\|_{\mathrm{BMO}(H)} \leq C\|f\|_{\text {BMO }}$. Take any ball $B \subset \mathbf{R}^{n}$. Since now $T f(x)<$ $+\infty$ almost everywhere in $\mathbf{R}^{n}$, we can find an $x_{0}$ sufficiently close to the center of $B$. Decompose $f=f_{1}+f_{2}+f_{3}$ as above, then we find that (2), (3) and (4) hold by the same argument. Then

$$
\begin{aligned}
& \frac{1}{|B|} \int_{B}\left\|T f(x)-(T f)_{B}\right\|_{H} \mathrm{~d} x \\
\leq & \frac{1}{|B|} \int_{B}\left\|T f(x)-T f_{3}\left(x_{0}\right)\right\|_{H} \mathrm{~d} x+\frac{1}{|B|} \int_{B}\left\|T f_{3}\left(x_{0}\right)-(T f)_{B}\right\|_{H} \mathrm{~d} x \\
\leq & \frac{2}{|B|} \int_{B}\left\|T f(x)-T f_{3}\left(x_{0}\right)\right\|_{H} \mathrm{~d} x \\
\leq & \frac{2}{|B|} \int_{B}\left\|T f_{2}(x)\right\|_{H} \mathrm{~d} x+\frac{2}{|B|} \int_{B}\left\|T f_{3}(x)-T f_{3}\left(x_{0}\right)\right\|_{H} \mathrm{~d} x .
\end{aligned}
$$

By (4), the second term is less than $C_{n} \sum_{k=1}^{\infty} k c_{k}\|f\|_{\text {BMO }}$ while by (2) and Hölder's inequality, the first term

$$
\frac{1}{|B|} \int_{B}\left\|T f_{2}(x)\right\|_{H} \mathrm{~d} x \leq \frac{1}{|B|^{\frac{1}{2}}}\left(\int_{B}\left\|T f_{2}(x)\right\|_{H}^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \leq C\|f\|_{\text {вмO }}
$$

## 3 Two Applications

In this section, we shall discuss two applications of Theorem 1 . Or to be exact, we shall reprove the BMO boundedness for $g$-function and Marcinkiewicz integral in a uniform way.

Take $H=L^{2}\left(\mathbf{R}^{+}, d t / t\right)$ and $K_{1}(x)=t^{-1} \frac{\Omega(x)}{|x|^{n-1}} \chi_{|x|<t}(x)$, where $\Omega$ is homogeneous of degree zero and satisfies

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega\left(x^{\prime}\right) \mathrm{d} \sigma\left(x^{\prime}\right)=0 \tag{5}
\end{equation*}
$$

Then the Marcinkiewicz integral

$$
\mu_{\Omega}(f)(x)=\left\|K_{1} * f(x)\right\|_{L^{2}\left(\mathbf{R}^{+}, d t / t\right)}=\left\|K_{1} * f(x)\right\|_{H}
$$

Imposing certain restriction on $\Omega$, we shall check that $K_{1}$ verifies the condition of Theorem 1. Thus we get the BMO boundedness for $\mu_{\Omega}$.

Corollary 1. Let $\Omega \in L^{r}\left(\mathbf{R}^{n-1}\right), r>1$ satisfy (5) and

$$
\int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta}\left(1+\log \frac{1}{\delta}\right) \mathrm{d} \delta<+\infty
$$

where $\omega_{r}(\boldsymbol{\delta})$ is the $r$-module of $\Omega$ defined by

$$
\omega_{r}(\delta)=\sup _{|\rho|<\delta}\left(\int_{\mathbf{S}^{n-1}}\left|\Omega\left(\rho x^{\prime}\right)-\Omega\left(x^{\prime}\right)\right|^{r} \mathrm{~d} \sigma\left(x^{\prime}\right)\right)^{1 / r}
$$

and $\rho$ is a rotation on $\mathbf{S}^{n-1}$. If $f \in B M O$ and there exists a set $E$ with $|E|>0$ such that $\mu_{\Omega}(f)(x)<+\infty$, a.e. $x \in E$, then $\mu_{\Omega}(f)(x)<\infty$, a.e. $x \in \mathbf{R}^{n}$ and $\left\|\mu_{\Omega}(f)\right\|_{\text {ВМо }} \leq C\|f\|_{\text {вмо }}$.

Proof. It is not hard to check

$$
\left\|\mu_{\Omega}(f)\right\|_{\mathrm{BMO}}=\| \| K_{1} * f\left\|_{H}\right\|_{\mathrm{BMO}} \leq 2\left\|K_{1} * f\right\|_{\text {BMO }(H)} .
$$

So we only have to show that $K_{1}(x)$ satisfies the requirement of Theorem 1 . The pre- $L^{2}$ estimate has been proved in many literatures, see for example, [3, 4]. To check (1), we first bound $I(x, y)=\left\|K_{1}(x-y)-K_{1}(x)\right\|_{H}$, which can be written as

$$
\begin{aligned}
I(x, y)= & \left(\int_{0}^{\infty} t^{-3}\left|\chi_{B}\left(\frac{x-y}{t}\right) \frac{\Omega(x-y)}{|x-y|^{n-1}}-\chi_{B}\left(\frac{x}{t}\right) \frac{\Omega(x)}{|x|^{n-1}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
\leq & \left(\int_{0}^{\infty} t^{-3}\left|\chi_{B}\left(\frac{x-y}{t}\right) \frac{\Omega(x-y)}{|x-y|^{n-1}}-\chi_{B}\left(\frac{x-y}{t}\right) \frac{\Omega(x)}{|x-y|^{n-1}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& +\left(\int_{0}^{\infty} t^{-3}\left|\chi_{B}\left(\frac{x-y}{t}\right) \frac{\Omega(x)}{|x-y|^{n-1}}-\chi_{B}\left(\frac{x}{t}\right) \frac{\Omega(x)}{|x-y|^{n-1}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& +\left(\int_{0}^{\infty} t^{-3}\left|\chi_{B}\left(\frac{x}{t}\right) \frac{\Omega(x)}{\mid x-y n^{n-1}}-\chi_{B}\left(\frac{x}{t}\right) \frac{\Omega(x)}{|x|^{n-1}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
= & I_{1}(x, y)+I_{2}(x, y)+I_{3}(x, y) .
\end{aligned}
$$

By regular calculation (see also [12]), we find

$$
I_{2}(x, y) \leq C|\Omega(x)| \frac{|y|}{|x|^{n+1}}, I_{3}(x, y) \leq C|\Omega(x)| \frac{|y|^{1 / 2}}{|x|^{n+1 / 2}}
$$

and

$$
I_{1}(x, y) \leq C \frac{|\Omega(x-y)-\Omega(x)|}{|x|^{n}}
$$

whenever $|x|>2|y|$. Thus

$$
\begin{aligned}
\left(\int_{S_{k}(y)}\left|I_{2}(x, y)\right|^{r} \mathrm{~d} x\right)^{1 / r} & =C|y|\left(\int_{S_{k}(y)}\left|\frac{\Omega(x)}{|x|^{n+1}}\right|^{r} \mathrm{~d} x\right)^{1 / r} \\
& =C|y|\left(\int_{2^{k}|y|}^{2^{k+1}|y|} \int_{\mathbf{S}^{n+1}}\left|\Omega\left(x^{\prime}\right)\right|^{r} \mathrm{~d} \sigma\left(x^{\prime}\right) \frac{\mathrm{d} t}{t^{(n+1) r+1-n}}\right)^{1 / r} \\
& \leq C\|\Omega\|_{L^{r}|y|}\left(\frac{2^{k}|y|}{\left(2^{k}|y|\right)^{(n+1) r+1-n}}\right)^{1 / r} \\
& =C 2^{-k} \frac{1}{\left(\left|2^{k} y\right|\right)^{n-n / r}} \sim C 2^{-k}\left|S_{k}(y)\right|^{-1 / r^{\prime}}
\end{aligned}
$$

In a similar way

$$
\left(\int_{S_{k}(y)}\left|I_{3}(x, y)\right|^{r} \mathrm{~d} x\right)^{1 / r} \leq C 2^{-k / 2}\left|S_{k}(y)\right|^{-1 / r^{\prime}}
$$

For $I_{1}(x, y)$, we may argue as Lemma 5 of [7] to get

$$
\begin{aligned}
\left(\int_{S_{k}(y)}\left|I_{1}(x, y)\right|^{r} \mathrm{~d} x\right)^{1 / r} & \leq C\left(2^{k}|y|\right)^{n\left(\frac{1}{r}-1\right)} \int_{\frac{2 y \mid}{2^{k} \mid y}}^{\frac{2|y|}{2^{k} \mid y}} \omega_{r}(\delta) \frac{\mathrm{d} \delta}{\delta} \\
& \leq C\left|S_{k}(y)\right|^{-\frac{1}{r}} \int_{2^{-k}}^{2^{-k+1}} \omega_{r}(\delta) \frac{\mathrm{d} \delta}{\delta}
\end{aligned}
$$

Now it remains to check

$$
D_{r}=\sum k c_{k}=\sum k \int_{2^{-k}}^{2^{-k+1}} \omega_{r}(\delta) \frac{\mathrm{d} \delta}{\delta}<+\infty
$$

But since $2^{-k}<\delta<2^{-k+1}$ implies $k<1+\log \frac{1}{\delta}, D_{r}$ does not exceed

$$
\int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta}\left(1+\log \frac{1}{\delta}\right) \mathrm{d} \delta
$$

The same result for $\mu_{\Omega}$ is proved in [5] under the hypothesis that $\Omega \in L^{r}, r>1$ and

$$
\int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta}\left(1+\log \frac{1}{\delta}\right)^{\sigma} \mathrm{d} \delta<+\infty
$$

for some $\sigma>2$. So Corollary 1 provides a slight improvement. However, a more general condition has been found by Hu , Meng and Yang in [6] to get the same result for $\mu_{\Omega}$.

Now let us turn to the classical $g$-function which is defined by

$$
g(f)(x)=\left(\int_{0}^{\infty}\left|\psi_{t} * f(x)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}
$$

where $\psi_{t}(x)=t^{-n} \psi(x / t)$ and $\psi(x)$ satisfies
(i) $\psi(x) \in L^{1}$ and $\int_{\mathbf{R}^{n}} \psi(x) \mathrm{d} x=0$;
(ii) $|\psi(x)|+|\nabla \psi(x)| \leq C \frac{1}{(1+|x|)^{n+1}}$.

If we take $K_{2}(x)=\psi_{t}(x)$ and $H=L^{2}\left(\mathbf{R}^{+}, \mathrm{d} t / t\right)$, then

$$
g(f)(x)=\left\|K_{2} * f(x)\right\|_{H}=\|T f(x)\|_{H}
$$

Again by Theorem 1, we can obtain the BMO boundedness of $g$ if $K_{2}$ verifies the required condition.

The case is easier than that of $\mu_{\Omega}$, since (i) and (ii) already imply

$$
\left\|K_{2}(x-y)-K_{2}(x)\right\|_{H} \leq C \frac{|y|}{|x|^{n+1}}, \quad|x|>2|y|
$$

see [9], p. 28. Arguing as we did for $I_{2}(x, y)$ in the proof of Theorem 2, we get

$$
\left(\int_{S_{k}(y)}\left\|K_{2}(x-y)-K_{2}(x)\right\|_{H}^{r} \mathrm{~d} x\right)^{1 / r} \leq c_{k}\left|S_{k}(y)\right|^{\frac{1}{r}-1}
$$

Thus we have proved the following corollary which is first obtained in Wang's work ${ }^{[11]}$.
Corollary 2. Let $g(f)(x)$ be defined as above. If $f \in$ BMO and there exists a set $E$ with $|E|>0$ such that

$$
g(f)(x)<+\infty,
$$

a.e. $x \in E$, then $g(f)$ exists almost everywhere in $\mathbf{R}^{n}$ and furthermore, $\|g(f)\|_{\text {BMO }} \leq C\|f\|_{\text {BMO }}$.

Finally, let us point out that the BMO-boundedness of singular integral and some LittlewoodPaley operators was extended to Campanato-type spaces by many authors. The latest development along this direction belongs to Zhang and Tao (see [13, 10]) who considered three types of Littlewood-Paley functions and proved their boundedness on generalized Orlicz-Campanato spaces. The Banach space valued singular integrals discussed in this paper should also be bounded in generalized Orlicz-Campanato spaces and furthermore, using the techniques there, we can only assume that $\|T f\|<\infty$ for one point rather than a measurable set $E$ of $|E|>0$ in our main theorem.

## References

[1] Benedek, A., Calderón, A. P. and Panzone, R., Convolution Operators on Banach Space Valued Functions, Proc. Nat. Acad. Sci., 48(1962), 356-365.
[2] Bennett, C., DeVore, R. A. and Sharpley, R., Weak- $L^{\infty}$ and BMO, Ann. of Math., 113(1981), 601-611.
[3] Chen, J., Fan, D. and Pan, Y., A Note on a Marcinkiewicz Integral Operator, Math. Nachr., 227(2001), 33-42.
[4] Ding, Y., Fan, D. and Pan, Y., $L^{p}$-boundedness of Marcinkiewicz Integrals with Hardy Space Function Kernels, Acta. Math. Sincia (English Series), 16(2000), 593-600.
[5] Ding, Y., Lu, S. and Xue, Q., On Marcinkiewicz Integral with Homogeneous Kernels, J. Math. Anal. Appl., 245(2000), 471-488.
[6] Hu, G., Meng, Y. and Yang, D., Estimates for Marcinkiewicz Integrals in BMO and Campanato Spaces, Glasg. Math. J., 49(2007), 167-187.
[7] Kutz, D. and Wheeden, R., Resluts on Weighted Norm Inequatilies for Multipliers, Trans. Amer. Math. Soc., 255(1979), 343-362.
[8] Rubio de Francia, J. L., Ruiz, F. J. and Torrea, J. L., Calderón-Zygmund Theory for Operator-valued Kernels, Adv. Math., 62(1986), 7-48.
[9] Stein, E. M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
[10] Tao, X. X. and Zhang, S. Y., Boundedness of Littlewood-Paley Operators in Generalized Orlicz-Campanato Spaces, Rocky Mount. Math., 40(2010), 1355-1375.
[11] Wang, S., Some Properties of $g$-functions, Sci. in China, Ser. A, 10(1984), 890-899.
[12] Zhang, C. and Qian, R., A Note on the Marcinkiewicz Integral Operators on $F_{p}^{\alpha, q}$, J. Zhejiang Univ. Sci. A, 8(2007), 2037-2040.
[13] Zhang, S. Y. and Tao, X. X., $H^{p}$ Bounds for Paramentic Marcinkiewicz Operators with Nonhomogeneous Rough Kerneks, Acta Math. Sinica (Chinese series), 54(2011), 97-110.

School of Science
Hangzhou Dianzi University
Hangzhou, 310018
P. R. China

E-mail: purezhang@hdu.edu.cn


[^0]:    ${ }^{*}$ Supported by NSFC (No. 10901043, 10871173, 11026104).

