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Abstract. In this note, we prove that the Toeplitz-type Operator ®%, generated by the gen-
eralized fractional integral, Calderén-Zygmund operator and VMO funtion is bounded from
LP*(R") to L%*(R™) . We also show that under some conditions @2, f € VLY*(Bg) , the

vanishing-Morrey space.
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1 Introduction and Main Result

Suppose that L is a linear operator on L?(R"), which generates an analytic semigroup e =%
with a kernel p;(x,y) satisfying a Gaussian kernel bound, that is,
C _ P
|pt(x’y)|§t_%le T ) (11)

for x,y € R"and all r > 0.

For 0 < o < n, the generalized fractional integral L~%/% generated by the operator L is

defined by

LRI = s [ O o) (12)
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When L = A is the Laplacian operator on R”, L=%/2 is the classical fractional integral I,
for example see [1], which is given by

C((n—0)/2) [ f0)
220T (0 /2) Sy T~y

lof(x) =

In 1982, S. Chanillo? showed that for all 0 < o < n and b € BMO(R"), the commutator
[b,14] is bounded from L?(R") to L(R") with 1 < p <n/a,1/q=1/p— a/n. In 2004, Duong
and Yan P/ proved that for all 0 < o < nand b € BMO, both L~%/2 and the commutator [b, L~ %/?]
are bounded from L”(R") to LY(R"), where 1 < p <n/o, 1/g=1/p—a/n. If b € BMO(R"),
the commutator 7 f = bT f — T (bf) , T is a Calderén-Zygmund operator with a standard kernel
K , we know that T? is (L?, LP)-boundedness for 1 < p < oo

In fact, since the kernel of L~%/2 is K (x,y) and the kernel of e~"* is p, (x,y), which satisfies

(1.1), we have
L% f( / Ko (x,y) f(y)dy,

thus

1 © d
Ko(x,y) = W/O Pt(x,y)t_aﬁ- (1.3)

And using(1.1),
sine(1-1) ['(n/2—0a/2) 1

L(ae/2)  Jx—y=e

[Ka(x,y)| <C (1.4)

C(n/2—a/2)|y—z| =% (15)

[Ka(x.3) ~ Ka(x,2)| +[Kalynx) = Ka(2.2)] < C— e —

Let B = B(x,p) be a ball in R" of radius p at the point x.
Definition 1.1.  Given f € L. (R"), let us set

Mf(x) =sup ]B\/’f )|dy, for a.e.xeR".

xEB

M is the Hardy-Littlewood maximal operator.

Define the Sharp maximal function by

=sup — 5] / |f(v) — fB|dy, for a.e. xeR".

xEB

Definition 1.2. Let f € L. (R") and 0 <1 < 1, we set

1
M, f(x) =su —/ dy, or a.e. xeR"
nf() xeg ‘B’]_n B’f(y)‘ y f



Anal. Theory Appl., Vol. 27, No.4 (2011) 311

Definition 1.3. Let 1 < p <o ,0 <A < n. A measurable function f € L”(R") belongs to
the Morry space LP* (R") if

1
! = — Pdy < ce.
1y = s o7 [ )P

XER" p>0

For simplieity, we will denote by || f{|, 2 = [ fll =04 g
Definition 1.4. Let 1 <p <o ,0<A <n. We say that f € L"*(R") belongs to the
Vanshing-Morry space VL (R") if the function

|
o= s — [ )P
vernp<r Pt JB(xp)
satisfies
lim &(r) = 0.

r—0
In a similar way we obtain the definition of VLP* (X), X C R" an open set with sufficiently
smooth boundary, replacing R" by X and the ball B(x,p) by B(x,p)NX.
Definition 1.5. Let f be a locally integral function defined on R". We say that f is in the
space BMO(R") if

1
7= swp e | 1) = faldy <o
x0€R",p>0 |B()C0,p)| B(xo.p)
1
where B = B(xo,p), fp = ] /Bf(y)dy.
Let f EBMO(R"*!) and r > 0. We define the VMO modulus of f by the rule

1
n(r) =sup—— [ |f(y) = fz,|dy,
p<r |BP| By

where B, is a generic ball having radius p.

BMO is a Banach space with the norm || f||. = supn(r).
r>0
Definition 1.6. 'We say that a function f €BMO(R") is in the Sarason class VMO(R") if

limn(r) =0.

r—0

Next we examine an important class of operators in analysis, Calderén-Zygmund operators.
We say that a function K (x,y) defined away from the diagonal of R” x R” is of standard kernel,

if it satisfies the size condition

IK(x,y)| <Clx—y|™", (1.6)
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and the regularity condition

[Al°

e —y[™*

for some 0 < & < 1, whenever |x—y| > 2|h|.
Definition 1.7.  An operator T is a Calderén-Zygmund operator, if 7' is bounded on L4(R")

for some 1 < g < e and is associated with a standard kernel K (x,y), in the sense that

Tf(x) = /R K(x,)f(y)dy,

whenever f € LY(R") has compact support and x is not in the support of f.

Some of the main examples of Calderén-Zygmund operators are ones that are given as con-
volution, K(x,y) = K(x —y), where k is locally integrable away from zero and satisfies the
corresponding estimates (1.6) and (1.7).

Moreover, let b € VMO(R"), M}, a multiplication operator, 7; | a Calderén-Zygmund operator!¥
with a standard kernel K or T =1, Tj3 = £I, T;» and T;4 linear operators bounded on
LP*(R")(1 < p < 00,0 < A < n), where j =1,2,--- ,m and [ is the identity operator. Define

/2

the Toeplitz-type operator related to the generalized fractional integral L~%/~ and Calderon-

Zygmund operator with a standard kernel by

m
O f = Y. (TjMyL™*Tjo +T;3L"*/2MyT;a).
=1

It is easy to see that when m =1, Tj | =Tj» = —Tj3 =Tj4 =1, Q% f = [b,L_O‘/Z]f. We will
discuss the boundedness of Toeplitz-type Operator on Morrey spaces and that on vanishing-
Morrey spaces.

We can formulate our results as follows:

Theorem 1.1.  Assume that the condition (1.1) hods. Letb € VMO(R"), T; ;(j=1,2,--- ,m,i=
1,2,3,4) and ©%f be defined as above. If for any f € LP*(R") (1 < p < 00,0 < A < n), we

have G)(lx f =0, then there exists a constant ¢ > 0 such that

105 llz0 ey < L2 <<Z 1751 H) (Z HE‘@H) +) HTj,4H> 1B 22 ey
j=1 j=1 j=1

B

whereO<[3<n,1<p<%,0<7t<n—\/nﬁp,q>0,ézé—n_la”d
Aln—2Q) _ A ou
=" (iie. —=5).
S ( p q)
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1 1
Theorem 1.2. Let 0 < B <n, 1<p<%,0<l<n—\/nﬁp,q>0, = ﬂ?t
q P n—
)L(n_)t) . A u .. . A
and UL = ﬂ(z e.— = 3). Suppose b is in VMO(R"), if for any f € LP*(R") , we have
n—A—pp p

Then 3py > 0, VR < pp, we have @2 f € VLI (Bg) .

2 Proof of Theorems

To prove our theorems, we need the following lemmas.

Lemma 2.15!. For 0 < o < n, let L~%2 and Iy, be defined as above, then there exists a
constant C > 0 such that

L2 f| < Calu(|f]) (%)

Lemma 2.2. Let 1 < p <o and (O <A <n. Then there exists a constant ¢ > 0 independent

of f, such that
1M Flpa < ell Fllpas

for every f € LP*(R™).

Lemma 2.3(J0hn-Nirenberg)[6]. For1 < p<oo, f€ L, (R"),let

1 %
111 =50 (157 f170) =)

then || f|| and || f ||« are equivalent.

Lemma 2471, Let0< B <n, 1<p<%,0<7t<n—[3p. Setéz%—nfl and U =

%(i. e. % = %) Then there exists a constant ¢ > 0 independent of f such that
1 lgw < ellfllpa VF €LPH(RY)
Lemma 257/, LetO< B <n 1<p<-+e, 0<A<n—PBp, then for é = % - ,,E,l and

u= % , there exists ¢ > 0 independent on f such that

1M 5 fllgu <clfllpa, — Vfe LM (R").

Proof of Theorem 1.1.  We first prove Theorem 1.1, for 0 < @ < n, choose 1 < st,s1t1,7, 71 <
p . We will prove that there exists a constant ¢ > 0 such that for all x € R” and for all x € B,

(@) < e} ol (ML= Tiaf1") " @) e 1 o]l (Maa Ty ) ™ (2
Jj=1 j=1

m 1 m 1
o Y Nl (M2 T2 17) " ()¢ Y Nl (M [ Taf 1) ().
j=1 j=1 "
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(2.1)
By Lemma 2.2, we have
106l < 1M (O )lg.u < CI(OGSllgu-

Therefore, in order to prove Theorem 1.1 , we only need to establish the (LP*,L%*) bound-
edness of (@2 f)%. We now prove (2.1) , for any x € R", choose B = B(x,r) such that x € B.
Let x' = yop and > =1 — x'. For any f € LP*(R"), where 1 < p < eoand 0 < A < n, since
©L f =0, then O f = 0. We write

— _ _ 2
OLf =0 =0y W froy M f = fit

where

Z 1(b—bp)x'L™ O‘/ZT f—i—z 3L_a/2(b_b8)xlTj74f:fll+f127
j=1

Z 1 (b—bp)x*L” a/szf-f—Z L2 (b—bp) X Tiaf = for + foo-
j=1

First we estimate fi1, taking 1 < s < p <o, 1 <t < o such that 1 < st < p , by Holder’s
inequality , the L°(R")-boundedness of 7} and Lemma 2.3 we have

1 g m ;
(@ fmore) < I (fima00 —bB)le“/sz,zf(y)lsdy>
- Z’B‘ " (/ (by) = bw)FIL” “/ZTsz(y)\sdy)S

1 1
al 1 C N\ 1 B ]
¥ (1 [, 00 0ut )" (0 [ 1L TasoF )
J=1

o ;
e Y Il (ML= Ty0p1 )7 ().
j=1

IN

IN

Therefore

1 1 5 m 1
8] /Blfn<y>ldy£ (@ /B |f11(Y)|de) <c Y bl (ML PTof") " (). (22)
j=1

Let us now estimate fi,. Taking 1 < s; <n/a and 1 <1 < oo such that 1/so = 1/s; — a/n
and 1 < 511 < p < oo, by Holder’s inequality, the (L*',L*)-boundedness of L~%/? and Lemma
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2.3, we have

(i faorea)” < St (foo0 -mrmaore)”

Jj=

A

3 18175 ( [ 16:0)- bB>Tj,4f<y>\“dy) '

j=1

L o
Y. (g L 1o0) = baliay) ™ [ marpnay)
~ |2B| B y B y ‘2 ‘1 a\|t] J.4 y

- 1
¢ Y Il (Masa Ty 7)™ ().

Jj=1

IN

IN

IN

Thus

1 1 5 % m ‘ - ﬁ
E/B|f12(y)|dy§ (H/B|f12(y)| dy> Sc;HbH*(anMTMﬂ ) (). (23)

Next we deal with f>; , fos respectively. Let T be a Calderén-Zygmund operator[sl with a
standard kernel K, then when y € B(x,r), for any 1 < y < p we have

IT{(b—bg) 22 £1) — T[(b—ba) 2> f1()] < bl (MIF)7 (x). (2.4)

In fact,

T{(b—bs) A1)~ T((b— ba)x*f](x)]
[ 02) = bw) Q2P DK (3:2) ~ Kx,2))ds

< [ @ = bellf@IK (2 - K2)ldz
R"\2B
- v —x(°
< b d
< <X L man s MO~ all e
— 1
< X2 P g, P~ ballf )l
j=1
1 1
N ) 1 7 1 ¥
—jé —bal? Y
< ngz (|2j+lB| 2].HB|b(Z) b dZ) (|2j+13| 2j+lB|f(Z)| dz>
(o] . l
< Y2 jbl (M ()
j=1
1
< bl (MU ().

Thus the estimates complete the proof of (2.4).
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Let us get back to the proof of Theorem . Let

Since y € B(x,r), then y%(y) = 0, so we have

Tj,l(.j:1727”'7

Boundedness of Toeplitz-type Operators on Vanishing-Morrey Spaces

m) be the identity operator.

Tj1(b— bB)sz’“/szf(y) =0

Since Tj1(j =1,2,--,

] / |for(y

forany 1 < y < p, we obtain by (2.4)

8] / |21 (y

We have showed that whether 7 (j =1,2,-- -,

—(fo1)pldy < |B|/|f21

~(fa) !dy<CZHbH (MIL=2T217) " (x).

m) is a Calder6n-Zygmund operator with a standard kernel K, and

— f1(x)|dy,

(2.5)

m) is the identity operator or the C-Z operator

with a standard kernel K , the estimates on f>; complete the proof of (2.5).

To estimate f>; , we need the following lemma.

Lemma 2.6. Let L~%/? be the generalized fractional integral, then when y € B(x,r),

L= [(b—bp)x gl (y) — L~

where 0 < ay<nand 1 <7y<p.
Proof.

“P((b— bp)x*)(x)| < . (Mazlg]") " (x),

(2.6)

IL=(b—bp) 8] (v) = L~ */*((b— bp) 18] (x)]

[ 02) = bu)g(02 () (Ka(3:2) — Ka(x:2))dz

_Ka(xvz)’dz

D=0~ bgllg(2)ldz

1
iz—j ! |b(z) — bg|?d v : 18(z)["d y
C — - . . ay
S\ B s T T )\ g s T

g )~ PlEQIK022) ~ Kl 2
< —b K
<X Sy POl K02

1
<
- C]; /2/‘“3\21'3 |x —z|" =% |x—¢
< S — _
R = LCRCIC
<

Jj=1
1

< 622 bl (Mazlg)" (x)

1
< cllbll (Melgl)” (x).
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Then we complete the proof of Lemma 2.6.

We obtain by Lemma 2.6

|B|/|f22 — (f22)Bldy < |B|/|f22 — fao(x)|dy

cZHbH*H/ M%|Tj’4f|y]>n )y
= B\

IN

IN

m 1
e Y bl (Man Ty ") (x),
j=1 !

(2.7)
where 0 < oy <mand 1 <y < p.
Combining (2.2), (2.3), (2.5) and (2.7), there exists 1 < s,s9,51,%,21,%,Y1 < o, such that
Iso=1/si—a/n, 1 <siti <p<n/a,1 <st<p,0<oy <nand 1<%,y < p, we obtain
(2.1).

For o = % 1 <st,sit) <pand 1 <7y, <min(p,"Z%*), we have

1

1
5t m s1h
Tj,zf’“) g+ ) 115114 (M%‘TJ‘AJC\M) g
= "

m B ﬁn
1@ e < Y l1B]1.] (M\L 2
=1

1 1
¥ 1 n
Ty T) o+ 3 W0 (Mo 15057 )”

=1

ua - 5
+CZ 15]].] <M|L 207

j=1

So, from Lemma 1.1, Lemma 2.4 and Lemma 2.5, by the (va)“ , L7*)-boundedness of L~%/2
and the LP* (R")-boundedness of T;, and T; 4, we get the desired result. Then we complete the
proof of Theorem 1.1.

Proof of Theorem 1.2. Let B be a generic ball in R", for ¢ = nﬁ_—a, from Theorem 1.1 it
follows that

Q=

sup [ 18/ dy
X€EB,p>0 B(x.p)B
1
< | sw o [ jeLso)ra
xeR",p>0 B(vp)

= OGS o wey < cllbll |l fllpirgr)-

For all B, we also have

106/l () < €llbll[1fll 2 e
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We observe, likewise Theorem 2.13 in [9], that for any € > 0, 3py > 0 such that for any
generic ball Bg = B(x,R) with radius R, such that 0 < R < py,

107 Fllonse) < - & [1Fllpa(roys

then

1
sup — / ®%,f(y)|1dy < c-&, Ve > 0.
xEBg,0<p<diamBg P
B(x,p)ﬁBR

Since we are interested in lim,_,o §(r), let us now consider only r < diamBg, then

1
g = swp —o [ jeLs0)pdy
xeBR,p<rp
B(xvp)mBR
1
< s [ (el
xEBg,0<p<diamBg P

B(x,p)ﬁBR
< c-g, Ve>0.

It follows that
£9(r) < c-€,Yr < diam Bg, Ve > 0,

then
lim{(r) =0.

r—0
We have prove that
@b f € VLI*(Bg), YR < po.

Then we complete the proof of Theorem 1.2.
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