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Abstract. In this article, we study on the existence of solution for a singularities of
a system of nonlinear fractional differential equations (FDE). We construct a formal
power series solution for our considering FDE and prove convergence of formal so-
lutions under conditions. We use the Caputo fractional differential operator and the
nonlinearity depends on the fractional derivative of an unknown function.
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1 Introduction

Recently, fractional differential equations have been investigated extensively. The moti-
vation for those works rises from both the development of the theory of fractional calcu-
lus itself and the applications of such constructions in various sciences such as physics,
chemistry, aerodynamics, electrodynamics of complex medium, and so on. For examples
and details, see [1–6, 8, 9, 11, 14, 16, 20, 23, 25, 26] and the references therein. Fractional
calculus in the complex plane also was done by Osler and et al. [30–33]

The existence of formal and analytic solutions for singularities of ordinary differential

equations such as x
d~y
dx =

~f (x,~y) and other statements was discussed in [27–29]. Motivated
by the above mentioned work, in this paper we consider a system of singularities nonlin-
ear fractional order differential equation:

xα dα−→y

dxα
=
−→
f (x,−→y ), α≥1. (1.1)

∗Corresponding author. Email address: babakhani@nit.ac.ir (A. Babakhani)

http://www.global-sci.org/ata/ 59 c©2017 Global-Science Press



60 A. Babakhani / Anal. Theory Appl., 33 (2017), pp. 59-73

The paper has been organised as follows. In Section 2 we give basic definitions and pre-
liminary. Leibniz rule and chain rule for LFD have been derived in Section 3 and Section
4. Extensions of directional LFDs and local fractional Taylor series to higher orders have
been presented in Sections 5 and 6.

2 Preliminaries

In this section, we present some notations, definitions and preliminary that will be useful
for our main results. This materials can be found in the literatures [10, 17, 19, 21, 22, 24].
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, |~y|=max{|y1|,|y2|,··· ,|yn|}.

~f (x,~y) is Cn−valued function in complex variables (x,~y)∈Cn+1. We denote by C[[x]] the
set of all formal power series in x with coefficients in C. Also, denote by C{x} the set of all
power series in C[[x]] that have nonzero radii of convergence. Denote by xσC[[x]] the set
of formal series xσ f (x), where f (x)∈C[[x]],σ is a complex number, and xσ =exp(σlnx).
Similarly, let xσC{x} denote the set of convergent series xσ f (x), where f (x)∈C{x}.

Definition 2.1. A formal power series

~φ(x)=
∞

∑
m=0

xm
~cm ∈ xC[[x]]n , ~cm ∈C

n,

is a formal solution of system (1.1) if

xα dα~φ(x)

dxα
=~f (x,~φ(x)).

Riemanns modified form of Liouvilles fractional integral operator is a generalization
of Cauchys iterated integral formula

∫ x

a
dx1

∫ x1

a
dx2 ···

∫ xn−1

a
g(xn)dxn =

1

Γ(n)

∫ x

a
(x−s)n−1g(s)ds, (2.1)

where Γ is Euler’s gamma function. Clearly, the right-hand side of Eq. (2.1) is meaningful
for any positive real value of n. Hence, it is natural to define the fractional integral as
follows:

Definition 2.2. If y be analitic function in C, then the Riemann-Liouville fractional inte-
gral is defined by

d−αy(x)

dxα
=

1

Γ(α)

∫ x

0
(x−s)α−1y(s)ds. (2.2)
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Definition 2.3. Let α ∈R, n−1< α ≤ n, n ∈N and y be analitic function in C, then the
Caputo fractional derivative of order α defined by

dαy(x)

dxα
=

d−α

dxα

(

dny(x)

dxn

)

. (2.3)

The fractional integral of y(x)= xγ, γ>−1 is given as

d−αy(x)

dxα
=

Γ(γ+1)

Γ(γ+α+1)
xγ+α, (2.4)

and the fractional derivative of y(x)= xγ,γ>−1 also is given as

dαy(x)

dxα
=

Γ(γ+1)

Γ(γ−α+1)
xγ−α. (2.5)

Lemma 2.1 (see [14, 21]). For α> 0, the general solution of the fractional differential equation
dαy(x)

dxα =0 is given by

y(x)=
r−1

∑
i=0

cix
i, ci ∈R, i=0,1,2,··· ,r−1,r=[α]+1,

where [α] denotes the integer part of the real number α.

In view of Lemma 2.1 it follows that

d−α

dxα

(

dαy(x)

dxα

)

=y(x)+
r−1

∑
j=0

cjx
j for some ci ∈R, i=0,1,··· ,r−1. (2.6)

But in the opposite way we have,

dα

dxα

(

d−γy(x)

dxα

)

=
dα−γy(x)

dxα
. (2.7)

3 Formal solution

In this section, generally speaking, in order to construct a power series solutions

~y(x)=
∞

∑
m=0

xm
~am,

this expression is inserted into Eq. (1.1) to find relationships among the coefficients ~am,
and the coefficients~am are calculated by using these relation. In this stage of the calcula-
tion, we do not pay any attention to the convergence of the series.
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Theorem 3.1. Suppose that A(x) is n×n matrix whose entries are formal power series in x and
λ is an eigenvalue of A(0). Assume also that λ+k are not eigenvalues of A(0) for all positive
integers k. Then, the fractional differential equation

xα dα~y

dxα
=A(x)~y (3.1)

has a nontrivial formal solution

~φ(x)= xλ~f (x)= xλ
∞

∑
m=0

xm
~am ∈ xλ

C[[x]]n . (3.2)

Proof. Insert

xλ
∞

∑
m=0

xm
~am =

∞

∑
m=0

xλ+m
~am

into Eq. (3.1) and setting

A(x)=
∞

∑
m=0

xm Am,

where Am∈Mn(C) and A0=A(0). Then, using by Eq. (2.5) we obtain

xα
∞

∑
m=0

Γ(λ+m+1)

Γ(λ+m−α+1)
~amxλ+m−α=

∞

∑
m=0

xλ+m

[

m

∑
h=0

Am−h~ah

]

.

Therefore, in order to construct a formal solution, the coefficients~am must be determined
by the equations

λ~a0 =A0~a0 and
Γ(λ+m+1)

Γ(λ+m−α+1)
~am =A0~am+

m−h

∑
h=0

Am−h~ah, m≥1.

Hence,~a0 must be eigenvector of A0 associated with the eigenvalue λ, whereas

~am =

(

Γ(λ+m+1)

Γ(λ+m−α+1)
In−A0

)−1
[

m−h

∑
h=0

Am−h~ah

]

for m≥1.

Thus, we complete the proof.

Example 3.1. Consider a system of nonlinear fractional differential equation:

x
3
2

d
3
2~y

dx
3
2

=~f (x,~y), ~f =( f1, f2)
t, ~y=(y1,y2)

t, (3.3)
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where f1(x,~y) = xy2−2y1 exp(x) and f2(x,~y) = (1+x2)y1+2y2 cosh(x). In other words,
(3.1) equivalent to























x
3
2

(

d
3
2 y1

dx
3
2

)

= xy2−2y1 exp(x),

x
3
2

(

d
3
2 y2

dx
3
2

)

=(1+x2)y1+2y2 cosh(x).

(3.4)

In this example we have

~y=

[

y1

y2

]

, ~f =

[

f1

f2

]

=

[

xy2−2y1 exp(x)
(1+x2)y1+2y2 cosh(x)

]

,

or

~f =A(x)

[

y1

y2

]

, where A(x)=

[

−2exp(x) x
1+x2 2cosh(x)

]

.

Then, entries of matrix A(x) haveing formal power series in the form

A(x)=











−2
∞

∑
m=0

xm

m!
x

1+x2 2
∞

∑
m=0

x2m

(2m)!











.

Hence,

A(0)=

[

−2 0
1 2

]

and λ=±2.

If λ= 2 and ~y(x)= x2 ∑
∞
m=0 xm~am is a formal solution system (3.2), then~a0 =(0,1). Note

that ~a0 = (0,1) is an eigenvector of A(0) associated with the eigenvalue λ = 2 and the
eigenvector of A(0) associated with the eigenvalue λ=2 is not unique. Therefore

~am =

(

Γ(3+m)

Γ( 3
2+m)

[

1 0
0 1

]

−

[

−2 0
1 2

]

)−1[
m−h

∑
h=0

Am−h~ah

]

for m≥1.

Note that we can not select λ=−2, as −2+4= 2 is an eigenvalue of A(0) and hence~am

are not exist for some m≥1.

Remark 3.1. For an eigenvalue λ0 of A(0), let h be the maximum integer such that λ0+h
is also an eigenvalue of A(0). Then, Theorem 3.1 applies to λ=λ0+h.
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4 Convergence of formal solution

In this section, we prove convergence of formal solutions of a system of fractional differ-
ential equations (1.1). To achieve our main goal, we need some preparations.

Lemma 4.1. Suppose that the entries of the Cn−valued function ~f are convergent power series

in (x,~y) with coefficients in C. If matrices
Γ(m+1)

Γ(m−α+1) In−A(0) be invertible for positive integers

m sufficiently large, where A(0)= ∂~f
∂~y (0,0). Then the formal solution

~φ(x)=
∞

∑
m=1

xm
~am ∈ xC[[x]]n , (4.1)

of system (1.1) is unique.

Proof. Since formal power series (4.1) satisfy (1.1), i.e.,

xα dα~φ(x)

dxα
=~f (x,~φ(x)). (4.2)

It is necessary that ~f (0,0)=~0. Therefore, write ~f in the form

~f (x,~y)=~f0(x)+A(x)~y+ ∑
|P|≥2

~fP(x), (4.3)

where

(1) P=(p1,··· ,p2) and pj are non-negative integers,

(2) |P|= p1+···+pn and ~yP =y
p1

1 ···y
pn
n ,

(3) ~f0∈ xC{x}n and ~fP ∈C{x}n,

(4) A(x) is n×n matrix with the entries in C{x}.

Note that ~f0(x)= ~f (x,0),A(x)= ∂~f
∂~y (x,0) and A(x)=∑

∞
0 xm Am, where Am are in Mn(C),

write Eq. (4.2) in the form

xα dα~y

dxα
=A0~φ+~f (x,~φ)−A0~φ.

Then,

Γ(m+1)

Γ(m−α+1)
~cm =A0~cm+~γm for m=1,2,··· , (4.4)
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where

~f (x,~φ)−A0~φ=~f0(x)+[A(x)−A0]~φ(x)+ ∑
|P|≥2

(

~φ(x)
)P~fP(x)

=
∞

∑
m=1

xm
~γm

and ~γm ∈Cn. Note that ~γm is determined when ~c1,··· ,~cm−1 are determined and that the

matrices Γ(m+1)
Γ(m−α+1)

In−A0 are invertible if positive integers m are sufficiently large. This

implies that there exists a positive integers m0 such that if~c1,··· ,~cm0 are determined, then
~cm is uniquely determined for all integers m greater than m0. Therefor, the system of a
finite number of equations

Γ(m+1)

Γ(m−α+1)
~cm =A0~cm+~γm, m=1,2,··· ,m0, (4.5)

decides whether a formal solution ~φ(x) exists. If system (4.5) has a solution {~c1,··· ,~cm0},
those m0 constants vectors determine a formal solution ~φ(x) uniquely. Thus, the proof is
completed.

Remark 4.1. Supposing that formal power series (4.1) is a formal solution of (1.1), set

~φN(x)=
N

∑
m=1

xm
~cm. (4.6)

Since

~f (x,~φ(x))−~f (x,~φN(x))=A(x)(~φ(x)−~φN(x))+ ∑
|P|≥2

[

~φ(x)P−~φN(x)P
]

~fP(x),

it follows that ~f (x,~φ(x))−~f (x,~φN(x))∈ xN+1C[[x]]n . Also,

~f (x,~φ(x))−xα dα~φN(x)

dxα
= xα dα~φ(x)

dxα
−xα dα~φN(x)

dxα
∈ xN+1

C[[x]]n .

Hence,

~f (x,~φN(x))−xα dα~φN(x)

dxα
∈ xN+1

C[[x]]n .

Set

~gN,0(x)=~f (x,~φN(x))−xα dα~φN(x)

dxα
. (4.7)
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Now, by means of the transformation ~y=~z+~φN(x), change system (1.1) to the system

xα dα~z

dxα
=~gN(x,~z), ~z∈C, (4.8)

where

~gN(x,~z)=~f (x,~z+~φN(x))−xα dα~φN(x)

dxα

=~gN,0(x)+~f (x,~z+~φN(x))−~f (x,~φN(x))

+~gN,0(x)+A(x)~z+ ∑
|P|≥2

[

(

~z+~φN(x)
)P

−~φN(x)P
]

~fP(x).

As in Lemma 4.1, write ~gN(x) in the form

~gN(x,~z)=~gN,0(x)+BN(x)~z+ ∑
|P|≥2

(~z)P
~gN,P(x),

where

(1) ~gN,0(x)∈ xN+1C{x}n and ~gN,P ∈C{x}n ,

(2) BN(x) is an n×n matrix with the entries in C{x},

(3) the entries of the matrix BN(x)−A0 are contained in xC{x}.

Remark 4.2. Supposing that system (4.8) has a formal solution, then using (4.6) we obtain

~ψN(x) :=~φ(x)−~φN(x)=
∞

∑
m=N+1

xm
~cm∈ xN+1

C[[x]]n.

If we substituting ~ψN(x) into system (4.8). Then the coefficients ~cm determined recur-
sively by

Γ(m+1)

Γ(m−α+1)
~cm =A0~cm+~γm, m=N+1,N+2,··· ,

where

~gN(x,~ψ(x))−A0~ψN(x)

=~f (x,φ(x))−A0~ψN(x)−xα dα~φN(x)

dxα

=~f (x,φ(x))−A0~φ(x)+A0~φN(x)−xα dα~φN(x)

dxα

=~gN,0(x)+[BN(x)−A0]~ψN(x)+ ∑
|P|≥2

(

~ψN(x)
)P
~gN,P(x)

=
∞

∑
m=N+1

xm
~γm.



A. Babakhani / Anal. Theory Appl., 33 (2017), pp. 59-73 67

Note that
Γ(m+1)

Γ(m−α+1) In−A0 are invertible for m=N+1,N+2,··· if N is sufficiently large.

Remark 4.3. Suppose that system (1.1) has an actual solution ~η(x) such that the entries
of ~η(x) are analytic at x=0 and that ~η(0)=0. Then, the Taylor expansion

~φ(x)=
∞

∑
m=1

dm~η(0)

dxm

xm

m!

of ~η(x) at x = 0 is a formal solution of system (1.1). Furthermore, ~φ is convergent and
~φ∈ xC{x}n.

Kipping these Lemma and Remarks from above, let us prove the following main the-
orem.

Theorem 4.1. Suppose that ~f0(x)= ~f (x,~0)∈ xN+1C{x}n and that the matrices Γ(m+1)
Γ(m−α+1)

In−

A0,m = N+1,N+2,··· are invertible, where A0 =
∂~f
∂~y (0,~0). Then, system (1.1) has a unique

formal solution

~ψ=
∞

∑
m=N+1

xm
~cm∈ xN+1

C[[x]]n. (4.9)

Furthermore, ~φ(x)∈ xN+1C{x}n.

Proof. We prove this theorem in six steps.

Step 1. Using the argument of Lemma 4.1, we can prove the existence and uniqueness of
formal solution (4.9). In fact,

~f (x,~φ)−A0~φ=~f0(x)+[A(x)−A0]~φ(x)+ ∑
|P|≥2

(

~φ(x)
)P~fP(x)

=
∞

∑
m=1

xm
~γm.

This implies that ~γ = 0 for m = 1,2,··· ,N. Hence, ~cm,m = N+1,N+2,··· are uniquely
determined by

Γ(m+1)

Γ(m−α+1)
~cm=A0~cm+~γm for m=N+1,N+2,··· .

Step 2. Suppose that system (1.1) has an actual solution ~η(x) satisfying the following
conditions:

(i) The entries of ~η(x) are analytic at x=0,

(ii) There exist two positive numbers K and δ such that

|~η(x)|≤K|x|N+1 for |x|≤δ.
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Then, the Taylor expansion

∞

∑
m=N+1

dm~η(0)

dxm

xm

m!

of ~η(x) at x=0 is a formal solution of Eq. (1.1). Since, such a formal solution is unique, it
follows that

~φ(x)=
∞

∑
m=N+1

dm~η(0)

dxm

xm

m!
.

Because the Taylor expansion of~η(x) at x=0 is convergent, the formal solution ~φ conver-
gent and ~φ∈ xN+1C{x}n.

Step 3. Hereafter, we shall construct an actual solution ~η(x) of (1.1) that satisfies condi-
tions (i) and (ii) of Step 2. To do this, first notice that there exist three positive numbers
H, δ and ρ such that

|~f (x,~0)|≤H|x|N+1, |x|≤δ, (4.10)

and

|~f (x,~y1)−~f (x,~y2)|≤ (|A0|+1)|~y1−~y2|, |x|≤δ, |~yj|≤ρ, j=1,2. (4.11)

Hence,

|~f (x,~y)≤H|x|N+1+(|A0|+1)|~y for |x|≤δ and |~y|≤ρ. (4.12)

Using the transformation of Remark 4.2, N can be made as large as we want without
changing the matrix A0. Hence, assume without loss of any generality that

|A0|+1

(N−α+2)Γ(α)
<

1

2
. (4.13)

Also, fix two positive numbers K and δ so that

K>
H+(|A0|+1)K

(N+2−α)Γ(α)
and KδN+1≤ρ. (4.14)

Step 4. Using Theorem 4.3 in [14] and ~η(0)=0, the system (1.1) is equivalent to integral
equation

~η(x)=
1

Γ(α)

∫ x

0

~f (s,~η(s))

sα(x−s)1−α
ds. (4.15)
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Define successive approximations

~η0(x)=0 and ~ηk+1(x)=
1

Γ(α)

∫ x

0

~f (s,~ηk(s))

sα(x−s)1−α
ds, k=0,1,··· .

Now, we shall show that

|~ηk(x)≤K|x|N+1 for |x|≤δ and k=0,1,··· .

Since this is true for k=0, we show this recursively with respect to k as follows.
First if this is true for k, then

|~ηk(x)≤K|x|N+1≤KδN+1≤ρ, |x|≤δ.

Hence, (4.12) with assuming α≥1 yields
∣

∣

∣

∣

1

sα(x−s)1−α
~f (s,~ηk(s))

∣

∣

∣

∣

≤
1

|s|α|x−s|1−α
{H|s|N+1+(|A0|+1)|~ηk |}

≤
|x−s|α−1

|s|α
{H|s|N+1+(|A0|+1)K|s|N+1}

≤|x|α−1{H+(|A0|+1)K}|s|N+1−α, |s|≤δ.

Therefore, using (4.14) we have

|~ηk+1|≤ |x|α−1 (H+(|A0|+1)K

(N+2−α)Γ(α)
|x|N+2−α ≤K|x|N+1, |x|≤δ.

Step 5. Set

‖~ηk+1−~ηk‖=max

{

|~ηk+1−~ηk|

|x|N+1
: |x|≤δ

}

.

Thus, using (4.11) since

|~ηk+1−~ηk|=

∣

∣

∣

∣

∫ x

0

(x−s)α−1

sαΓ(α)

(

~f (s,~ηk(s))−~f (s,~ηk−1(s))
)

ds

∣

∣

∣

∣

≤
∫ x

0

(x−s)α−1

sαΓ(α)

∣

∣

∣

~f (s,~ηk(s))−~f (s,~ηk−1(s))
∣

∣

∣
ds

≤|A0+1|
∫ x

0

|x−s|α−1

|s|α
|~ηk(s)−~ηk−1(s)|ds

≤|A0+1||x|α−1
∫ x

0

1

|s|αΓ(α)
|~ηk(s))−~ηk−1(s))|ds

≤
|A0+1|

Γ(α)
|x|α−1

∫ x

0
|s|N−α+1max

{

|~ηk(s))−~ηk−1(s))|

|s|N+1

}

ds

≤
|A0+1|

(N−α+2)Γ(α)
‖~ηk−~ηk−1‖|x|

N+1,
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using (4.13) we obtain

‖~ηk+1−~ηk‖≤
|A0+1|

(N−α+2)Γ(α)
‖~ηk−~ηk−1‖≤

1

2
‖~ηk−~ηk−1‖.

This implies that

lim
k→+∞

~ηk(x)

xN+1
=

∞

∑
t=0

~ηl+1(x)−~ηl(x)

xN+1

exists uniformly for |x|≤δ.

Step 6. Setting

~η(x)= xN+1

{

lim
k→+∞

~ηk(x)

xN+1

}

= lim
k→+∞

~ηk(x),

it is easy to show that ~η(x) satisfies integral equation (4.15). It is easy evident that ~η(x) is
analytic for |x|<δ. Thus, the proof is completed.

Now, finally, by using the argument given in Remark 4.2 and Remark 4.3 we obtain
the following theorem.

Theorem 4.2. Every formal solution ~φ∈xC[[x]]n of system (1.1) is convergent, i.e., ~φ∈xC{x}n.

Remark 4.4. In general, system (1.1) may not have any formal solution. However, The-
orem (4.2) states that if system (1.1) has formal solution, then every formal solution is
convergent.

Example 4.1. The following system of fractional differential equation























x
3
2

(

d
3
2 y1

dx
3
2

)

= x15cos(x)+ Γ(15)

Γ( 31
2 )

y1+xsin(y2),

x
3
2

(

d
3
2 y2

dx
3
2

)

=y1+10sinh(y2)+x20sinh(x),

(4.16)

satisfy in Theorem 4.1.

In this example we have

~f (x ~y)=

[

f1

f2

]

=







x15cos(x)+
Γ(14)

Γ( 31
2 )

y1+xsin(y2)

y1+10sinh(y2)+x20sinh(x)






.

Hence,

~f0(x)=~f (x,~0)=

[

x15cos(x)
x20sinh(x)

]

∈ x15
C{x}2,
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and

A0=
∂~f

∂~y
(0,~0)=





Γ(14)

Γ
(

31
2

) 0

1 10



,

such that
Γ(m+1)

Γ(m− 3
2+1)

I2−A0=
Γ(m+1)

Γ(m+ 1
2)

I2−A0

is invertible for all m≥15.

5 Conclusions

The existence of solution for a singularities of a system of fractional differential equations
(FDE) comprising of standard Caputo derivatives have been discussed. A formal power
series solution for our considering FDE and its convergence under conditions have been
worked out.
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