Some Integral Mean Estimates for Polynomials with Restricted Zeros

Abdullah Mir*, Q. M. Dawood and Bilal Dar
Department of Mathematics, University of Kashmir, Srinagar 190006, India

Received 19 January 2014; Accepted (in revised version) 11 March 2015

$$
\begin{aligned}
& \text { Abstract. Let } P(z) \text { be a polynomial of degree } n \text { having all its zeros in }|z| \leq k \text {. For } k=1 \text {, } \\
& \text { it is known that for each } r>0 \text { and }|\alpha| \geq 1, \\
& \qquad n(|\alpha|-1)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \\
& \text { In this paper, we shall first consider the case when } k \geq 1 \text { and present certain generaliza- } \\
& \text { tions of this inequality. Also for } k \leq 1 \text {, we shall prove an interesting result for Lacunary } \\
& \text { type of polynomials from which many results can be easily deduced. }
\end{aligned}
$$

Key Words: Polynomial, zeros, polar derivative.
AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative. It was shown by Turan [21] that if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

More generally, if the polynomial $P(z)$ has all its zeros in $|z| \leq k \leq 1$, it was proved by Malik [12] that the inequality (1.1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|P(z)|, \tag{1.2}
\end{equation*}
$$

[^0]while as Govil [6] proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \geq 1$, then
\[

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \max _{|z|=1}|P(z)| . \tag{1.3}
\end{equation*}
$$

\]

As an improvement of (1.3), Govil [7] proved that if $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}\left(\max _{|z|=1}|P(z)|+\min _{|z|=k}|P(z)|\right) . \tag{1.4}
\end{equation*}
$$

Let $D_{\alpha} P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree n with respect to the point α. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}\left\{\frac{D_{\alpha} P(z)}{\alpha}\right\}=P^{\prime}(z) \tag{1.5}
\end{equation*}
$$

Shah [18] extended (1.1) to the polar derivative of $P(z)$ and proved that if all the zeros of the polynomial $P(z)$ lie in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|P(z)|, \quad|\alpha| \geq 1 . \tag{1.6}
\end{equation*}
$$

Aziz and Rather [3] generalised (1.6) which also extends (1.2) to the polar derivative of a polynomial. In fact, they proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|P(z)| . \tag{1.7}
\end{equation*}
$$

Further as a generalization of (1.3) to the polar derivative of a polynomial, Aziz and Rather [3] proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)| . \tag{1.8}
\end{equation*}
$$

Recently Govil and McTume [8] sharpened (1.8) and proved that if all the zeros of $P(z)$ lie in $|z| \leq k, k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1+k+k^{n}$,

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)| \\
& +n\left(\frac{|\alpha|-\left(1+k+k^{n}\right)}{1+k^{n}}\right) \min _{|z|=k}|P(z)| . \tag{1.9}
\end{align*}
$$

On the other hand, Malik [13] obtained an L^{r} analogue of (1.1) by proving that if $P(z)$ has all its zeros in $|z| \leq 1$, then for each $r>0$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1.10}
\end{equation*}
$$

As an extension of (1.3), Aziz [1] proved that if $P(z)$ has all its zeros in $|z| \leq k, k \geq 1$, then for each $r \geq 1$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|P^{\prime}(z)\right| . \tag{1.11}
\end{equation*}
$$

More recently, Dewan, Singh, Mir and Bhat [5] generalized (1.6) by obtaining an L^{r} analogue of it. More precisely, they proved that if $P(z)$ has all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$ and for each $r>0$,

$$
\begin{equation*}
n(|\alpha|-1)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)\right| \tag{1.12}
\end{equation*}
$$

If we let $r \rightarrow \infty$ in (1.12) and make use of the well-known fact from analysis (see for example [17, pp. 73] or [20, pp. 91]) that

$$
\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \rightarrow \max _{0 \leq \theta<2 \pi}\left|P\left(e^{i \theta}\right)\right|
$$

we get (1.6).
In this paper, we shall first present certain generalizations of the inequality (1.12) by considering polynomials having all zeros in $|z| \leq k, k \geq 1$. We shall also prove a result for Lacunary type of polynomials having all zeros in $|z| \leq k, k \leq 1$ from which many results can be easily deduced.

Theorem 1.1. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \geq 1$, then for every complex number α with $|\alpha| \geq k$ and for each $r>0, p>1, q>1$ with $p^{-1}+q^{-1}=1$, we have

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq C_{r}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|{ }^{q r} d \theta\right\}^{\frac{1}{q r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p r}} \tag{1.13}
\end{equation*}
$$

where

$$
C_{r}=\frac{\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}}
$$

Remark 1.1. If we let $r \rightarrow \infty$ and $p \rightarrow \infty$ (so that $q \rightarrow 1$) in (1.13) we get (1.8). If we divide both sides of (1.13) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get a result recently proved Mir and Dar [15]. If we take $k=1$ in (1.13) and note that $C_{r}=1$, we obtain a generalization of (1.12) in the sense that the right hand side of (1.12) is replaced by a factor involving the integral mean of $\left|D_{\alpha} P(z)\right|$ on $|z|=1$.

The following corollary immediately follows by letting $p \rightarrow \infty$ (so that $q \rightarrow 1$) in Theorem 1.1.

Corollary 1.1. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \geq 1$, then for every complex number α with $|\alpha| \geq k$ and for each $r>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{1.14}
\end{equation*}
$$

Remark 1.2. Dividing both sides of (1.14) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get (1.11) and also extends it to the values $r \in(0,1)$. For $k=1$, Corollary 1.1 reduces to inequality (1.12).

Our next result is a generalization of Theorem 1.1 which in turn provides extensions and generalizations of results of Aziz and Ahemad [2]. We will see that as a special case Theorem 1.2 gives a result of Govil and McTume [8, Theorem 3].

Theorem 1.2. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \geq 1$, then for every complex numbers α, λ with $|\alpha| \geq k,|\lambda|<1$ and for each $r>0, p>1, q>1$ with $p^{-1}+q^{-1}=1$, we have

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
\leq & C_{r}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right| q^{r} d \theta\right\}^{\frac{1}{q r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)+\lambda m n\right|^{p r} d \theta\right\}^{\frac{1}{p r}}, \tag{1.15}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$ and C_{r} is same as defined in Theorem 1.1.
Remark 1.3. A variety of interesting results can be easily deduced from Theorem 1.2 in the same way as we have deduced from Theorem 1.1. Here we mention a few of these. Dividing the two sides of (1.15) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get a result recently proved Mir and Dar [15]. Moreover, if we take $k=1$ in (1.15) (noting that $C_{r}=1$) and then divide both sides of it by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get a result of Aziz and Ahemad [2, Theorem 2].

If in (1.15), we let $p \rightarrow \infty$ (so that $q \rightarrow 1$), we get

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)+\lambda m n\right| . \tag{1.16}
\end{equation*}
$$

If we divide both sides of (1.16) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get a result of Aziz and Ahemad [2, Theorem 4] and also extends it for $0<r<1$ as well. For $\lambda=0$, (1.16) reduces to (1.14). Further, if we let $r \rightarrow \infty$ in (1.16) and assume $|\alpha| \geq 1+k+k^{n}$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)+\lambda m n\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)+\lambda m| . \tag{1.17}
\end{equation*}
$$

Let z_{0} be a point on $|z|=1$ such that $\left|P\left(z_{0}\right)\right|=\max _{|z|=1}|P(z)|$, then from (1.17), we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)+\lambda m n\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right)\left|P\left(z_{0}\right)+\lambda m\right| . \tag{1.18}
\end{equation*}
$$

If we choose the argument of λ such that

$$
\left|P\left(z_{0}\right)+\lambda m\right|=\left|P\left(z_{0}\right)\right|+|\lambda| m
$$

then from (1.18), we get

$$
\max _{|z|=1}\left|D_{\alpha} P(z)\right|+|\lambda| m n \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right)\left(\left|P\left(z_{0}\right)\right|+|\lambda| m\right),
$$

which is equivalent to

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)|+n|\lambda|\left(\frac{|\alpha|-\left(1+k+k^{n}\right)}{1+k^{n}}\right) m . \tag{1.19}
\end{equation*}
$$

If in (1.19) we make $|\lambda| \rightarrow 1$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)|+n\left(\frac{|\alpha|-\left(1+k+k^{n}\right)}{1+k^{n}}\right) m \tag{1.20}
\end{equation*}
$$

which is exactly inequality (1.9).
Remark 1.4. Inequality (1.20) sharpens inequality (1.8). Also it generalise inequality (1.4) and to obtain (1.4) from (1.20) simply divide both sides of (1.20) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$.

Finally, we prove the following result from which a variety of interesting results follows as special cases.

Theorem 1.3. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every complex numbers α, β with $|\alpha| \geq k$ and $|\beta| \leq 1$, we have

$$
\begin{equation*}
\min _{|z|=1}\left|z D_{\alpha} P(z)+n \beta\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right) P(z)\right| \geq \frac{n}{k^{n}}\left|\alpha+\beta\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right)\right| \min _{|z|=k}|P(z)| . \tag{1.21}
\end{equation*}
$$

The result is best possible and equality holds in (1.21) for $P(z)=\gamma z^{n}, \gamma \in C$.

Remark 1.5. For $\mu=k=1$, Theorem 1.3 reduces to a result of Liman, Mohapatra and Shah [11, Lemma 3]. If we divide both sides of inequality (1.21) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get

$$
\begin{equation*}
\min _{|z|=1}\left|z P^{\prime}(z)+\frac{n \beta}{1+k^{\mu}} P(z)\right| \geq \frac{n}{k^{n}}\left|1+\frac{\beta}{1+k^{\mu}}\right| \min _{|z|=k}|P(z)| . \tag{1.22}
\end{equation*}
$$

For $\mu=k=1$, inequality (1.22) reduces to a result of Jain [10, Lemma 3] and for $\mu=1$, inequality (1.22) reduces to a result of Soleiman et al. [19, Lemma 3].

2 Lemmas

For the proof of these theorems we shall make use of the following lemmas.
Lemma 2.1. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ and $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq k^{\mu}\left|P^{\prime}(z)\right| \text { for }|z|=1 \tag{2.1}
\end{equation*}
$$

The above lemma is due to Aziz and Shah [4].
Lemma 2.2. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every complex number α with $|\alpha| \geq k$ and $|z|=1$, we have

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq \frac{n\left(|\alpha|-k^{\mu}\right)}{1+k^{\mu}}|P(z)| . \tag{2.2}
\end{equation*}
$$

Proof. If $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then $P(z)=z^{n} \overline{Q(1 / \bar{z})}$ and one can easily verify that for $|z|=1$,

$$
\left|Q^{\prime}(z)\right|=\left|n P(z)-z P^{\prime}(z)\right| \geq n|P(z)|-\left|P^{\prime}(z)\right|
$$

which implies

$$
\begin{equation*}
\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \geq n|P(z)| \quad \text { for }|z|=1 \tag{2.3}
\end{equation*}
$$

By combining (2.1) and (2.3), we obtain

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}|P(z)| \text { for }|z|=1 \tag{2.4}
\end{equation*}
$$

Now for every complex number α with $|\alpha| \geq k\left(\geq k^{\mu}\right)$,

$$
\left|D_{\alpha} P(z)\right|=\left|n P(z)+(\alpha-z) P^{\prime}(z)\right| \geq|\alpha|\left|P^{\prime}(z)\right|-\left|n P(z)-z P^{\prime}(z)\right|
$$

which implies that for $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq|\alpha|\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right| . \tag{2.5}
\end{equation*}
$$

Inequality (2.5) when combined with Lemma 2.1 gives

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq\left(|\alpha|-k^{\mu}\right)\left|P^{\prime}(z)\right| \text { for }|z|=1 . \tag{2.6}
\end{equation*}
$$

Inequality (2.6) in conjunction with (2.4) gives

$$
\left|D_{\alpha} P(z)\right| \geq \frac{n\left(|\alpha|-k^{\mu}\right)}{1+k^{\mu}}|P(z)| \quad \text { for } \quad|z|=1
$$

which proves Lemma 2.2 completely.

3 Proof of theorems

Proof of Theorem 1.1. Since $P(z)$ has all its zeros in $|z| \leq k, k \geq 1$, it follows that the polynomial $G(z)=P(k z)$ has all its zeros in $|z| \leq 1$. Hence the polynomial $H(z)=z^{n} \overline{G(1 / \bar{z})}$ has all its zeros in $|z| \geq 1$ and $|G(z)|=|H(z)|$ for $|z|=1$. Also it is easy to verify that for $|z|=1$,

$$
\begin{equation*}
\left|G^{\prime}(z)\right|=\left|n H(z)-z H^{\prime}(z)\right| \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|H^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| . \tag{3.2}
\end{equation*}
$$

Again since $G(z)$ has all its zeros in $|z| \leq 1$, we have by Lemma 2.1 (for $k=\mu=1$),

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \leq\left|G^{\prime}(z)\right| \quad \text { for }|z|=1 . \tag{3.3}
\end{equation*}
$$

Using (3.1) in (3.3), we get

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \leq\left|n H(z)-z H^{\prime}(z)\right| \text { for }|z|=1 . \tag{3.4}
\end{equation*}
$$

Now for every complex number α with $|\alpha| \geq k$, we have

$$
\left|D_{\frac{\alpha}{k}} G(z)\right|=\left|n G(z)+\left(\frac{\alpha}{k}-z\right) G^{\prime}(z)\right| \geq \frac{|\alpha|}{k}\left|G^{\prime}(z)\right|-\left|n G(z)-z G^{\prime}(z)\right|
$$

which gives by (3.2) and (3.3) for $|z|=1$, that

$$
\left|D_{\frac{\alpha}{k}} G(z)\right| \geq\left(\frac{|\alpha|}{k}-1\right)\left|G^{\prime}(z)\right|
$$

or

$$
\begin{equation*}
k\left|D_{\frac{\alpha}{k}} G(z)\right| \geq(|\alpha|-k)\left|G^{\prime}(z)\right| . \tag{3.5}
\end{equation*}
$$

Also, by the Guass-Lucas theorem, all the zeros of $G^{\prime}(z)$ lie in $|z| \leq 1$. This implies that the polynomial

$$
z^{n-1} \overline{G^{\prime}(1 / \bar{z})} \equiv n H(z)-z H^{\prime}(z)
$$

does not vanish in $|z|<1$. Therefore, it follows from (3.4) that the function

$$
W(z)=\frac{z H^{\prime}(z)}{n H(z)-z H^{\prime}(z)}
$$

is analytic for $|z| \leq 1$ and $|W(z)| \leq 1$ for $|z| \leq 1$. Furthermore, $W(0)=0$ and so the function $1+W(z)$ is subordinate to the function $1+z$ for $|z| \leq 1$. Hence by a well-known property of sub ordination [9], we have for each $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+W\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta \tag{3.6}
\end{equation*}
$$

Now

$$
1+W(z)=\frac{n H(z)}{n H(z)-z H^{\prime}(z)}
$$

which gives with the help of (3.1) that for $|z|=1$,

$$
\begin{equation*}
n|H(z)|=|1+W(z)|\left|G^{\prime}(z)\right| . \tag{3.7}
\end{equation*}
$$

From (3.5), (3.6) and (3.7), we deduce for each $r>0$,

$$
\begin{equation*}
n^{r}(|\alpha|-k)^{r} \int_{0}^{2 \pi}\left|H\left(e^{i \theta}\right)\right|^{r} d \theta \leq k^{r} \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r}\left|D_{\frac{\alpha}{k}} G\left(e^{i \theta}\right)\right|^{r} d \theta . \tag{3.8}
\end{equation*}
$$

If $F(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then according to a result of Rahman and Schemeisser [16], we have for every $R \geq 1$ and $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|F\left(R e^{i \theta}\right)\right|^{r} d \theta \leq B_{r} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{r} d \theta, \tag{3.9}
\end{equation*}
$$

where

$$
B_{r}=\frac{\int_{0}^{2 \pi}\left|1+R^{n} e^{i \theta}\right|^{r} d \theta}{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta} .
$$

Since $H(z)$ is a polynomial of degree n and $H(z) \neq 0$ in $|z|<1$, we apply (3.9) with $R=k \geq 1$ to $H(z)$ and obtain

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|H\left(k e^{i \theta}\right)\right|^{r} d \theta \leq\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|H\left(e^{i \theta}\right)\right|^{r} d \theta . \tag{3.10}
\end{equation*}
$$

Also, since $H(z)=z^{n} \overline{G(1 / \bar{z})}=z^{n} \overline{P(k / \bar{z})}$, therefore, for $0 \leq \theta<2 \pi$, we have

$$
\begin{equation*}
\left|H\left(k e^{i \theta}\right)\right|=\left|k^{n} e^{i n \theta} \overline{P\left(e^{i \theta}\right)}\right|=k^{n}\left|P\left(e^{i \theta}\right)\right| . \tag{3.11}
\end{equation*}
$$

Hence, from (3.8), (3.10) and (3.11), it follows for each $r>0$,

$$
\begin{aligned}
& n^{r}(|\alpha|-k)^{r} k^{n r} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta \\
= & n^{r}(|\alpha|-k)^{r} \int_{0}^{2 \pi}\left|H\left(k e^{i \theta}\right)\right|^{r} d \theta \\
\leq & n^{r}(|\alpha|-k)^{r}\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|H\left(e^{i \theta}\right)\right|^{r} d \theta \\
\leq & k^{r}\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r}\left|D_{\frac{\alpha}{k}} G\left(e^{i \theta}\right)\right|^{r} d \theta,
\end{aligned}
$$

which gives with the help of Holder's inequality for each $r>0, p>1, q>1$ with $p^{-1}+q^{-1}=$ 1 ,

$$
\begin{aligned}
& n^{r}(|\alpha|-k)^{r} k^{n r} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta \\
\leq & k^{r}\left(C_{r}\right)^{r}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right| q^{q r} d \theta\right\}^{\frac{1}{\theta}}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} G\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p}} .
\end{aligned}
$$

Equivalently,

$$
\begin{align*}
& n(|\alpha|-k) k^{n-1}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
\leq & C_{r}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta \mid}\right|^{q r} d \theta\right\}^{\frac{1}{r r}}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} G\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p r}} . \tag{3.12}
\end{align*}
$$

Since

$$
\begin{aligned}
D_{\frac{\alpha}{k}} G(z) & =n G(z)+\left(\frac{\alpha}{k}-z\right) G^{\prime}(z)=n P(k z)+\left(\frac{\alpha}{k}-z\right) k P^{\prime}(k z) \\
& =n P(k z)+(\alpha-k z) P^{\prime}(k z)=D_{\alpha} P(k z)
\end{aligned}
$$

is a polynomial of degree $n-1$, therefore for each $t>0$ and $R \geq 1$, we have by an inequality (see [16]) that

$$
\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(R e^{i \theta}\right)\right|^{t} d \theta\right\}^{\frac{1}{t}} \leq R^{n-1}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{t} d \theta\right\}^{\frac{1}{t}}
$$

Applying this in (3.12) with R replaced by k and t by $p r$, we obtain for each $r>0$,

$$
\begin{aligned}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
\leq & C_{r}\left\{\left.\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|\right|^{q r} d \theta\right\}^{\frac{1}{q r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p r}}
\end{aligned}
$$

which proves Theorem 1.1.
Proof of Theorem 1.2. We assume with out loss of generality that $P(z)$ has all its zeros in $|z|<k, k \geq 1$, for if $P(z)$ has a zero on $|z|=k$, then $m=0$ and in view of Theorem 1.1, the theorem holds trivially. Since $P(z)$ has all its zeros in $|z|<k$ where $k \geq 1$, so that $\min _{|z|=k}|P(z)|=m>0$ and for every $\lambda \in \mathcal{C}$ with $|\lambda|<1$, we have $|\lambda m|<m \leq|P(z)|$, for $|z|=k$. By Rouche's theorem the polynomial $P(z)+\lambda m$ also has all its zeros in $|z|<k$ where $k \geq 1$. Applying Theorem 1.1 to the polynomial $P(z)+\lambda m$ and noting that $D_{\alpha}(P(z)+\lambda m)=$ $D_{\alpha} P(z)+\lambda m n$, Theorem 1.2 follows.
Proof of Theorem 1.3. If $P(z)$ has a zero on $|z|=k$, then the theorem is trivial. So, we assume that $P(z)$ has all its zeros in $|z|<k$, therefore $\min _{|z|=k}|P(z)|=m>0$ and hence for every complex number γ with $|\gamma|<1$, we have $\left|\gamma m z^{n} / k^{n}\right|<|P(z)|$, for $|z|=k$. It follows by Rouche's theorem that the polynomial $P(z)-\gamma m z^{n} / k^{n}$ of degree n has all its zeros in $|z|<k, k \leq 1$. On applying Lemma 2.2 to $P(z)-\gamma m z^{n} / k^{n}$, we have for every complex number α with $|\alpha| \geq k$,

$$
\left|D_{\alpha}\left(P(z)-\frac{\gamma m z^{n}}{k^{n}}\right)\right| \geq \frac{n}{1+k^{\mu}}\left(|\alpha|-k^{\mu}\right)\left|P(z)-\frac{\gamma m z^{n}}{k^{n}}\right| \text { for }|z|=1 .
$$

Equivalently,

$$
\begin{equation*}
\left|z D_{\alpha} P(z)-\frac{\alpha \gamma m n z^{n}}{k^{n}}\right| \geq \frac{n\left(|\alpha|-k^{\mu}\right)}{1+k^{\mu}}\left|P(z)-\frac{\gamma m z^{n}}{k^{n}}\right| \quad \text { for }|z|=1 . \tag{3.13}
\end{equation*}
$$

Since by Laguerre's theorem (see [14, pp. 52]), the polynomial

$$
D_{\alpha}\left(P(z)-\frac{\gamma m z^{n}}{k^{n}}\right)=D_{\alpha} P(z)-\frac{\alpha \gamma m n z^{n-1}}{k^{n}}
$$

has all zeros in $|z|<k$ for every complex number α with $|\alpha| \geq k$, therefore, for any complex β with $|\beta|<1$, the polynomial

$$
\begin{align*}
T(z) & =z D_{\alpha} P(z)-\frac{\gamma m n \alpha z^{n}}{k^{n}}+n \beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\left\{P(z)-\frac{\gamma m z^{n}}{k^{n}}\right\} \\
& =\left\{z D_{\alpha} P(z)+n \beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}} P(z)\right\}-\frac{\gamma m n z^{n}}{k^{n}}\left\{\alpha+\beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right\} \\
& \neq 0 \quad \text { for }|z| \geq k . \tag{3.14}
\end{align*}
$$

Since $k \leq 1$, we have $T(z) \neq 0$ for $|z| \geq 1$ also.
Now choosing the argument of γ in (3.14) suitably and letting $|\gamma| \rightarrow 1$, we get for $|z|=1$ and $|\beta|<1$,

$$
\left|z D_{\alpha} P(z)+n \beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}} P(z)\right| \geq\left|\frac{m n z^{n}}{k^{n}}\left\{\alpha+\beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right\}\right|,
$$

or

$$
\left|z D_{\alpha} P(z)+n \beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}} P(z)\right| \geq \frac{m n}{k^{n}}\left|\alpha+\beta \frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right| \text { for }|z|=1 .
$$

For β, with $|\beta|=1$, above inequality holds by continuity.

Acknowledgements

The work of the first author is supported by UGC under major research project scheme vide No. MRP-MAJOR-MATH-2013-29143.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55 (1988), 232-239.
[2] A. Aziz and N. Ahemad, Integral mean estimates for polynomials whose zeros are with in a circle, Glas. Mate., 31 (1996), 229-237.
[3] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Ineq. Appl., 1 (1998), 231-238.
[4] A. Aziz and W. M. Shah, An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28 (1997), 1413-1419.
[5] K. K. Dewan, N. Singh, A. Mir and A. Bhat, Some inequalities for the polar derivative of a polynomial, Southeast Asian Bull. Math., 34 (2010), 69-77.
[6] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543-546.
[7] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66 (1991), 29-35.
[8] N. K. Govil and G. N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turan, Acta Math. Hungar., 104 (2004), 115-126.
[9] E. Hille, Ananlytic Function Theory, Vol II, Ginn and Company, New York, Toranto, 1962.
[10] V. K. Jain, Inequalities for a polynomial and its derivative, Proc. Indian Acad. Sci., 110 (2000), 137-146.
[11] A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, 6 (2012), 1199-1209.
[12] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[13] M. A. Malik, An integral mean estimates for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284.
[14] M. Marden, Geometry of Polynomials, 2nd Edition, Math. Surveys, No. 3, Amer. Math. Soc., 1966.
[15] A. Mir and B. Dar, An integral mean estimate for polynomials, Int. J. Funct. Anal. Operat. Theory Appl., 6 (2014), 1-13.
[16] Q. I. Rahman and G. Schmeisser, L^{p}-inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
[17] W. Rudin, Real and Complex analysis, Tata McGraw Hill Publishing Company (reprinted in India), 1977.
[18] W. M. Shah, A generalization of a theorem of Paul Turan, J. Ramanujan Math. Soc., 1 (1996), 67-72.
[19] H. A. Soleiman MeZerji, M. A. Baseri, M. Bidkham and A. Zireh, Generalization of certain inequalities for a polynomial and its derivative, Lobacheveski J. Math., 33 (2012), 68-74.
[20] A. E. Taylor, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.
[21] P. Turan, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.

[^0]: ${ }^{*}$ Corresponding author. Email addresses: mabdullah_mir@yahoo.co.in (A. Mir), qdawood@gmail.com (Q. M. Dawood), darbilal85@ymail.com (B. Dar)

