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Abstract. General interpolation formulae for barycentric interpolation and barycen-
tric rational Hermite interpolation are established by introducing multiple parameters,
which include many kinds of barycentric interpolation and barycentric rational Her-
mite interpolation. We discussed the interpolation theorem, dual interpolation and
special cases. Numerical example is given to show the effectiveness of the method.

Key Words: General interpolation formulae of interpolation, barycentric interpolation, barycen-
tric rational Hermite interpolation.

AMS Subject Classifications: 41A20, 65D05

1 Introduction

Developing numerical methods for computing approximations of analytic functions by
means of polynomials and rational functions represents a fundamental research area of
computational mathematics. Lagrangian interpolation, Newton interpolation and Thiele-
type continued fractions interpolation may be the favoured linear interpolation and non-
linear interpolation. Lagrangian interpolation is praised for analytic utility and beauty
but deplored for numerical practice [1]. The advantages of barycentric interpolation for-
mulations in computation are small number of floating point operations (flops) and good
numerical stability. Adding a new data pair, the barycentric interpolation formula don’t
require renew computation all of basis functions [1, 2]. It can avoid the oscillation of
Lagrange interpolation by using barycentric interpolation formulations and second kind
of Chebyshev points as interpolating points. In barycentric interpolation formulation-
s, the different weight corresponds to different type of interpolation. The most of these
interpolation are barycentric rational interpolation. The barycentric rational interpola-
tions have more advantages than the polynomial interpolation and continued fractions
interpolation in computation, for example, easy calculation, the information concern-
ing the existence and location of poles of the interpolation, detection of the unattainable
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points, good numerical stability, the usage of shape control [3]. In the last years sev-
eral researchers have focused their attention on this subject. For example Berrut and
Henrici studied barycentric formulas for trigonometric polynomials, barycentric rational
formulas [1, 2, 4–6]. Kahng showed the generalizations of univariate Newton’s method
and applied it to the approximation problems in 1967 [7]. These generalization extend-
ed the applicable interpolation functions from polynomials to rational functions, their
transformations and some nonlinear functions. Also, these generalizations enabled us
to treat the interpolation in a unified manner. Furthermore, Kahng described a class
of interpolation functions and showed the explicit method of osculatory interpolation
with a function in the class in 1969 [8]. These two functions have many special cases,
such as Newton interpolation polynomial, Thiele-type continued fractions interpolation,
Hermite interpolation, Salzer-type osculatory interpolation, trigonometric functions in-
terpolations and so on. In 1999, by introducing multiple parameters, Tan and Fang [9]
studied several general interpolation formulae for bivariate interpolation which include
many classical interpolant schemes, such as bivariate Newton interpolation, Thiele-type
branched continued fractions for two variables, Newton-Thiele’s blending rational in-
terpolation, Thiele-Newton’s blending rational interpolation, and symmetric branched
continued fraction discussed by Cuyt and Murphy et al. Tan discussed more general in-
terpolation grids [10]. Recently Tang and Zou [11] have improved and extended the gen-
eral interpolation formulae studied by Tan and Fang by introducing multiple parameters,
so that the new frames can be used to deal with the interpolation problems where inverse
differences are nonexistent or unattainable points occur. The general form of block-based
bivariate blending rational interpolation with the error estimation is established by intro-
ducing two parameters. From the general form, four different block-based interpolations
can be obtained. Then an efficient algorithm for computing bivariate lacunary rational in-
terpolation is constructed based on block-based bivariate blending rational interpolation.
Tang and Zou [12, 13] construct general structures of one and two variable interpolation
function, without depending on the existence of divided differences or inverse differ-
ences, and also discusses the block based osculatory interpolation in one variable case,
generalize the conclusion of Kahng to bivariate case.

Our contribution in this paper is to obtain general interpolation formulae for barycen-
tric interpolation by introducing multiple parameters, which include Thiele barycentric
blending rational interpolation, Newton barycentric blending rational interpolation, as-
sociated continued fractions barycentric blending rational interpolation and their dual
schemes, bivariate barycentric interpolation, barycentric Thiele blending rational inter-
polation, barycentric Newton blending rational interpolation, barycentric associated con-
tinued fractions blending rational interpolation, barycentric Hermite blending rational
interpolation, barycentric Hermite blending rational interpolation based on Padé approx-
imations and so on as its special cases.

The organization of the paper is as follows. In Section 2 we discuss the general in-
terpolation formulae for barycentric blending interpolation and the dual general inter-
polation formulae and its special cases. In Section 3, we present general interpolation
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formulae for barycentric rational Hermite interpolation and its special cases. Numerical
example is given to show the effectiveness of the results in Section 4.

2 General interpolation formulae for barycentric blending

interpolation

2.1 The construct of general interpolation formulae for barycentric blending
interpolation

S. H. Kahng has employed the interpolation function

Q(x)= f0(a0+g0(x) f1(a1+g1(x) f2(a2+···+gn−1(x) fn(an)···))) (2.1)

to treat the univariate interpolation in a unified manner [8]. This function can also be
expressed as Q(x) = f0{D0(x)}, where Di(x) = ai+gj(x) fi+1{Di+1(x)}, i = 0,1,··· ,n−1;
j=0,1,··· ,n−1, and Dn(x)= an.

Notations:

h(A)={h(x)|x∈A},

R(h) : range of h(x).

Lemma 2.1 (see [8]). Given a function y(x) continuous in a finite interval [a,b] and n+1 points
xi such that a≤ x0 < x1< ···< xn ≤ b. Then there exists a unique set of parameters a0,a1,··· ,an

for the interpolation function

Q(x)= f0(a0+g0(x) f1(a1+···+gn−1(x) fn(an)···)) (2.2)

satisfying Q(xi)=y(xi), i=0,1··· ,n, and Q(x) is continuous if

a) fi is continuous, strictly monotone in (−∞,+∞), and the range of fi(x) covers (−∞,+∞),
i=1,2,··· ,n,

b) f0 is continuous and its inverse function f−1
0 exists in R( f0), and R( f0)⊃y([a,b]),

c) functions gj(x), j=0,1,··· ,n−1 are continuous in [a,b], and

gj(x)

{

=0, x= xj,
6=0, x> xj.

(2.3)

For simplicity and without lose of generality, we restrict ourselves to the case where
bivariate problems are involved, and we only consider the rectangular grid which satis-
fies the inclusion property, which means that is given a set of two dimension points in R2,
if a point belongs to Πn,m, then the rectangular subset of points emanate from the origin
with the given point as its furthermost corner, and it also lies in Πn,m. One can consider
other grids similarly [10].
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Given a set of real points

Πn,m={(xi,yj)|i=0,1,··· ,n; j=0,1,··· ,m}⊂ [a,b]×[c,d]⊂R2 .

Given a bivariate function f (x,y) defined in a domain [a,b]×[c,d].
Now we construct a function

Q(x,y)=S0(x,y) f0(A0(x,y)+S1(x,y) f1(A1(x,y)+S2(x,y) f2(A2(x,y)

+···+Sn(x,y) fn(An(x,y))···))), (2.4)

here we choose Ai(x,y), (i=1,2,··· ,n) as follows

Ai(x,y)= g0(x,y)ai,0+g1(x,y)ai,1+···+gm(x,y)ai,m. (2.5)

Then we can get a general interpolation formula for barycentric interpolation.

Theorem 2.1. Given a function f (x,y) continuous in [a,b]×[c,d] and (n+1)×(m+1) points
(xi,yj) such that

a≤ x0 < x1< ···< xn ≤b; c≤y0 <y1< ···<ym ≤d. (2.6)

If

1) fi (i = 1,2,··· ,n) are continuous, strictly monotone in their domain and their ranges are
(−∞,+∞), i=1,2,··· ,n,

2) f0 is continuous, and its inverse function f−1
0 exists in S( f0) and S( f0)⊃ f ([a,b],y0),

3) the functions S0(x,y)=1, Si(x,y)= x−xi−1, i=1,··· ,n,

gj(x,y)=
uk

y−yk

( m

∑
k=0

uk

y−yk

)−1
, j=0,1,··· ,m, (2.7)

where uk are barycentric weights,

4) F(δ0)[xi,yj]= f (xi,yj)= fi,j, i=0,1,··· ,n; j=0,1,··· ,m,

ai,j =F(δi)[x0,···xi;yj]

=
(F(δi−1)[x0,···xi−2,xi;yj]−F(δi−1)[x0,···xi−2,xi−1;yj]

xi−xi−1

)δi

, (2.8)

where |δi|=1, suppose all the ai,j exist, then interpolation function

Q(x,y)=S0(x,y) f0(A0(x,y)+S1(x,y) f1(A1(x,y)

+S2(x,y) f2(A2(x,y)+···+Sn(x,y) fn(An(x,y))···))), (2.9)

where

Ai(x,y)= g0(x,y)ai,0+g1(x,y)ai,1+···+gm(x,y)ai,m, (i=1,2,··· ,n), (2.10)

satisfies
Q(xi,yk)= f (xi,yk), (i=0,1,··· ,n; k=0,1,··· ,m). (2.11)
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Proof. For ∀(xi;yk)∈∏n,m, we can get

Ai(xi,yk)=g0(xi,yk)ai,0+g1(xi,yk)ai,1+···+gm(xi,yk)ai,m

=
m

∑
j=0

uj

yk−yj
ai,k

( m

∑
j=0

uj

yk−yj

)−1
= ai,k,

then we have

Q(xi,yk)=S0(xi,yk) f0(A0(xi,yk)+S1(xi,yk) f1(A1(xi,yk)

+S2(xi,yk) f2(A2(xi,yk)+···+Si(xi,yk) fi(Ai(xi,yk))···)))

=S0(xi,yk) f0(a0,k+S1(xi,yk) f1(a1,k+S2(xi,yk) f2(a2,k+···+Si(xi,yk) fi(ai,k)···))).

From Lemma 2.1, we can get

Q(xi,yk)=S0(xi,yk) f0(a0,k+S1(xi,yk) f1(a1,k+S2(xi,yk) f2(a2,k+···

+Si(xi,yk) fi(ai,jk)···)))= f (xi,yk).

Thus the theorem is proved.

We can modify the frame as follows and get a new formula of barycentric interpola-
tion

Q(x,y)=S0(x,y)A0(x,y)+S1(x,y)A1(x,y)+S2(x,y)A2(x,y)+···

+SN(x,y)AN(x,y), (2.12a)

Ai(x,y)= g0(x,y) f (ai,0+g1(x,y) f1(ai,1+···+gm(x,y) fm(ai,m)···)). (2.12b)

We can get the Theorem 2.2 similarly.

Theorem 2.2. Given a function f (x,y) continuous in [a,b]×[c,d] and (n+1)×(m+1) points
(xi,yj) such that

a≤ x0< x1< ···< xn ≤b; c≤y0 <y1< ···<ym ≤d, (2.13)

If

1) fi (i= 1,2,··· ,n), are continuous, strictly monotone in their domain and their ranges are
(−∞,+∞), i=1,2,··· ,n; j=0,1,··· ,m.

2) f0 is continuous, and its inverse function f−1
0 exists in S( f0) and S( f0)⊃ f ([a,b],y0),

3) the functions g0(x,y)=1, gj(x,y)=y−yj−1, j=1,··· ,m,

Si(x,y)=
ul

x−xl

( n

∑
l=0

ul

x−xl

)−1
, i=0,1,··· ,n, (2.14)

where ul is barycentric weight i=0,1,··· ,n,
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4) F(η0)[xi,yj]= f (xi,yj)= fi,j, i=0,1,··· ,n; j=0,1,··· ,m,

bi,j =F(ηj)[xi;y0,··· ,yj]

=
(F(ηj−1)[xi;y0,··· ,yj−2,yj]−F(ηj−1)[xi;y0,··· ,yj−2,yj−1]

yj−yj−1

)ηj

, (2.15)

where |ηi|=1, suppose all the bi,j exist, then interpolation function

Q(x,y)=S0(x,y)A0(x,y)+S1(x,y)A1(x,y)+S2(x,y)A2(x,y)

+···+Sn(x,y)An(x,y), (2.16)

satisfies

Q(xi,yj)= f (xi,yj), i=0,1,··· ,n; j=0,1,··· ,m. (2.17)

2.2 Special case

Some of the special cases of the above bivariate interpolation functions defined by for-
mula (2.4) and (2.5) are shown as below:

1) If fi(x)= x, ai,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial divided differences

ϕ[xi;yj]= f (xi,yj), (2.18a)

ϕ[xi,xk;yj]=
ϕ[xk;yj]−ϕ[xi;yj]

xk−xi
, (2.18b)

ϕ[xi,··· ,xr,xs,xt;yj]=
ϕ[xi,··· ,xr,xt;yj]−ϕ[xi,··· ,xr,xs;yj]

xt−xs
, (2.18c)

ai,j = ϕ[x0,x1,··· ,xi;yj], (i=0,1,··· ,n; j=0,1,··· ,m), (2.18d)

then Q(x,y) is the barycentric Newton blending rational interpolation [13, 14].

2) If f0(x)= x, fi(x)= 1
x , ai,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial inverse differences,

ψ[xi;yj]= f (xi,yj), (2.19a)

ψ[xi,xk;yj]=
xk−xi

ψ[xk;yj]−ψ[xi;yj]
, (2.19b)

ψ[xt,···xr,xs,xi;yj]=
xi−xs

ψ[xt,··· ,xr,xi;yj]−ψ[xt ,··· ,xr,xs;yj]
, (2.19c)

ai,j =ψ[x0,x1,···xi;yj], (i=0,1,··· ,n; j=0,1,··· ,m), (2.19d)

then Q(x,y) is the barycentric Thiele blending rational interpolation [14].
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3) If f0(x)=x, fi(x)=x(−1)i+1
, ai,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial divided differences,

partial inverse differences

τ[xi;yj]= f (xi,yj), i=0,1,··· ,2[n/2]+1; j=0,1,··· ,2[m/2]+1, (2.20a)

τ[x0,x1,··· ,x2i−1,x2i,x2i+1;yj]=
τ[x0,x1,··· ,x2i−1,x2i+1;yj]−τ[x0,x1,··· ,x2i−1,x2i;yj]

x2i+1−x2i
, (2.20b)

τ[x0,x1,···x2i,x2i+1,x2i+2;yj]=
x2i+2−x2i+1

τ[x0,x1,···x2i,x2i+2;yj]−τ[x0,x1,···x2i,x2i+1;yj]
, (2.20c)

ai,j=τ[x0,x1,···xi,;yj], (i=0,1,··· ,2[n/2]+1; j=0,1,··· ,2[m/2]+1), (2.20d)

then Q(x,y) is the barycentric associated continued fractions blending rational interpola-
tion [13].

4) If f0(x)= x, fi(x)=0, ai,0 = f (xi), Q(x,y) is the univariate barycentric rational interpo-
lation [1, 3, 15].

5) If Q(x,y) is as showed in (2.4), Ai(x,y) (i = 0,1,··· ,n) is as showed in (2.5), and we
choose

Si(x,y)=
ui

x−xi

( n

∑
i=0

ui

x−xi

)−1
, i=0,1,··· ,n, (2.21a)

gj(x)=
vj

y−yj

( m

∑
j=0

vj

y−yj

)−1
, j=0,1,··· ,m, (2.21b)

ai,j(x,y) = ai,j = f (xi,yj), uj, vi (i = 0,1,··· ,n, j = 0,1,··· ,m) are barycentric weights, then
Q(x,y) is the bivariate barycentric rational interpolation [16].

If we choose the formula (2.12a) are Q(x,y) and (2.12b) are Ai(x,y) (i = 0,1,··· ,n)),
then the general frame for barycentric blending interpolation has some special cases as
shown below:

1) If f0(x)= x, fi(x)= 1
x , bi,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial inverse differences

ϕ[xi;yj]= f (xi,yj), (2.22a)

ϕ[xi;yj,yk]=
yk−yj

ϕ[xi;yk]−ϕ[xi;yj]
, (2.22b)

ϕ[xi;yj,···yr ,ys,yt]=
yt−ys

ϕ[xi;yj,··· ,yr,yt]−ϕ[xi;yj,··· ,yr ,ys]
, (2.22c)

bi,j = ϕ[xi;y0,y1,···yj], (i=0,1,··· ,n; j=0,1,··· ,m), (2.22d)

then Q(x,y) is the Thiele barycentric blending rational interpolation [17].
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2) If fi(x)= x, bi,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial divided differences

ψ[xi;yj]= f (xi,yj), (2.23a)

ψ[xi;yj,yk]=
ψ[xi;yk]−ψ[xi;yj]

yk−yj
, (2.23b)

ψ[xi;yj,···yr,ys,yt]=
ψ[xi;yj,··· ,yr ,yt]−ψ[xi;yj,··· ,yr,ys]

yt−ys
, (2.23c)

bi,j=ψ[xi;y0,y1,···yj], (i=0,1,··· ,n; j=0,1,··· ,m), (2.23d)

then Q(x,y) is the Newton barycentric blending rational interpolation [14].

3) If f0(x)=x, fi(x)=x(−1)i+1
, bi,j (i=0,1,··· ,n, j=0,1,··· ,m) are partial divided differences,

partial inverse differences,

τ[xi;yj]= f (xi,yj), i=0,1,··· ,2[n/2]+1; j=0,1,··· ,2[m/2]+1, (2.24a)

τ[xi;y0,y1,···y2j−1,y2j,y2j+1]=
τ[xi;y0,y1,···y2j−1,y2j+1]−τ[xi;y0,y1,···y2j−1,y2j]

y2j+1−y2j
, (2.24b)

τ[xi;y0,y1,···y2j,y2j+1,y2j+2]=
y2j+2−y2j+1

τ[xi;y0,y1,···y2j,y2j+2]−τ[xi;y0,y1,···y2j,y2j+1]
, (2.24c)

bi,j=τ[xi;y0,y1,···yj], (i=0,1,··· ,2[n/2]+1), (2.24d)

then Q(x,y) is the associated continued fractions barycentric blending rational interpola-
tion [18].

4) f0(x)=x, fi(x)=0, bi,j= f (xi) (i=0,1,··· ,n, j=0,1,··· ,m), then Q(x,y) is the univariate
barycentric rational interpolation [13, 15].

Furthermore, one can get more blending rational interpolations via choosing fi(x)
appropriately.

We can see the Theorem 2.1 is obtained starting from the independent variable y,
Theorem 2.2 is obtained starting from the independent variable x, of course, one can
also obtaine starting from the independent variable x in Theorem 2.1 and variable y in
Theorem 2.2. Exchanging the roles of the variables x and y, one can also construct the
dual general interpolation formulae.

3 General interpolation formulae of barycentric rational

Hermite interpolation

3.1 The construct of general interpolation formulae of barycentric rational
Hermite interpolation

Let R(x)∈Rm,n(x), where Rm,n(x) is the set of all rational functions with the degrees of
numerator at most m and the degrees of denominator at most n. The barycentric rational
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Hermite interpolation is presented as

R(x)=
n

∑
i=0

si−1

∑
k=0

ωik

(x−xi)k+1

k

∑
j=0

f
(j)
i

j!
(x−xi)

j
( n

∑
i=0

si−1

∑
k=0

ωik

(x−xi)k+1

)−1
, (3.1)

for the data {xi, f
(j)
i }, j=0,1,2,··· ,si−1, i=0,1,··· ,n, when i 6= j, xi 6= xj. We can construct

the general interpolation formulae of barycentric rational Hermite interpolation as

R(x)=
n

∑
i=0

si−1

∑
k=0

ωi,k

(x−xi)k+1
Pi,k(x)

n

∑
i=0

(si−1

∑
k=0

ωi,k

(x−xi)k+1

)−1
. (3.2)

Theorem 3.1. The interpolation function (3.1) satisfis the interpolaiton conditions

R(xi)= fi, R(j)(xi)= f
j
i , j=1,2,··· ,si−1; i=0,1,··· ,n. (3.3)

One can proof the theorem similar to the method in paper [20, 21].

3.2 Special cases

The general interpolation formulae of barycentric rational Hermite interpolation include
the following interesting special cases.

Case 1. If we choose Pk(x) as the Newton interpolation polynomial with the same points,

Pi,k(x)= ci,0+ci,1(x−xi)+ci,2(x−xi)
2+···+ci,k(x−xi)

k, (3.4)

then R(x) is a barycentric rational Hermite interpolation [19].

Case 2. Given a function f (x) with given single, former power series of the function f (x)
at set x= xk as shows

f (x)=
∞

∑
i=0

c
(k)
i (x−xk), c

(k)
0 6=0, (k=0,1,··· ,n). (3.5)

We can get an (si−1,1) times Padé-type approximation at point x= xk, which is a gener-
ator polynomial with V(x)=v−x, v /∈ [x0,xN ] (v is a constant)

Pi,k(x)=
( si−1

1

)

f
(x)=

si−1

∑
i=0

ai(x−xk)
i

V(x)
, (3.6)

where ai is the coefficient of the Taylor series expansion of f (x)V(x) at point x=xk. Then
R(x) is a composite barycentric rational Hermite interpolation based on the Padé-type
approximation [20].
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Case 3. If Pi,k(x) is the Salzer-type osculatory rational interpolation

Pi,k(x)=di,0+
x−xi

di,1
+

x−xi

di,2
+···+

x−xi

di,k
, (3.7)

then R(x) is a new type composite barycentric rational Hermite interpolation [21].

One can choose appropriate barycentric weight to deal with the interpolation prob-
lems where unattainable points may occur. We can also choose the Padé approximation
or perturbed Padé-type approximation as Pi,k(x). We can choose the nodes to simplify
the barycentric weights, for example the Chebyshev nodes and so on. If the Chebyshev
series of the given function is given, one can construct the Chebyshev-Padé approxima-
tion, Chebyshev-Padé-type Approximation and perturbation Chebyshev-Padé approxi-
mation, and then one can construct some new forms of the composite Hermite blending
rational interpolation scheme.

4 Numerical example

In this section, we take simple example to show the effectiveness of the results in this
paper.

Suppose the function values f (xi,yj) of

f (x,y)=
x

1+x2
+

y

1+y2

are given as follows:

Table 1: Interpolation data.

y0=0 y1=1 y2=2

x0=0 0 0.5 0.4
x1=1 0.5 1 0.9
x2=2 0.4 0.9 0.8

Using the frame in the paper, one can get many special interpolations, some of them
are as follows:

Scheme 1: Thiele barycentric blending rational interpolation

Q2(x,y)=

1
x

(

y

2+ y−1

− 10
3

)

+ −1
x−1

(

1
2+

y

2+ y−1

− 10
3

)

+ 1
x−2

(

2
5+

y

2+ y−1

− 10
3

)

1
x +

−1
x−1+

1
x−2

,
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Scheme 2: Associated continued fractions barycentric blending rational interpolation

Q3(x,y)=

1
x

(

y
2 +

y(y−1)

− 10
3

)

+ −1
x−1

(

1
2+

y
2 +

y(y−1)

− 10
3

)

+ 1
x−2

(

2
5+

y
2 +

y(y−1)

− 10
3

)

1
x +

−1
x−1+

1
x−2

=
−3x2y2+8x2y+6xy2−x2−6y2−16xy+6x+16y
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Scheme 3: Bivariate barycentric blending rational interpolation
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Scheme 4: Barycentric Newton blending rational interpolation
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,

Scheme 5: Newton barycentric blending rational interpolation

Q6(x,y)=
1
x (

y
2 −

3
10 y(y−1))+ −1

x−1(
1
2+

y
2 −

3
10 y(y−1))+ 1

x−2(
2
5+

y
2 −

3
10 y(y−1))

1
x +

−1
x−1+

1
x−2

=
−3x2y2+8x2y+6xy2−x2−6y2−16xy+6x+16y

10x2−20x+20
.

It is easy to verify

Qs(xi,yj)= f (xi,yj), i=0,1,2; j=0,1,2, s=1,2,··· ,5.

5 Conclusions

In practical applications, the choice of fi’s may be determined by the desired form of in-
terpolation, e.g., polynomial, rational function of given degree of the numerator and the
denominator, or other function schemes. If there is no restriction to the form of Q(x,y),
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the best choice may be the interpolation function which gives the smallest error term a-
mong the functions certain complexity. However, it is difficult to determine such a func-
tion without the process of trial and comparison.

General interpolation formulae of barycentric blending interpolation function is con-
structed, many classical interpolation schemes are its special case, and we can approx-
imate function by choosing barycentric weight. Clearly our methods provide us with
many flexible interpolation schemes for choices. Another question is coming, there are
so many schemes which we can use, how to choose a formula appropriately is our further
work.

Acknowledgments

The author is supported by the grant of Key Scientific Research Foundation of Education
Department of Anhui Province, No. KJ2014A210.

References

[1] J. P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global
interpolation, Comput. Math. Appl., 15(1) (1988), 1–16.

[2] J. P. Berrut, R. Baltensperger and H. D. Mittlemann, Recent development in barycentric ra-
tional interpolation, Int. Ser. Numer. Math., 151 (2005), 27–51.

[3] C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comput.,
175(47) (1986), 285–299.

[4] R. D. Baker and D. Jackson, Statistical application of barycentric rational interpolants: an
alternative to splines, Comput. Stat., 29 (2014), 1065–1081.

[5] J. P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46(3) (2004),
501–517.

[6] J. P. Berrut, The barycentric weights of rational interpolation with prescribe poles, J. Comput.
Appl. Math., 86 (1997), 45–52.

[7] S. W. Kahng, Generalized Newton’s interpolation functions and their applications to Cheby-
shev approximations, Lockheed Electronics Company Report, 1967.

[8] S. W. Kahng, Osculatory interpolation, Math. Comput., 23 (1969), 621–629.
[9] J. Q. Tan and Y. Fang, General interpolation formulae for bivariate interpolation, J. Math.

Res. Exposition, 19 (1999), 681–687.
[10] J. Q. Tan, Theory of Continued Fractions and Its Applications, Science Publishers, Beijing,

2007.
[11] L. Zou and S. Tang, A note on general interpolation formulae for bivariate interpolation, J.

Math. Res. Exposition, 29(4) (2009), 700–706.
[12] L. Zou and S. Tang, General structures of block based interpolational function, Commun.

Math. Res., 28(3) (2012), 193–208.
[13] S. Tang, L. Zou and C. S. Li, Block based Newton-like blending osculatory rational interpo-

lation, Anal. Theory Appl., 26(3) (2010), 201–214.
[14] L. Zou and S. Tang, A new approach to general interpolation formulae for bivari-

ate interpolation, Abstract Appl. Anal., 2014 (2014), Article ID 421635, 11 pages,
doi:10.1155/2014/421635.



Y. G. Zhang / Anal. Theory Appl., 32 (2016), pp. 65-77 77

[15] W. Werner, Polynomial interpolation: Lagrange versus Newton, Math. Comput., 167(43)
(1984), 205–217.

[16] H. T. Nguyen, A. Cuyt and O. S. Celis, Shape control in multivariate barycentric rational
interpolation, International Conference of Numerical Analysis and Applied Mathematics,
1281 (2010), 543–548.

[17] X. L. Yu and S. Tang, Construction of new bivariate blending rational interpolation over
the triangular grids, The 2011 IEEE International Conference on Intelligent Computing and
Integrated Systems, (2011), 399–403.

[18] Y. G. Zhang and L. Zou, Associated continued fractions-barycentric blending rational inter-
polation and its application in image processing, Proceeding of 2012 International Confer-
ence on Computational and Information Sciences,2 (2012), 612–615.

[19] C. Schneider and W. Werner, Hermite interpolation: the barycentric approach computing,
Numer. Math., 46 (1991), 35–51.

[20] Y. P. Hao and Q. J. Zhao, Composite barycentric rational Hermite interpolation with high
Accuracy, J. Anhui Univ. Tech., 19(1) (2011), 59–63.

[21] Y. P. Hao, Q. J. Zhao and Y. W. Zhang, Best barycentric rational Hermite interpolation,
2010 International Conference on Intelligent System Design and Engineering Application
(ISDEA), (2010), 417–419.


