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1 Introduction

Consider the singular integral operator T defined by

T f (x)=
∫

Rn
K(x,y) f (y)dy, (1.1)

where f is a continuous function with compact support, x /∈supp f ; and the kernel K(x,y)
is a measurable function defined on (Rn×R

n)\∆ with ∆={(x,x):x∈R
n}. If b∈BMO(Rn),

then the commutator [b,T] of a BMO function b and the singular integral operator T is
defined by

Tb f :=[b,T]( f ) :=T(b f )−bT( f ).

The Lp-boundedness (1 < p < ∞) of T and Tb are well known in the Euclidean set-
ting, provided that the kernel K(x,y) of the operator T satisfies Hörmander’s conditions
(see [1, 15–17] among many other good references). In 1999, Duong and McIntosh [3]
obtained the Lp-boundedness of T, under the assumption that the kernel K(x,y) satisfies
some conditions which are weaker than Hörmander’s integral conditions. The bound-
edness of the operator T with non-smooth kernel on Lp(w) (w∈Ap(Rn), 1< p<∞) was
proved by Martell [12]. Moreover, Duong and Yan [4] obtained the Lp-boundedness of
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the commutator Tb under some conditions which are weaker than Hörmander’s point-
wise conditions. Lin and Jiang [11] also obtained the Lp-boundedness of Tb, but with
b∈Lipα,w(R

n). See also [8, 9, 13, 18] for additional results on these topics.
The purpose of this paper is to extend the results in [11]. That is, we would like to

obtain the Lp-boundedness (1< p<∞) of the operator T~b, where

T~b f (x)=
∫

Rn

{ k

∏
i=1

(bi(x)−bi(y))
}

K(x,y) f (y)dy, (1.2)

bi∈Lipαi,w
(Rn) for 1≤ i≤ k, and the weight w belongs to a subclass of A1.

2 Background

2.1 Ap weights

For a ball B in R
n, let |B| denote the measure of the ball B. A weight w is said to belong to

the Muckenhoupt class Ap(Rn), 1< p<∞, if there exists a positive constant C such that

(

1

|B|
∫

B
w(x)dx

)(

1

|B|
∫

B
w−p′/p(x)dx

)p/p′

≤C<∞,

for all balls B in R
n. The smallest constant C for which the above inequality holds is the

Ap bound of w. The class A1(R
n) consists of non-negative functions w such that

w(B)

|B| :=
1

|B|
∫

B
w(x)dx≤C ess infx∈Bw(x)

for all balls B in R
n. It is well-known that (see [7, 17] for instance) if w∈Ap(Rn) for some

p∈ [1,∞), then for any measurable subset E⊂ B, there exist positive constants γ and C
such that

w(E)

w(B)
≤C

( |E|
|B|

)γ

. (2.1)

Inequality (2.1) indeed holds with γ∈ (0,1). This will be used in the estimate of (3.3) be-
low. Furthermore, if w∈Ap(Rn) (1≤p≤∞), then it satisfies the reverse Hölder inequality.
That is, there exist s′>1 and c>0 (both depending on w) so that

(

1

|B|
∫

B
w(x)s′dx

)1/s′

≤ c

|B|
∫

B
w(x)dx for all balls B⊂R

n. (2.2)

A weight w is said to belong to the class Ap,q(Rn), 1< p,q<∞, if there exists a positive
constant C such that

(

1

|B|
∫

B
wq(x)dx

)1/q( 1

|B|
∫

B
w−p′(x)dx

)1/p′

≤C<∞,
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for all balls B⊂R
n. Observe that

w∈Ap,q(R
n)⇔wq∈A1+q/p′(R

n).

When p= 1 and q> 1, we say that w∈A1,q(R
n) if there exists a positive constant C

such that for all balls B⊂R
n,

(

1

|B|
∫

B
wq(x)dx

)1/q

≤C ess infx∈Bw(x).

It follows from Hölder’s inequality that for 1<q1 <q2<∞,

A1,q2
(Rn)⊂A1,q1

(Rn)⊂A1(R
n).

Also, it is clear from the definition of A1,q(R
n) that w∈A1,q(R

n) implies wq ∈A1(R
n).

A locally integrable function f is said to belong to the spaces Lipp
α,w(R

n) for 1≤p<∞,
0<α<1, and w∈A∞ if

‖ f‖Lip
p
α,w(Rn) :=sup

B

{

1

w(B)α/n

(

1

w(B)

∫

B
| f (x)− fB |pw1−p(x)dx

)1/p
}

<∞,

where the supremum is taken over all balls B⊂R
n, and fB := 1

|B|
∫

B f (x)dx.

When p=1, we simply denote Lipα,w(R
n):=Lip1

α,w(R
n). Note that if we set w=1, then

the spaces Lipp
α,w(R

n) are just the classical spaces Lipp
α(R

n). Besides, when w∈A1(R
n),

García-Cuerva [6] proved that the spaces Lipp
α,w(R

n) are equivalent (with respect to the
norms) for all p∈ [1,∞). The interested reader may view [6,7,17] for more information on
this subject. For 0<α<1, 1<r< p<n/α, w∈A1(R

n), and f ∈Lp(Rn), define the maximal
functions Mr f , Mα,r f and Mα,r,w f as follows:

Mr f (x) :=sup
B∋x

{ 1

|B|
∫

B
| f (y)|rdy

}1/r
,

Mα,r f (x) :=sup
B∋x

{ 1

|B|1−αr/n

∫

B
| f (y)|rdy

}1/r
,

and

Mα,r,w f (x) :=sup
B∋x

{ 1

w(B)1−αr/n

∫

B
| f (y)|rw(y)dy

}1/r
.

The following lemma is necessary for the proof of our theorem.

Lemma 2.1 (see [2,14]). Let 0<α<n, 1≤r< p<n/α, 1/q=1/p−α/n. If wr∈Ap/r,q/r(R
n),

then there exists a positive constant C independent of f such that

(

∫

Rn
|Mα,r f (x)w(x)|qdx

)1/q
≤C

(

∫

Rn
| f (x)w(x)|pdx

)1/p
.
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2.2 Approximation of the identity

We assume that there exists a class of operators At (t> 0) which can be represented by
the kernels at(x,y) in the sense that

Atu(x)=
∫

Rn
at(x,y)u(y)dy for every function u∈L1(Rn)∩Lr(Rn), (r>1).

Moreover, the kernels at(x,y) satisfy the following conditions

|at(x,y)|≤ht(x,y) for all x,y∈R
n, (2.3)

where

ht(x,y)= |B(x;t1/m)|−1s(|x−y|mt−1) for some positive constant m. (2.4)

Here s is a positive, bounded, decreasing function satisfying

lim
r→∞

rn(k+1)+ǫs(rm)=0 for some ǫ>0, (2.5)

where k appears in (1.2).

Remark 2.1. The functions ht above satisfy the following properties (see [4, 5]):

i) There exist positive constants C1 and C2 such that

C1≤
∫

Rn
ht(x,y)dx≤C2 uniformly in t and y.

ii) There exists a positive constant C such that
∫

Rn
ht(x,y)| f (x)|dx≤CM f (y) and

∫

Rn
ht(x,y)| f (y)|dy≤CM f (x),

where M is the Hardy-Littlewood maximal operator.

The class of operators At plays the role of approximation to the identity. The existence
of such a class of operators At was verified in [3].

Now consider the operators T and T~b given in (1.1) and (1.2) respectively. Let At

and Bt (t> 0) be two classes of operators which satisfy (2.3), (2.4) and (2.5). Denote by
K(x,y)−Kt(x,y) the kernels of the operators (T−TBt), and K(x,y)−Kt(x,y) as the kernels
of (T−AtT). We state below some assumptions which are necessary for our theorem.

(a) T is a bounded linear operator from Lr(Rn) to Lr(Rn) for some r∈ (1,∞);

(b) There exist positive constants c1 and CA such that
∫

|x−y|≥c1t1/m
|K(x,y)−Kt(x,y)|dx≤CA for all y∈R

n;

(c) There exist positive constants c2, c3 and β>nk (k appears in (1.2)) such that

|K(x,y)−Kt(x,y)|≤ c3

|B(x;|x−y|)|
tβ/m

|x−y|β whenever |x−y|≥ c2t1/m.

In the sequel, the letter C will denote a constant, which may vary at different occurrences.
However, it is independent of any essential variable.
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3 Main theorem

Theorem 3.1. Let 1< q0 <n/α, where α=∑
k
i=1αi, and 0<α1 ≤α2 ≤···≤αk <1. Fix an s>1

such that 1< s<q0 if k=1; otherwise, 1< s<
√

q0 if k>1. Let s′ denote the conjugate of s. Set

τ1=max
{

s′,
(

1− αq0

n

)−1}

,

τ2=1+(k−1)
(

s′+
1

s′
−2

)

q0,

τ3=

{

0, if k=1,

1+
n

α1
, if k>1.

Let τ=max{τ1,τ2,τ3}. Assume that w∈A1,τ(R
n), and bi∈Lipαi,w

(Rn) for 1≤ i≤ k.
Let T, given by (1.1), satisfy assumptions (a), (b) and (c). Then there exists a constant C>0,

independent of f , such that

‖T~b f‖Lqk (w1−kqk)≤C‖~b‖Lipα,w(R
n)‖ f‖Lq0 (w),

where
1

qk
=

1

q0
− α

n
and ‖~b‖Lipα,w(R

n)=
k

∏
i=1

‖bi‖Lipαi ,w
(Rn).

Remark 3.1. Observe that for the case k=1, w is only required to be in A1,τ1
(Rn).

Proof. First, we show that there exist r1,r2,r3>1 such that 1<rs<q0, where r :=r1r2r3. For
the case k= 1, since 1< s< q0, there exists an r> 1 such that 1< rs< q0. We then choose
some numbers r1,r2,r3 > 1 such that r= r1r2r3. Now suppose k> 1. Since s<

√
q0, there

exists an r3 such that 1< s< r3 <
√

q0. Then sr3 < q0. Pick a number t1 ∈ (sr3,q0), and let
t= t1/sr3 > 1. We choose a number r2 ∈ (1,t) and let r1 = t/r2, r := r1r2r3. Then we have
r1,r2,r3>1, and 1<rs<q0 . For the rest of the proof, we denote t=r1r2 and r=r1r2r3= tr3.

Let~λ=(λ1,··· ,λk)=((b1)B,··· ,(bk)B), where

(bi)B =
1

|B|
∫

B
bi(x)dµ(x), 1≤ i≤ k.

Following the notations in [16], let Ck
j (1≤ j≤ k) stand for the family of all finite subsets

σ = {σ(1),··· ,σ(j)} of j different elements of {1,··· ,k}. For any σ ∈ Ck
j , we denote the

complement sequence of σ by σ′={1,··· ,k}\σ. Let~bσ=(bσ(1),··· ,bσ(j)) and let the product

bσ = bσ(1) ···bσ(j). Similarly, denote (~b−~λ)σ =(bσ(1)−λσ(1),··· ,bσ(j)−λσ(j)) and (b−λ)σ =

(bσ(1)−λσ(1))···(bσ(j)−λσ(j)). For σ={σ(1),··· ,σ(l)} (1≤ l≤ k), let νl =∑
l
i=1ασ(i), and let

ν0 =0. Note that νk =α=∑
k
i=1αi. We define qj (0≤ j≤ k) by

1

qj
=

1

qk
+

νk−j

n
=

1

qk
+

k−j

∑
l=1

ασ(l)

n
. (3.1)
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Then, the above equation implies that

1

qk
=

1

q0
− α

n
, (3.2a)

1

qj
=

1

q0
− 1

n

k

∑
l=k−j+1

ασ′(l), 1≤ j≤ k. (3.2b)

Note that Eqs. (3.1) and (3.2b) imply that for 1≤ j≤ k−1,

1< rs<q0 <qj <
n

νk−j
.

We have the following lemmas.

Lemma 3.1. Assume that x∈2j+1B, where j∈N∪{0}. Consider σ={σ(1),··· ,σ(l)}∈Ck
l with

1≤ l≤ k. Denote r= r1r2r3, where r1,r2,r3>1. Let νl =∑
l
i=1ασ(i). Then

I2(x) :=w(x)1/r′1

{

1

|2j+1B|

∫

2j+1B
|(b(y)−λ)σ f (y)|r1 w(y)1−r1 dy

}
1
r1

≤C2(j+1)nl
( l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn)

)

w(x)l Mνl ,r,w f (x).

Proof. Observe that

|(bσ(i))B−(bσ(i))2j+1B|≤C(j+1)2(j+1)n(1−γ)w(2j+1B)ασ(i)/n
w(2j+1B)

|2j+1B| ‖bσ(i)‖Lipασ(i),w
(Rn)

≤C2(j+1)nw(2j+1B)ασ(i)/n
w(2j+1B)

|2j+1B| ‖bσ(i)‖Lipασ(i),w
(Rn). (3.3)

By Hölder’s inequality, we have

{

∫

2j+1B
|(b(y)−λ)σ f (y)|r1 w(y)1−r1 dy

}
1
r1

≤
{

∫

2j+1B
|(b(y)−λ)σ|r1r′2 w(y)1−lr1r′2 dy

}
1

r1r′2
{

∫

2j+1B
| f (y)|tw(y)1+t(l−1)dy

}1/t

≡J1(x)J2(x), (3.4)

where t=r1r2. Note that if k=1, then necessarily l=1, and thus w1+(l−1)r1r2r′3=w∈A1(R
n).

On the other hand, if k>1, then since r3> s, r′3 < s′. Moreover,

r1r2= t=
t1

sr3
<

q0

s2
.
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Thus,

1+(l−1)r1r2r′3<1+(k−1)
q0

s2
s′=1+(k−1)q0

(

s′+
1

s′
−2

)

=τ2.

This shows that w1+(l−1)r1r2r′3 ∈A1(R
n). Therefore by Hölder’s inequality,

J2(x)≤Cw(2j+1B)
1
r −

νl
n |2j+1B|

1
r1r2r′3 w(x)

1
r1r2r′3

+l−1
Mνl ,r,w f (x). (3.5)

Now let γ1,··· ,γl be such that 1< r1r′2≤γ1,··· ,γl and ∑
l
i=1γ−1

i =1/r1r′2.

Let

gi(y)=(bσ(i)(y)−λσ(i))w(y)
1
γi
−1

,

and recall that λσ(i)=(bσ(i))B. An application of the generalized Hölder inequality gives

J1(x)=
{

∫

2j+1B
|

l

∏
i=1

gi(y)|r1r′2 dy
}

1
r1r′2 ≤

l

∏
i=1

{

∫

2j+1B
|gi(y)|γi dy

}
1
γi

≤
l

∏
i=1

[{

∫

2j+1B
|bσ(i)(y)−(bσ(i))2j+1B|γi w(y)1−γi dy

}
1
γi

+
{

∫

2j+1B
|(bσ(i))B−(bσ(i))2j+1B|γi w(y)1−γi dy

}
1
γi
]

≤C2(j+1)nlw(2j+1B)
νl
n + 1

r1r′2
l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn), (3.6)

where the last inequality follows from (3.3). Combining (3.5) and (3.6) yields

I2(x)≤ w(x)1/r′1

|2j+1B|1/r1
J1(x)J2(x)≤C2(j+1)nlw(x)l Mνl ,r,w f (x)

l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn).

So, we complete the proof of the lemma.

Lemma 3.2. Consider σ = {σ(1),··· ,σ(l)} ∈ Ck
l with 1 ≤ l ≤ k. We use the convention that

T~bσ′
f =T f when σ={σ(1),··· ,σ(k)}∈Ck

k , i.e., σ′=∅. Let tB =rm
B , where rB is the radius of the

ball B, and m appears in (2.4)-(2.5). Then

sup
B∋x

{ 1

|B|
∫

B
|AtB

((b−λ)σT~bσ′
f )(y)|dy

}

≤C
( l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn)

)

w(x)l Mνl ,r,w(T~bσ′
f )(x).
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Proof. Take a ball B which contains x. We have

1

|B|
∫

B
|AtB

((b−λ)σT~bσ′
f )(y)|dy

≤ 1

|B|
∫

B

∫

Rn
htB

(y,z)|(b(z)−λ)σ T~bσ′
f (z)|dzdy

≤ 1

|B|
∫

B

∫

2B
htB

(y,z)|(b(z)−λ)σ T~bσ′
f (z)|dzdy

+
∞

∑
j=1

1

|B|
∫

B

∫

2j+1B\2jB
htB

(y,z)|(b(z)−λ)σT~bσ′
f (z)|dzdy

≡J3(x)+ J4(x).

Recall that t1/m
B = rB. For y∈B and z∈2B, we have

htB
(y,z)=

s(|y−z|mt−1
B )

|B(y;t1/m
B )|

≤ s(0)

|B(y;rB)|
≤ C

|B| ≤
C

|2B| .

Thus, by Hölder’s inequality and Lemma 3.1, we see that

J3(x)≤ C

|2B|
∫

2B
|(b(z)−λ)σT~bσ′

f (z)|dz

≤Cw(x)
1
r′
1

{

1

|2B|
∫

2B
|(b(z)−λ)σT~bσ′

f (z)|r1 w(z)1−r1 dz

}
1
r1

≤C
( l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn)

)

w(x)l Mνl ,r,w(T~bσ′
f )(x).

On the other hand, y∈B and z∈2j+1B\2jB imply that |y−z|≥2j−1rB. So,

htB
(y,z)=

s(|y−z|m t−1
B )

|B(y;t1/m
B )|

≤C
s(2(j−1)m)

|B| ≤C
2(j+1)ns(2(j−1)m)

|2j+1B| .

Hence, an application of Lemma 3.1 yields

J4(x)≤C
∞

∑
j=1

2(j+1)ns(2(j−1)m)
1

|2j+1B|

∫

2j+1B
|(b(z)−λ)σT~bσ′

f (z)|dz

≤C
∞

∑
j=1

2(j+1)ns(2(j−1)m)w(x)
1
r′1

{

1

|2j+1B|

∫

2j+1B
|(b(z)−λ)σT~bσ′

f (z)|r1 w(z)1−r1 dz

}
1
r1

≤C
∞

∑
j=1

2(j+1)n[k+1]s(2(j−1)m)
( l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn)

)

w(x)l Mνl ,r,w(T~bσ′
f )(x)

≤C
( l

∏
i=1

‖bσ(i)‖Lipασ(i),w
(Rn)

)

w(x)l Mνl ,r,w(T~bσ′
f )(x),
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provided that

lim
r→∞

rn(k+1)+ǫs(rm)=0

for some ǫ > 0. Combining the estimates of J3(x) and J4(x) and taking the supremum
over all balls B containing x yields the conclusion.

Lemma 3.3. It holds

M♯
A(T~b f )(x) :=sup

B∋x

{ 1

|B|
∫

B
|T~b f (y)−AtB

(T~b f )(y)|dy
}

≤C‖~b‖Lipα,w(R
n)w(x)k{Mα,r,w f (x)+Mα,r,w(T f )(x)}

+C
k−1

∑
i=1

∑
σ∈Ck

i

ck,i

[ i

∏
l=1

‖bσ(l)‖Lipασ(l),w
(Rn)

]

w(x)iMνi,r,w(T~bσ′
f )(x),

where ck,i are constants depending on k and i.

Proof. For an arbitrary fixed x∈R
n, choose a ball B which contains x. Following [16], we

split f = f χ2B+ f χ(2B)c ≡ f1+ f2, and write

1

|B|
∫

B
|T~b f (y)−AtB

(T~b f )(y)|dy

≤ 1

|B|
∫

B

∣

∣

∣

[ k

∏
i=1

(bi(y)−λi)
]

T f (y)
∣

∣

∣
dy+

1

|B|
∫

B

∣

∣

∣
AtB

([ k

∏
i=1

(bi−λi)
]

T f
)

(y)
∣

∣

∣
dy

+
k−1

∑
i=1

∑
σ∈Ck

i

ck,i
1

|B|
∫

B
|(b(y)−λ)σT~bσ′

f (y)|dy

+
k−1

∑
i=1

∑
σ∈Ck

i

ck,i
1

|B|
∫

B
|AtB

((b−λ)σT~bσ′
f )(y)|dy

+
1

|B|
∫

B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(y)
∣

∣

∣
dy+

1

|B|
∫

B

∣

∣

∣
AtB

T
([ k

∏
i=1

(bi−λi)
]

f1

)

(y)
∣

∣

∣
dy

+
1

|B|
∫

B

∣

∣

∣
(T−AtB

T)
([ k

∏
i=1

(bi−λi)
]

f2

)

(y)
∣

∣

∣
dy≡

7

∑
i=1

Ki(x).

By Hölder’s inequality, Lemma 3.1 and Lemma 3.2 respectively, we have

K1(x),K2(x)≤C‖~b‖Lipα,w(R
n)w(x)k Mα,r,w(T f )(x),

and

K3(x),K4(x)≤C
k−1

∑
i=1

∑
σ∈Ck

i

ck,i

[ i

∏
l=1

‖bσ(l)‖Lipασ(l),w
(Rn)

]

w(x)i Mνi,r,w(T~bσ′
f )(x),
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where

‖~b‖Lipα,w(R
n)=

k

∏
i=1

‖bi‖Lipαi ,w
(Rn).

Note that
w∈A1(R

n)⇒w1−r1 ∈Ar1
(Rn).

Therefore, by Theorem 5.3 [12] and Lemma 3.1,

K5(x)≤w(x)
1
r′
1

{

1

|B|
∫

B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(y)
∣

∣

∣

r1
w(y)1−r1dy

} 1
r1

≤Cw(x)
1
r′
1

{

1

|2B|
∫

2B

∣

∣

∣

[ k

∏
i=1

(bi−λi)
]

f1(y)
∣

∣

∣

r1
w(y)1−r1dy

}
1
r1

≤C‖~b‖Lipα,w(R
n)w(x)kMα,r,w f (x).

Observe that

K6(x)≤ C

|2B|
∫

2B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(z)
∣

∣

∣
dz

+C
∞

∑
j=1

2(j+1)ns(2(j−1)m)
1

|2j+1B|

∫

2j+1B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(z)
∣

∣

∣
dz

≤Cw(x)
1
r′
1

{

1

|2B|
∫

2B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(z)
∣

∣

∣

r1
w(z)1−r1dz

}
1
r1

+C
∞

∑
j=1

2(j+1)ns(2(j−1)m)w(x)
1
r′1

{

1

|2j+1B|

∫

2j+1B

∣

∣

∣
T
([ k

∏
i=1

(bi−λi)
]

f1

)

(z)
∣

∣

∣

r1
w(z)1−r1dz

} 1
r1

≤Cw(x)
1
r′
1

{

1

|2B|
∫

2B

∣

∣

∣

[ k

∏
i=1

(bi(z)−λi)
]

f1(z)
∣

∣

∣

r1
w(z)1−r1dz

}
1
r1

+C
∞

∑
j=1

2
(j+1)n

r′1 s(2(j−1)m)w(x)
1
r′1

{

1

|2B|
∫

2B

∣

∣

∣

[ k

∏
i=1

(bi(z)−λi)
]

f1(z)
∣

∣

∣

r1
w(z)1−r1dz

}
1
r1

≤C‖~b‖Lipα,w(R
n)w(x)kMα,r,w f (x).

The third and last inequalities are due to Theorem 5.3 [12] and Lemma 3.1 respectively.
It remains to estimate K7(x). By hypothesis and Lemma 3.1, we have

K7(x)≤ 1

|B|
∫

B

∫

(2B)c
|K(y,z)−KtB(y,z)|

∣

∣

∣

[ k

∏
i=1

(bi(z)−λi)
]

f2(z)
∣

∣

∣
dzdy

≤C
∞

∑
j=1

1

|B|
∫

B

∫

2j+1B\2jB

t
β/m
B

∣

∣

∣

[

∏
k
i=1(bi(z)−λi)

]

f2(z)
∣

∣

∣

|B(y;|y−z|)||y−z|β dzdy
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≤C
∞

∑
j=1

2−(j−1)β 1

|2j+1B|

∫

2j+1B

∣

∣

∣

[ k

∏
i=1

(bi(z)−λi)
]

f (z)
∣

∣

∣
dz

≤C
∞

∑
j=1

2−(j−1)βw(x)
1
r′
1

{

1

|2j+1B|

∫

2j+1B

∣

∣

∣

[ k

∏
i=1

(bi(z)−λi)
]

f (z)
∣

∣

∣

r1
w(z)1−r1dz

}
1
r1

≤C
∞

∑
j=1

2(j+1)nk2−(j−1)β‖~b‖Lipα,w(R
n)w(x)kMα,r,w f (x)

≤C‖~b‖Lipα,w(R
n)w(x)kMα,r,w f (x),

provided that β>nk. Finally, the result follows from combining all of the estimates above
and taking the supremum over all balls B containing x.

Lemma 3.4. If w∈A1,s′(R
n) for some s′>1, then there exists a constant C>0 such that

Mα,r,w f (x)≤Cw(x)α/n Mα,rs f (x), where
1

s
+

1

s′
=1.

Proof. Let B be a ball which contains x. By Hölder’s inequality,

{

1

w(B)1− αr
n

∫

B
| f (y)|rw(y)dy

}1/r

≤ |B| 1
rs′

w(B)
1
r − α

n

{

∫

B
| f (y)|rsdy

}
1
rs
(

1

|B|
∫

B
w(y)s′dy

)
1

rs′

≤C

(

w(B)

|B|

)α/n(w(B)

|B|

)−1/r
{

ess infy∈Bw(y)
}1/r

{

1

|B|1− αrs
n

∫

B
| f (y)|rsdy

}
1
rs

≤C

(

w(B)

|B|

)α/n{
1

|B|1− αrs
n

∫

B
| f (y)|rsdy

}
1
rs

≤Cw(x)α/nMα,rs f (x).

Taking the supremum over all balls B which contain x yields the desired result.

By Eqs. (3.2a) and (3.2b), we have that, for 1≤ j≤ k,

qj

q0
≤ qk

q0
=
(

1− αq0

n

)−1
≤τ1.

Thus for 1≤ j≤ k,

wq j/q0 =wq̃ j/q̃0 ∈A1(R
n)⊂A

1+
q̃ j

q̃′0

(Rn)⇒w
1

q̃0 ∈Aq̃0,q̃ j
(Rn),

where

q̃0=
q0

rs
and q̃j =

qj

rs
.
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Therefore, we may apply Lemma 2.1, Lemma 3.4, Theorem 5.3 [12], together with equa-
tion (3.2a) to conclude that

‖wk Mα,r,w f‖Lqk (w1−kqk)≤C‖ f‖Lq0 (w), (3.7)

and
‖wk Mα,r,w(T f )‖Lqk (w1−kqk)≤C‖T f‖Lq0 (w)≤C‖ f‖Lq0 (w), (3.8)

provided that 1< rs< q0 <n/α. Now for 1≤ j≤ k, we denote β j =∑
k
l=k−j+1ασ′(l)/n. Note

that there are j terms in the sum β j. So β j ≥ jα1/n. Then by Eq. (3.2b),

jqj−1

qj−1
=1+

(j−1)

β j+1/q′0
≤1+

n(j−1)

jα1
≤1+

n

α1
=τ3.

So w

jqj−1

qj−1 ∈A1(R
n), which implies that w1−jq j ∈Aq j

(Rn) for all 1≤ j≤ k.
Since 1< rs<q0, it follows that for 1≤ j≤ k−1,

(jqj−1)

q̃j−1
=

rs(jqj−1)

qj−rs
≤q0

(jqj−1)

qj−q0
=

(j+β j)q0−1

q0β j
≤1+

j

β j
≤1+

n

α1
=τ3.

Hence

w1+(jrs−1)q̃′j =w

rs(jqj−1)

qj−rs =w

jqj−1

q̃ j−1 ∈A1(R
n),

which implies that

w
( 1

qj
−j)qk ∈A

1+
q̃k
q̃′

j

(Rn),

or equivalently,

w
( 1

qj
−j)rs∈Aq̃ j,q̃k

(Rn).

Again, by Lemma 2.1, Lemma 3.4 and Eq. (3.1), we infer that for 1≤ i≤ k−1,

‖wi Mνi,r,w(T~bσ′
f )‖Lqk (w1−kqk)≤C‖T~bσ′

f‖
Lqk−i (w1−(k−i)qk−i)

, (3.9)

provided that 1< rs < q0 < qk−i < n/νi for 1≤ i ≤ k−1. Consequently, by Theorems 4.2,
5.3 [12], Lemma 3.3, inequalities (3.7)-(3.9), and induction argument, we conclude that

‖T~b f‖Lqk (w1−kqk)≤‖M(T~b f )‖Lqk (w1−kqk)≤‖M♯
A(T~b f )‖Lqk (w1−kqk)

≤C‖~b‖Lipα,w(R
n)‖ f‖Lq0 (w)

+C
k−1

∑
i=1

∑
σ∈Ck

i

ck,i

[ i

∏
l=1

‖bσ(l)‖Lipασ(l),w
(Rn)

]

‖T~bσ′
f‖

Lqk−i (w1−(k−i)qk−i)

≤C‖~b‖Lipα,w(R
n)‖ f‖Lq0 (w).

Thus, we complete the proof.
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Remark 3.2. We could apply the reverse Hölder inequality to prove Lemma 3.4, thereby
eliminating the assumption that w ∈A1,s′(R

n). However, the exponent s′ appearing in
the reverse Hölder inequality (see (2.2)) depends on w and may be very close to 1, which
means that its conjugate exponent s could be very large (see [7,17]). This limits the value
of q0 for which the theorem holds, since q0 is necessarily greater than s.

Remark 3.3. Let ϕ be a non-decreasing positive function on R
+. Denote by Ω( f ,B),

the mean oscillation of a function f on a ball B ⊂ R
n, as |B|−1

∫

B | f (x)− fB |dx. Define
BMOϕ as the space of all functions f satisfying Ω( f ,B)≤Cϕ(r), whenever B is a ball with
radius r (see [10]). Note that when ϕ≡ 1, then BMOϕ =BMO, the space of all functions
of bounded mean oscillation. Let Λα, 0 < α ≤ 1, be the space of Lipschitz continuous
functions, Λα = { f : | f (x)− f (y)| ≤C|x−y|α , ∀x,y∈R

n}. A function ψ : [0,∞)→ [0,∞) is
said to be a Young function if it is continuous, convex, increasing and satisfying ψ(0)=0
and limt→∞ ψ(t)=∞. The Orlicz space Lψ is defined as the space of all functions f such
that

∫

ψ(λ| f |)<∞, for some λ>0.

Now consider the singular integral T f and the commutator Tb f (as defined in the
introduction), but with the convolution kernel

K(x)=
K(x/|x|)

|x|n ,
∫

Sn−1
K(x′)dσ(x′)=0 and K∈C∞(Sn−1).

With this type of kernel, Janson [10] proved that b belongs to BMOϕ if and only if Tb

maps Lp (1<p<∞) boundedly into Lψ, where ϕ and ψ are related by the equation ϕ(r)=

rn/qψ−1(r−n), or equivalently, ψ−1(t)= t1/p ϕ(t−1/n). When ϕ(t)= tα (0<α<1), ψ(t)= tq

with 1/q=1/p−α/n, then it is evident that Lipα(R
n)=BMOtα(Rn) and Lψ(Rn)=Lq(Rn).

In this particular case, Janson’s Theorem says that b belongs to Lipα(R
n) if and only if Tb

maps Lp(Rn) (1< p<∞) boundedly into Lq(Rn), where 1/q=1/p−α/n. It is interesting
to note that the above necessary condition is the same as in Theorem 3.1, when k=1 and
w≡1, but with different kernel K.
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