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1 Introduction

Consider the singular integral operator T defined by

Tf(x)= /IR K(xy) f(y)dy, (11)

where f is a continuous function with compact support, x ¢ supp f; and the kernel K(x,y)
is a measurable function defined on (R” xR"”)\A with A={(x,x):xeR"}. If be BMO(IR"),
then the commutator [b,T] of a BMO function b and the singular integral operator T is
defined by

Tof = [b,T)(f):=T(bf) ~bT(f).

The LP-boundedness (1 < p < c0) of T and T}, are well known in the Euclidean set-
ting, provided that the kernel K(x,y) of the operator T satisfies Hormander’s conditions
(see [1,15-17] among many other good references). In 1999, Duong and McIntosh [3]
obtained the LP-boundedness of T, under the assumption that the kernel K(x,y) satisfies
some conditions which are weaker than Hérmander’s integral conditions. The bound-
edness of the operator T with non-smooth kernel on L?(w) (w € A,(R"), 1< p <oo) was
proved by Martell [12]. Moreover, Duong and Yan [4] obtained the LP-boundedness of
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the commutator T}, under some conditions which are weaker than Hérmander’s point-
wise conditions. Lin and Jiang [11] also obtained the LP-boundedness of T}, but with
belip MU(]R”). See also [8,9,13, 18] for additional results on these topics.

The purpose of this paper is to extend the results in [11]. That is, we would like to
obtain the LP-boundedness (1 < p <o) of the operator T;, where

k

Tpf(x)= / . {H(bi(X) ~bi(y)) }K(x,y)f (v)dy, (1.2)

i=1

bi€Lip,, ,,(R") for 1 <i<k, and the weight w belongs to a subclass of A;.

2 Background

2.1 A, weights

For aball Bin R", let | B| denote the measure of the ball B. A weight w is said to belong to
the Muckenhoupt class A, (R"), 1 < p < co, if there exists a positive constant C such that

(o) o) s

for all balls B in R". The smallest constant C for which the above inequality holds is the
Ap bound of w. The class A (IR") consists of non-negative functions w such that

w(B) 1 .
_— = — <
B B /Bw(x)dx_Cess infycpw(x)

for all balls B in IR". It is well-known that (see [7,17] for instance) if w € A,(IR") for some
p €[1,00), then for any measurable subset E C B, there exist positive constants v and C

such that () [\
w
o= () =

Inequality (2.1) indeed holds with «y € (0,1). This will be used in the estimate of (3.3) be-
low. Furthermore, if we A, (R") (1<p<c0), then it satisfies the reverse Holder inequality.
That is, there exist s’ >1 and ¢ >0 (both depending on w) so that

1/s
(i/w(x)sldx> < L/ w(x)dx forall balls BCR". (2.2)
|B| /B |B| /B
A weight w is said to belong to the class A, ;(R"), 1 < p,q < oo, if there exists a positive
constant C such that

1/p'

(i o) (& [ ae) " sc<en
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for all balls B C R". Observe that
w Gﬂp,q(Rn) s wl €A1+q/p/(Rn).

When p=1 and q > 1, we say that w € Ay 4(R") if there exists a positive constant C
such that for all balls B C IR”,

1 1/
<W/w‘7(x)dx> <C ess infycpw(x).
B
It follows from Holder’s inequality that for 1 <g; < g2 <o,
‘Al,fh (]Rn) C ‘Al,fh (]Rn) C .Al (]Rn)

Also, it is clear from the definition of A 4(R") that w € A 4(IR") implies w7 € A1 (R").
A locally integrable function f is said to belong to the spaces Lip} | (R") for 1<p<oo,
0<a<1,and we Ay if

1/p
HfHLipzrw(W)::sgp{ a/n< /’f fB!Pwl—P(x)dx> }<oo,

where the supremum is taken over all balls BCIR", and fp:= 8] L[ f( 5f(x)dx.

When p=1, we simply denote Lip, , (R"):=Lip ac,w( ™). Note that if we set w=1, then
the spaces Lip}, ,(IR") are just the classical spaces Lip} (R"). Besides, when w € A;(R"),

Garcia-Cuerva [6] proved that the spaces Lipf ,(IR") are equivalent (with respect to the
norms) for all p€[1,00). The interested reader may view [6,7,17] for more information on
this subject. ForO<a <1, 1<r<p<n/a, weA1(R"), and f€LF(IR"), define the maximal
functions M, f, My, f and M, f as follows:

M f(y=sup{ o [[1Fray}
Mo ) =sup{ /B If(y>|’dy}1/r,

and
1 . 1/r
Ma,r,wf(x)izzg};{m/)gff(y)’ w(y)dy} :

The following lemma is necessary for the proof of our theorem.

Lemma 2.1 (see [2,14]). LetO<a<n, 1<r<p<n/a,1/q=1/p—a/n. Ifw €A,/ ./,(R"),
then there exists a positive constant C independent of f such that

1/p

(/Rn|Ma,rf(x) ]qu <C / 1f(x) ]pdx>
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2.2 Approximation of the identity

We assume that there exists a class of operators A; (t > 0) which can be represented by
the kernels a;(x,y) in the sense that

Atu(x):A{11at(x,y)u(y)dy for every function u€ L*(R")NL" (R"), (r>1).

Moreover, the kernels a;(x,y) satisfy the following conditions
las(x,y)| <hi(x,y) forall x,yeR", (2.3)
where
he(x,y) = |B(x; ™) | 1s(|x—y|™t1)  for some positive constant . (24)
Here s is a positive, bounded, decreasing function satisfying

lim ") +€5(m) =0 for some >0, (2.5)

r—00
where k appears in (1.2).
Remark 2.1. The functions h; above satisfy the following properties (see [4,5]):

i) There exist positive constants C; and C; such that
C §/ hi(x,y)dx<Cp uniformlyin ¢ and y.
]Rn

ii) There exists a positive constant C such that

L Gl lx<CF() and [ () F)ldy < (),

where M is the Hardy-Littlewood maximal operator.

The class of operators A; plays the role of approximation to the identity. The existence
of such a class of operators A; was verified in [3].

Now consider the operators T and T; given in (1.1) and (1.2) respectively. Let A;
and B; (t>0) be two classes of operators which satisfy (2.3), (2.4) and (2.5). Denote by
K(x,y)—K¢(x,y) the kernels of the operators (T—TB;), and K(x,y) —K'(x,y) as the kernels
of (T— A;T). We state below some assumptions which are necessary for our theorem.

(a) T is a bounded linear operator from L"(IR") to L"(R") for some r € (1,00);

(b) There exist positive constants ¢; and C4 such that
/ |K(x,y)—Ki(x,y)|[dx<C, forall yeR";
|x—y[>ctl/m

(c) There exist positive constants c2, c3 and B > nk (k appears in (1.2)) such that
c3 tB/m
K(x,y)—K(x,y)| <

KEow) =K NS By fr—yP

In the sequel, the letter C will denote a constant, which may vary at different occurrences.
However, it is independent of any essential variable.

whenever |x—y|>cot!/™,
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3 Main theorem

Theorem 3.1. Let 1 <qo <n/a, where zx:ﬂ-‘:lai, and 0<wy <ap<---<ap<1l.Fixans>1
such that 1 <s <qq if k=1, otherwise, 1 <s </qo if k> 1. Let s’ denote the conjugate of s. Set

nman{s, (1)}

T2:1+(k—1)(5,+§—2>%,

0, if k=1,
BT 145, ifk>1.
X1

Let t=max{n, T, 13 }. Assume that w € Ay -(R"), and b; € Lip, ,,(R") for 1 <i<k.
Let T, given by (1.1), satisfy assumptions (a), (b) and (c). Then there exists a constant C >0,
independent of f, such that

1T £ oty < C 1B i, oy 1F 1 0 ),

where

bR L LU TS HHmeuw

Remark 3.1. Observe that for the case k=1, w is only required to be in A; -, (R").

Proof. First, we show that there exist r1,72,73>1 such that 1 <rs <qg, where r:=rqr,r3. For

the case k=1, since 1 <s < g, there exists an r > 1 such that 1 <rs <gg. We then choose

some numbers r1,72,73 > 1 such that r =r17r3. Now suppose k > 1. Since s < ,/qo, there

exists an r3 such that 1 <s <r3 <,/go. Then sr3 <go. Pick a number ¢, € (s73,40), and let

t=t1/sr3>1. We choose a number r, € (1,t) and let ry =t/ry, r:=r1rpr3. Then we have

r1,72,73>1, and 1 <rs<qg. For the rest of the proof, we denote t =r1r, and r =rror3 =trs.
Let A=(Ay,---,A)=((b1)B, -, (bx)B), where

1 .
(bi)BZE/Bbi(x)dy(x), 1<i<k.

Following the notations in [16], let C;f (1<j<k) stand for the family of all finite subsets
c={0(1),---,0(j)} of j different elements of {1,---,k}. For any o € C;-‘, we denote the
complement sequence of o by ¢/ ={1,--- ,k}\c. Let by = (bg(l),~ . ,bg(]-)) and let the product
be =by(1)+by(j)- Similarly, denote (b—A), = (bo(1) = Ao(1)r s ba(j) = Ao(j)) @and (b—A)y =
(bo(1) = A1) (bo(j) = Ao(j))- Foro={c(1),---,0(l)} (1<I<k), lety :Zleaa(i), and let
1o =0. Note that vy =a =Y ¥, «;. We define q; (0<j<k) by

Vi 1 /o
L R il 3.1)
g g n gk 5N
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Then, the above equation implies that

1 1
%:%_%, (3.2a)
1 1 1 &

L g, 1<j<k. (3.2b)
TR DR

Note that Egs. (3.1) and (3.2b) imply that for 1 <j<k—1,
I<rs<gyp<g;< .
qo <4; Vk—j'

We have the following lemmas.

Lemma 3.1. Assume that x €2/"1B, where j€ NU{0}. Consider c={c(1),---,0(1)} € Cf with
1<I<k. Denote r =ryrpr3, where r1,r2,7r3>1. Let vj= Zf-zltxg(i). Then

1

Iz(X):ZW(x)”’i{ - I(b(y)—7\)af(y)!“af(y)l“dy}r1

|2/+1B| J2+1B

] l
<20 (TT 0o i, im0 Mg raf (2).
i=1 (i)

Proof. Observe that

w(2/*1B)

| (bg(i))B — (bg(i))2j+13| SC(j—i— 1)2(7+1)n(l*7)w(2j+1 B)%(i)/nW Hba(i) HLipaa(z.),w(]R”)

w(2/*1B)

('+1) +1 (4 P — . .
<C2UH N2/ B) et/ 27TB) Hba(l)HLIP%(]_)JU(W). (3.3)

By Holder’s inequality, we have

1/t

S{/szB’(b(y)_)‘)”V%w(y)l_lrlré‘iy}ﬁ{/' !f(y)!fw(y)”“"”dy}
=J1(x))2(x), 6

where t=r1r;. Note that if k=1, then necessarily /=1, and thus wlt =D —gpe A4 (R™).
On the other hand, if k> 1, then since r3 > s, ré <s'. Moreover,
t1_qo

rro=t=— <.
sr3 s
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Thus,
1
+(I=1)rrpry <1+ (k— 1)@5’ =14 (k—1)q0 (s’+§ —2) =T.

This shows that w!+ (=127 € 4, (R"). Therefore by Holder’s inequality,

1

) w1 -1
T (x) < Coo(2H1B) 7 [2H 1B v w(x) 775 My af (X). (3.5)

Now let 7y1,---,7; be such that 1 <77, <<4,---,7; and Zf-zlfyi’l =1/rr.
Let

8i(Y) = (ba(i) (¥) = Ae(i))w(y) ™,
and recall that A, ;) = (b,(;)) 5. An application of the generalized Holder inequality gives

1 1 1
i

{/’“B’H 8i(y )!r”zdy}”'z <H{/2]+1B 1gi(y )I””dy}
IjH/ZJ“B oti) () = (Bo(i) )aripl " (y)' V’dy}%
{/J“B B_(bU(i))ZH—lB”yiw(y)l_%‘dy}7Li:|

Ji(x)

_IA

. . vy 1 |
<20ty (1) " A | I Y (3.6)
i1 & (i) ®

where the last inequality follows from (3.3). Combining (3.5) and (3.6) yields

B < 2O () < C2 M (1) M, (5 1‘[||b N
2 - ’2]+1B|1/r1 2 Vl 7w Llpa (]Rn).

So, we complete the proof of the lemma. O

Lemma 3.2. Consider o = {c(1),---,0(1)} € CF with 1 <1< k. We use the convention that
ng/f: Tf when o={o(1),---,0(k)} €CE, i.e., o' =@. Let ty =7}, where rg is the radius of the
ball B, and m appears in (2.4)-(2.5). Then

sup{ 1z [ 140 (0=1)eTy P (1)}

B>x

<c(H||b i, ) )0 My ro(Ty ) (2):
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Proof. Take a ball B which contains x. We have
1
5] J, 1A (=2 T ) (w)ldy
1
<z [ ()| (0() = 2)eTy, f(2)ldzdy
|B| /B./R v

<1g7 s [0 02| 0@ =) Ty Sy

+—// hey (v,2)|(b(z) = A)o Ty f(2)|dzd
Jng’ B J2i+1B\2jB s (y,2)|(0(z) = Ao Ty, f(2)|dzdy
=J3(x)+Ja(x).

Recall that té/m:rB.ForyEB and z € 2B, we have

mye—1
ly=z"ty) 50 € C
B(y;ty™)| ~ [B(yirs)| ~ [B| ~ [2B[
Thus, by Holder’s inequality and Lemma 3.1, we see that

35y (D)= 0o Ty )

htB (yl )

Ja(x) <
<cul)H{ g 0@ -NT; ! |

l
<C(TT Moo i ) ) 0(5) Mol Ty ) ).
i=1 oy

On the other hand, y € B and z € 2/*1 B\ 2/B imply that |y —z| >2/"1r5. So,

my—1 (j—1)m (j+D)ng(»(j—1)m
sly—2"tp) _ os@V ™) _ 207020 )
|B( fflg/m)l |B] |21 B

htB (yl )

Hence, an application of Lemma 3.1 yields

1

)< 2(j+1)ng 2(] Omy__ =
Ja(x CZ )|2]+1B, i

|(b(z) = A)o Ty f(2)dz

j=1
1
- j n i—1)m rl/ 1 _y 2
§C22(]+1) 5(2(] ) Jw(x) 1{7]21'*1B| ZJ_HB|(b(z)—)\)aTga,f(z)Vlw(z)1 1dz}
=1
a2 T, ) o5,

=

<c(HHb e, o re))0(0) Mg ra(Ty ) (),
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provided that

rlggorn(k—&-l)—&-es(rm) -0

for some € > 0. Combining the estimates of J3(x) and J4(x) and taking the supremum
over all balls B containing x yields the conclusion. O

Lemma 3.3. It holds

ME(Tef) (x)=sup {5 [ 15 F(0) = Ay (T )0

B>x

<CIB )i, , vy () { Mo (%) +Maro(Tf) (x)}

+czzckl[1‘[ub i, (k)| () My o(Ty ) (),

= 1(7€Ck
where cy ; are constants depending on k and i.

Proof. For an arbitrary fixed x € R"”, choose a ball B which contains x. Following [16], we
split f = fx2B+ fX (28)c = f1+ f2, and write

157 o Tof )= A (T )y

k

SE/B‘ le(bi(y)—Ai>]Tf(y)\der%/B(AtB([H(bi—Ai)}Tf) (v)ay
FE L gy 000 -0 0y

i=1geck

k-1 1
DIP) "“’W J 145 (0= )eTy ) (0)ldy

i=1 gck

v (I 1) ar+ g f4uT( [rf[ W] A) )]y
|B|/\TAfB [1(k-0] ) 0]ar=Y il

By Holder’s inequality, Lemma 3.1 and Lemma 3.2 respectively, we have

Ki(x),Ka(x) < CHBHLipa,w(w)W(X)kMa,r,w(Tf) (x),
and

Ks <c22ckl[n||b e, 0 |03 Moo Ty ) (),

1= 117€Ck
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where )
1llLip, (R :‘1—! 1BilLip, -
1=

Note that
weA (R")=w! " €A, (R").

Therefore, by Theorem 5.3 [12] and Lemma 3.1,

Ks(x) ()T {%/B I {ﬁ(bi—m}fl) <y>]”w<y>1—”dy}q

1
;

1 1

7] 1 r
<Cw(x)" { 25| /ZB‘ }fl ’ w(y 1dy}
<ClBllLip, , (rryw(x)* M:x,r,wf(x)-

<

Observe that

<x>s2%| / B\T([llﬁ(bi—fu)}fl)@)’dz

1
|2/+1B| J2i+1

+C iz(ﬂ-l)ﬂs(z(/'—l)m)
j=1

r([[Ie-]n) e

1
k T

<cut{ g, [r([TTe-n] )

w(z)l_”dz} 1
+Cizwws(zofnm)w(xﬁ 1 T([ﬁ(b—m]f )(z) '
j=1 [27#1B[ gl L3 T

1 0
w(z) ""dz
T

ot { ol T 2l

SCHbHLipa,w(]R”)w(x) Mur o f (%)-

The third and last inequalities are due to Theorem 5.3 [12] and Lemma 3.1 respectively.
It remains to estimate K7(x). By hypothesis and Lemma 3.1, we have

|B‘//2B (v2) —K'%( (y,z |H }fz(Z)‘dzdy

i=

/[T <<> ->]fz<>\
\B|//zf+13\zm [Byily—zDlly—=

1

1 A
w(z)'""dz

<Cux)" {zim/z | {ﬁ(bxz)—m}ﬁ(z) ’

o) ]‘H)

+C22 nog(2U-Lm

"

;\|H

w(z)l_”dz}

dzdy
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© 1 . k
<C 2 U Ll LT -2 )t
= =
1

1 . k 1 1 1
{ZJTlBLz/HB [H(bi(z)_/\i)}f(z) w(z) %lz}

i=1

e

<C sz(jfl)ﬁw(x)
j=1

<C Y 20V UmDR Bl ey (%) Mo (x)
j=1
<ClBllwip, , Ry () Marf (x),
provided that f>nk. Finally, the result follows from combining all of the estimates above
and taking the supremum over all balls B containing x. O

Lemma 3.4. If we Ay ¢ (R") for some s’ > 1, then there exists a constant C > 0 such that

1 1
My wf(x) SCw(x)”‘/”M,X,rsf(x), where §+§:1'

Proof. Let B be a ball which contains x. By Holder’s inequality,

{ - / ) }1/r
o Y(ﬁ/mw“dyf
<o (Y () et} { e [t )

() e o)

ng(x)”‘/”Ma,ysf(x).

Taking the supremum over all balls B which contain x yields the desired result. O

By Egs. (3.2a) and (3.2b), we have that, for 1 <;j <k,

9Bk _ (0T
g0 ~ 9o < n) =

Thus for 1 <j <k,

. L
w1 =i/ € A; (R™) CA, 5 (R") = w0 €Ag,5(R"),
s

where
qo

Go="2 and §;=

q]
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Therefore, we may apply Lemma 2.1, Lemma 3.4, Theorem 5.3 [12], together with equa-
tion (3.2a) to conclude that

||wkMoz,V,wf||qu(wlfk@k) < CHfHL‘?O(w)r (3'7)

and
0" Mo TF) | ) < CIT Al oy < €Ll (33)

provided that 1 <rs <go <n/a. Now for 1 <j<k, we denote Bi= Zlf:k_jﬂtxa/(l) /n. Note
that there are j terms in the sum B;. So B; > ja1 /1. Then by Eq. (3.2b),
jai=1_ ., (=1

n(j—1)
=1+ <1+ 7 "
qi—1 Bi+1/qy je a

jaj—1 .
Sow'i" €A1 (R"), which implies that w' /% € A, (R") for all 1 <j<k.
Since 1 <rs<qj, it follows that for 1 <j<k—-1,

(Jqf—l):rS(Jqf—1)<q Gai=) _GHB)d=t g

= =40

qi—1 qj—rs q; =40 q0B; Bj o
Hence .

) rs(jgj—=1) Jq]
1+(]1’S—1)[7}:w qurs . eﬂl(Rn)
which implies that
l_.
Wi e,y (RY),

.
or equivalently,
l g
w( i s S Aq].,qk (]Rn) .

Again, by Lemma 2.1, Lemma 3.4 and Eq. (3.1), we infer that for 1 <i<k—1,
Hw le,w(T f)Hqu 1-kag) <CHT fHL’?k i (ot~ F=Dag_ 0y’ 3.9)

provided that 1 <rs <go < qi—; <n/v; for 1 <i <k—1. Consequently, by Theorems 4.2,
5.3 [12], Lemma 3.3, inequalities (3.7)-(3.9), and induction argument, we conclude that

HTEfHqu(wl_qu <1m( Ef)Hqu w'kk) <HM?4(TEf)HL’7k(w1_qu)
<C||b||L1paw R") ||f||L‘70 (w)

+czzckl[n||b i k| 1T s -0

1= 1a€Ck
SCHbHLipa,w(lR”) HfHLqO(w)'

Thus, we complete the proof. O
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Remark 3.2. We could apply the reverse Holder inequality to prove Lemma 3.4, thereby
eliminating the assumption that w € A; ¢ (R"). However, the exponent s’ appearing in
the reverse Holder inequality (see (2.2)) depends on w and may be very close to 1, which
means that its conjugate exponent s could be very large (see [7,17]). This limits the value
of go for which the theorem holds, since qg is necessarily greater than s.

Remark 3.3. Let ¢ be a non-decreasing positive function on R™. Denote by Q(f,B),
the mean oscillation of a function f on a ball BCR", as |B|™! [,|f(x)— fg|dx. Define
BMO,, as the space of all functions f satisfying Q( f,B) <Cq(r), whenever B is a ball with
radius 7 (see [10]). Note that when ¢ =1, then BMO,, = BMO, the space of all functions
of bounded mean oscillation. Let A,, 0 <a <1, be the space of Lipschitz continuous
functions, A, ={f:|f(x)—f(y)| <Clx—y|*, Vx,y € R"}. A function : [0,00) — [0,00) is
said to be a Young function if it is continuous, convex, increasing and satisfying y(0) =0
and lim; e 1(t) = co. The Orlicz space Ly is defined as the space of all functions f such
that [¢(A|f]) <oo, for some A > 0.

Now consider the singular integral Tf and the commutator T}, f (as defined in the
introduction), but with the convolution kernel

K(x/|x[)

K="

, /S  K()do(x)=0 and KeC®(s").

With this type of kernel, Janson [10] proved that b belongs to BMO,, if and only if T;
maps L7 (1< p<co) boundedly into Ly, where ¢ and ¢ are related by the equation ¢(r) =
™/ 1p=1(r="), or equivalently, =1 (t) =t/Po(t~1/"). When ¢(t) =t* (0<a <1), p(t) =t
with 1/g=1/p—a/n, thenitis evident that Lip  (R") =BMOj (R") and Ly (IR")=L(IR").
In this particular case, Janson’s Theorem says that b belongs to Lip, (R") if and only if T},
maps L7 (R") (1< p <co) boundedly into L7(IR"), where 1/g=1/p—a/n. Itis interesting
to note that the above necessary condition is the same as in Theorem 3.1, when k=1 and
w =1, but with different kernel K.
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