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Abstract. In this paper, we give some creative characterizations of Campanato spaces
via the boundedness of commutators associated with the Calderón-Zygmund singular
integral operator, fractional integrals and Hardy type operators. Furthermore, we put
forward a few problems on the characterizations of Campanato type spaces via the
boundedness of commutators.
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1 Introduction

Let −n/p≤β<1 and 1≤ p<∞. Then the Campanato space Cp,β(Rn) was defined by the
norm

‖ f‖Cp,β(Rn)=sup
B

‖ f‖Cp,β(B) :=sup
B

1

|B|
β
n

(

1

|B|

∫

B
| f − fB|

pdx

)1/p

, (1.1)

where

fB =
1

|B|

∫

B
f (x)dx,

B denotes any ball contained in Rn and |B| is the Lebesgue measure of B. Campanato
spaces are useful tools in the regularity theory of PDE as a result of their better struc-
tures that allow to give an integral characterization of the spaces of Hölder continuous
functions, which leads to a generalization of the classical Sobolev embedding theorem,
see e.g., [20] and Lu’s work (see [23, 24]). It is also well known that C1,1/p−1 is the dual
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space of Hardy space Hp(Rn) (0< p<1) (see [36]). For a recent account of the theory on
Cp,β(Rn), we refer the reader to [11, 21, 28, 39] and the references therein.

Many important functional spaces are special cases of Campanato space. In fact, we
have

Cp,β(Rn)=







BMO(Rn), β=0,
Lipβ(R

n), 0<β<1,

⊃Mp,β(Rn), −n/p≤β<0.

Here BMO(Rn) denote the space of Bounded Mean Oscillation functions, Lipβ(R
n), 0<

β<1, is the Lipschitz functional space and Mp,β(Rn), −n/p≤ β<0, is the Morrey space
with the following norm

‖ f‖Mp,β(Rn)=sup
B

1

|B|
β
n

(

1

|B|

∫

B
| f (x)|pdx

)1/p

.

Let b be a locally integrable function on Rn and let T be an integral operator. Then the
commutator operator formed by T and b was denoted by

[b,T]( f ) :=bT f −T(b f ).

The function b was also called the symbol function of [b,T]. The investigation of the op-
erator [b,T] begin with Calderón-Zygmund pioneering study of the operator T (see [4]
and [8]). They found that the theory of commutators play an important role in studying
the regularity of solutions to elliptic PDEs of the second order. The well-posedness of
solutions to many PDEs can be attributed to the corresponding commutator’s bounded-
ness for singular integral operators. However, this topic exceeds the scope of this paper,
for more information about this, see for example [3, 10, 12] and [35]. Especially in [35],
the authors simplify the proof of the famous Wu’s theorem on Navier-Stokes equations
greatly by some estimates of commutators which were obtained by Yan in his Ph.D. the-
sis [38] (see also Lu and Yan’s work in [27]). Since L∞(Rn) BMO(Rn), the boundedness
of [b,T] is worse than T (for example, the singularity, see also [30]). Therefore, many
authors want to know whether [b,T] shares the similar boundedness with T. Many au-
thors are interested in the study of commutators when the symbol functions b belong to
BMO spaces and Lipschitz spaces. For some of this classical works, we refer the reader
to [1, 18, 25] and [29].

In this paper, we focus on some characterizations of Campanato spaces via the bound-
edness of [b,T] when

T is Calderón-Zygmund singular integral operator;
T is fractional integral;
T is Hardy type operator.
Throughout this paper, for x0∈Rn, r>0 and λ>0, B=B(x0,r) denotes the ball centered

at x0 with radius r and λB=B(x0,λr). C is a constant which may change from line to line.
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2 Calderón-Zygmund singular integral operator

We will provide in this section some characterizations of Campanato spaces via the
boundedness of [b,T] when T is Calderón-Zygmund singular integral operator. There
were many classical works about the characterizations of Campanato spaces by the
boundedness of [b,T] on Lebesgue spaces.

When β=0, Coifman, Rochberg and Weiss [8] gave a characterization of BMO(Rn) in
virtue of commutator [b,T] in 1976:

Theorem 2.1. Let 1< p<∞. Then

b∈BMO(Rn)⇐⇒ [b,T] : Lp(Rn)−→ Lp(Rn).

Ding established another characterization of BMO(Rn) by (Mp,β(Rn), Mp,β(Rn))-
boundedness of [b,T] in [9] as:

b∈BMO(Rn)⇐⇒ [b,T] : Mp,β(Rn)−→Mp,β(Rn) for 1< p<∞, −n/p≤β<0.

For 0<β<1, Janson [18] gave a characterization of Lipβ(R
n) by (Lp,Lq)-boundedness

of commutator [b,T]:

Theorem 2.2. For 1< p<q<∞, 0<β<1 and 1/q=1/p−β/n, one has

b∈Lipβ(R
n)⇐⇒ [b,T] : Lp(Rn)−→ Lq(Rn).

Paluszynski gave another characterization of Lipβ(R
n) by (Lp, Ḟ

β
p,∞)-boundedness of

commutator [b,T] in [29] as:

b∈Lipβ(R
n)⇐⇒ [b,T] : Lp(Rn)−→ Ḟ

β
p,∞(R

n) for 0<β<1, 1< p<∞,

where Ḟ
β
p,∞(R

n) is the homogenous Triebel-Lizorkin space with the equivalent norm

‖ f‖
Ḟ

β
p,∞(Rn)

≈

∥

∥

∥

∥

∥

sup
Q

1

|Q|1+β/n

∫

Q
|b−bQ|

∥

∥

∥

∥

∥

Lp

.

In 2013, Shi and Lu [31] gave a new characterization of Lipβ(R
n) on Morrey spaces as

b∈Lipβ(R
n)⇐⇒ [b,T] : Mp,β(Rn)−→Mq,β̃(Rn),

where 1 < p < ∞, 0 < α < 1, −n/p ≤ β < 0, 1+pβ/n < p/q, 1/q = 1/p−α/n and β̃ =
(q−p)/p+qβ/n.

For the case β<0, Shi and Lu [31] gave some creative characterizations of Campanato
spaces via the boundedness of [b,T] by some new methods instead of the sharp maximal
function theorem as:
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Theorem 2.3. Let max{1,n/(1−β)}<p<∞, −n/p≤β<0, 1<pi<∞, p1∈N, −n/pi≤βi<0,
i=1,2, 1/p=1/p1+1/p2 and β=β1+β2. Then

b∈Cp1,β1(Rn)⇐⇒ [b,T] : Mp2 ,β2(Rn)−→Cp,β(Rn),

where b further satisfies the well known mean value inequality

sup
B

|b−bB|≤
C

|B|

∫

B
|b−bB|. (2.1)

Eq. (2.1) (which were also well known as the Reverse Hölder classes) was one part
of mean value equalities. Besides polynomial functions, the mean value equalities also
characterize harmonic functions (see [16]). Our result gains in interest if we realize that it
meets the fact that both Morrey spaces and Campanato spaces are closely related to the
study of PDEs since solutions to a large class of elliptic PDEs of the second order satisfy
(2.1). Therefore, Theorem 2.3 can give characterizations of the space of solutions to some
second order elliptic PDE. Take Laplace’s equation for example, if b is a solution to the
equation

∆u=0, (2.2)

where ∆ is the Laplace operator and u is a function defined on bounded domain Ω⊂Rn.
By Theorem 2.1 of [16], b satisfies (2.1). Therefore, if the commutator [b,T] associated to b
is bounded from Mp2,β2(Rn) to Cp,β(Rn), then the space of solutions to (2.2) is Campanato
space Cp1,β1(Rn).

We emphasize that the methods in dealing with Cp,β when β< 0 are quite different
from that of β≥ 0 and there are essential difficulties to establish the characterizations of
Campanato spaces on Morrey spaces when β<0. Therefore, we set up Theorem 2.3 un-
der the condition that the symbol of the commutator satisfies the mean value inequality.
Condition (2.1) in Theorem 2.3 was intrinsic in the proof of the converse characterizations
of Cp1,β1(Rn). Of course, there are essential differences between the ideas in the proof of
Theorem 2.3 and that of [18] and [29], where the sharp maximal function theorem were
used. It is also worth pointing out that our paper is the first work on the problem of
commutators whose symbol belongs to Morrey spaces. Our viewpoints will shed some
new lights on characterizations of Campanato spaces via commutators formed by other
operators on Morrey spaces.

3 Fractional integral operator

This section devoted to the characterizations of Campanato spaces via the boundedness
of [b,T] when T is fractional integral operator. Let 0<α<n. Then the fractional integral
is defined by

Iα f (x)=
∫

Rn

f (y)

|y−x|n−α
dy.
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The problem of fractional derivation was an early impetus to study fractional integrals.
In addition to their contribution to harmonic analysis, fractional integrals also play an
essential role in many fields. The Hardy-Littlewood-Sobolev inequality about the frac-
tional integral Iα is still an indispensable tool in the establishment of time-space estimates
for the heat semigroup of nonlinear evolution equations. More recently, the applications
to chaos and fractal have become another reason to study fractional integrals.

There are many classical works on the characterizations of BMO spaces and Lipschitz
spaces via the boundedness of [b, Iα] on Lebesgue spaces. In 1982, Chanillo [5] gave an
early characterization of BMO space by a (Lp,Lq) boundedness of [b, Iα] as:

Theorem 3.1. For 1< p<q<∞ and 1/p−1/q=α/n, we have

b∈BMO(Rn)⇐⇒ [b, Iα] : Lp(Rn)−→ Lq(Rn).

For 0< β< 1, Paluszynski [29] gave two characterizations of Lipβ(R
n) involving the

boundedness of [b, Iα] as:

Theorem 3.2. Let 0<β<1. Then

b∈Lipβ(R
n)⇐⇒ [b, Iα] : Lp(Rn)−→ Lr(Rn) for 1< p<∞ and 1/p−1/r=(β+α)/n

and

b∈Lipβ(R
n)⇐⇒ [b, Iα] : Lp(Rn)−→ Ḟ

β
q,∞(R

n) for 1< p<∞ and 1/q=1/p−β/n,

where Ḟ
β
p,∞(R

n) is the homogenous Triebel-Lizorkin space.

For the case β< 0, comparing to the rich and significant results about commutators
with symbol functions belonging to BMO spaces and Lipschitz spaces, there have been
only a few studies on Morrey spaces. A characterization of Cp,β(Rn) was provided via
the boundedness of [b, Iα] under the assumption that b satisfies the mean value inequality
(2.1) in [32].

Theorem 3.3. Let −n/p ≤ β < 0, max{1,n/(1−β)}< p < ∞, 0 < α < n, −n/pi ≤ βi < 0,
1/p=∑

2
i=11/pi, β=∑

2
i=1 βi, p1 be even number, 1/p2=1/q−α/n, 1<q<n/α and γ=β2−α.

Then
b∈Cp1,β1(Rn)⇐⇒ [b, Iα] : Mq,γ(Rn)−→Cp,β(Rn).

4 Hardy type operator

The topic of this section is to give some different characterizations of Campanato spaces
via the boundedness of commutators formed by Hardy type operators. Assume that f is
a locally integrable function on Rn, then the n−dimensional Hardy operator H (cf. [13])
is defined by

H f (x)=
1

|x|n

∫

|y|<|x|
f (y)dy, x∈R

n\{0}.
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The norm of H on Lp(Rn) was evaluated in [7] and was found to be equal to that of
the one-dimensional Hardy operator. See [17] for more well known results for the one-
dimensional Hardy operators and the Hardy type integral inequalities. The dual operator
of H is H∗,

H∗ f (x)=
∫

|y|≥|x|

f (y)

|y|n
dy, x∈R

n\{0}.

H and H∗ satisfy
∫

Rn
g(x)H f (x)dx=

∫

Rn
f (x)H∗g(x)dx

for a suitable function g. The commutators of H and H∗ are defined by

[b,H] f =b(H f )−H( f b)

and
[b,H∗] f =b(H∗ f )−H∗( f b),

respectively. For some known works about the boundedness of [b,H] and [b,H∗], see
e.g., [19, 22].

The fact that both H and H∗ are centrosymmetric motivates some people to charac-
terize central function spaces by the boundedness of [b,H] and [b,H∗]. As we will see in
the following, the function spaces which are characterized by the boundedness of Hardy
type operators are different from that of the Calderón-Zygmund singular integral opera-
tors even under the same conditions.

Assume that 1≤ p<∞ and −1/p<λ<1/n, then the central Campanato space can be
defined by

Ċ
p,λ(Rn)=

{

f :‖ f‖
Ċp,λ(Rn)<∞

}

,

where

‖ f‖
Ċp,λ(Rn)=: sup

r>0

1

|B(0,r)|λ

(

1

|B(0,r)|

∫

B(0,r)
| f − fB(0,r)|

pdx

)1/p

.

If λ=0, then Ċ
p,0(Rn)=CṀOp(Rn) (bounded central mean oscillation function space)

which was introduced by Lu and Yang (cf. [27]) with the equivalent norm

‖ f‖CṀOp(Rn)=sup
r>0

inf
c∈C

(

1

|B(0,r)|
| f (y)−c|pdy

)1/p

.

For some information as regards the space CMO(Rn), see [6] for example. The space
CṀOp(Rn) can be regarded as a local version of BMO(Rn) at the origin. That is
BMO(Rn)⊂CṀOp(Rn) for 1≤ p<∞ (cf. [15]). However, they have quite different prop-
erties. There is no analysis of the famous John-Nirenberg inequality of BMO(Rn) for
CṀOp(Rn).

When 0 < λ < 1/p, Ċ
p,λ(Rn) is the λ−central bounded mean oscillation space

CṀOp,λ(Rn) which was first introduced and studied by Alvarez, Partida and Lakey
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in [2]. For the case −1/p<λ<0, Ċp,λ(Rn)⊃ Ṁp,λ(Rn). Here Ṁp,λ(Rn) denote the central
Morrey space with the following norm

‖ f‖Ṁp,λ(Rn)=sup
r>0

1

|B(0,r)|λ

(

1

|B(0,r)|

∫

B(0,r)
| f |pdx

)1/p

.

In [14], Fu, Liu, Lu and Wang gave some characterizations of CṀOp(Rn) for 1<p<∞,
via the boundedness of [b,H] and [b,H∗], on Lebesgue spaces as:

Theorem 4.1. Let 1< p<∞. Then

b∈CṀOmax{p,p′}(Rn)⇐⇒ [b,H]([b,H∗]) : Lp(Rn)−→ Lp(Rn).

By different ideas comparing to that of [14], Zhao and Lu [40] characterized the space
CṀOp,λ(Rn) via the boundedness of [b,H] and [b,H∗] on Lebesgue spaces under some
more conditions on λ:

Theorem 4.2. Let 0≤λ= 1
p −

1
q and 1< p<∞. Then

b∈CṀOmax{p,p′},λ(Rn)⇐⇒ [b,H]([b,H∗]) : Lp(Rn)−→ Lq(Rn).

However, for the case −1/p<λ<0, as a concept of highly independent interest, has
received nearly zero attention for the characterizations of Ċp,λ(Rn) by the boundedness
of the commutator operators of Hardy type, to the best of our knowledge. In 2015, Shi
and Lu [33] settled this problem under the assumption that b satisfies the mean value
inequality (2.1).

Theorem 4.3. Let 1< p < ∞, −1/p < λ < 0, −1/pi < λi < 0, i = 1,2, 1/p = ∑
2
i=11/pi and

λ=∑
2
i=1λi. Then

b∈ Ċ
p1,λ1(Rn)⇐⇒ [b,H]([b,H∗]) : Ṁp2,λ2(Rn)−→ Ṁp,λ(Rn).

Unlike the case λ ≥ 0, more difficulties are caused for the case λ < 0. The methods
currently available for λ<0 depend heavily on the structures of the Hardy type operators
and the space Ċ

p,λ(Rn). Therefore, we need the condition (2.1) to set up Theorem 4.3.
This condition is essential to our proof and can not be weakened in the proof of the
converse characterization of Theorem 4.3. Under some stronger conditions on λ and
p, the following result can be deduced if we drop the assumption that b satisfies the
condition (2.1).

Theorem 4.4. Let 2< p<∞ and −1/(2p)<λ<0. Then

b∈ Ċ
p,λ(Rn)⇔ [b,H]([b,H∗ ]) : Ṁp,λ(Rn)−→ Ṁp,2λ(Rn).
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Let f be a locally integrable function in Rn and 0<α<n. The n-dimensional fractional
Hardy operator can be defined by

Hα f (x)=
1

|x|n−α

∫

|y|<|x|
f (y)dy, x∈R

n\{0}.

The dual operator of Hα is H∗
α ,

H∗
α f (x)=

∫

|y|≥|x|

f (y)

|y|n−α
dy, x∈R

n\{0}.

In [14], the authors gave some characterizations of CṀOp(Rn) (1<p<∞) via the bound-
edness of [b,Hα] on both Lebesgue spaces and Herz spaces by the dual method. In [33],
we give some characterizations of Ċp,λ(Rn) with λ<0 via the boundedness of [b,Hα] and
[b,H∗

α ] on Ṁp,λ(Rn).

Theorem 4.5. Let p,λ, pi, λi, i = 1,2, b as in Theorem 4.3, 0 < α <min{n(1−1/p),n(λ2+
1/p2)} and let β=λ2−α/n. Then

b∈ Ċ
p1,λ1(Rn)⇔ [b,Hα]([b,H∗

α ]) : Ṁp2,β(Rn)−→ Ṁp,λ(Rn).

Theorem 4.6. Let 2< p<∞, −1/(2p)<λ<0, 0<α<min{n(1−1/p),n(λ+1/p)} and let
β=λ−α/n. Then

b∈ Ċ
p,λ(Rn)⇔ [b,Hα]([b,H∗

α ]) : Ṁp,β(Rn)−→ Ṁp,2λ(Rn).

We emphasize that the methods used in [33] are quite different from that of [31]
and [32], which depend heavily on the smoothness of the kernel functions of the cor-
responding integral operators. It is also worth pointing out that the ideas used in [14]
and [40], which deal with the case λ≥ 0, can not be adopted directly to the case λ< 0,
especially in the estimates of [b,H∗] and [b,H∗

α ]. Our theorems provide a natural and in-
trinsic characterization of central Campanato space via the boundedness of commutator
operators on central Morrey space. This work is intended as an attempt to some further
characterizations of central function spaces.

5 Further problems

It is well known that the regularity of solutions to some elliptic PDEs with smooth bound-
ary can attribute to the boundedness of corresponding commutators with smooth kernel
in some sense. One question arose naturally: What happens when the boundary condi-
tion be weakened? The answer to the question need to study the boundedness of commu-
tators with rough kernels, i.e., integrals with homogeneous kernels, which were defined
by

TΩ,α f (x)=
∫

Rn

Ω(x−y)

|x−y|n−α
f (y)dy, 0≤α<n,
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where Ω(x) is homogeneous of degree 0 and

∫

Sn−1
Ω(x′)dσ(x′)=0.

Here dσ is the normalized Lebesgue measure and x′=x/|x|. When Ω=1, TΩ,α is the same
as the fractional integral Iα. If α= 0, then TΩ,α becomes a Calderón-Zygmund singular
integral operator in the sense of the principal value Cauchy integral.

In 1978, Uchiyama [37] gave a kind of characterizations of BMO(Rn) space as

Theorem 5.1. Let Ω∈Lip1(Sn−1), 1< p<∞ and
∫

Sn−1 Ω(x′)dσ(x′)=0.

(1) If b∈BMO(Rn), then [b,TΩ] : Lp(Rn)−→ Lp(Rn).
(2) Assume that 1 < p0 < ∞, b ∈

⋃

q>1 L
q
loc(R

n) and [b,TΩ] : Lp0(Rn)−→ Lp0(Rn). Then b ∈
BMO(Rn).

In [32], we obtained

Theorem 5.2. Let Ω(x)∈C∞(Sn−1) is homogeneous of degree 0,
∫

Sn−1 Ω(x′)dσ(x′)=0 and p,
q, γ, α, β, b, pi, βi, i=1,2, be as in Theorem 3.3. Then the following conditions are equivalent:

(1) b∈Cp1,β1(Rn).
(2) [b,TΩ,α] is a bounded operator from Mq,γ(Rn) to Cp,β(Rn).
(3) For any ball B⊂Rn and m∈N+, there exists constant C>0 such that

‖[b,TΩ,α]
m‖Cp,β(B)≤C|B|β1(m−1)/n‖ f‖Mq,γ(B).

We say a function Ω(x′) on Sn−1 satisfies a version of Lq-Dini condition if

Ω∈Lq(Sn−1), 1≤q<∞, (5.1a)
∫ 1

0

wq(δ)

δ2
dδ<∞, (5.1b)

where wq(δ) is called the integral continuous modulus of Ω with degree q:

wq(δ)= sup
‖ρ‖<δ

(

∫

Sn−1
|Ω(ρx′)−Ω(x′)|qdσ(x′)

)1/q

,

here ρ is a rotation in Rn and ‖ρ‖= sup|ρx′−x′| : x′∈Sn−1. When Ω satisfies some size
conditions, the kernel of the operator TΩ has no regularity, and so the operator TΩ is
called rough singular integral operator. In [34], we set up some boundedness of [b,TΩ]
with b belongs to Morrey space under the Lq-Dini condition.

Theorem 5.3. Let −n/p≤β<0, 1<max{q′,n/(1−β)}< p<∞, 1< pi<∞, −n/pi≤βi<0,
1/p=∑

2
i=11/pi and β=∑

2
i=1 βi, i=1,2. If b∈Mp1,β1(Rn) and Ω satisfies the Lq−Dini condition,

then [b,TΩ] is a bounded operator from Mp2,β2(Rn) to Cp,β(Rn).
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Theorem 5.4. Let q′<p<∞, 0<α<1, −n/p≤β<0, 1/s=1/p−α/n, b∈Lipα and Ω satisfies
the Lq−Dini condition. Then [b,TΩ] is a bounded operator from Mp,β(Rn) to Ms,α+β(Rn).

Theorem 5.3 and Theorem 5.4 can be seen as extensions of [31] to the rough kernel
case. Unlike β≥ 0, there are essential difficulties to deal with the case β< 0. Therefore,
we have been working under the assumption that Ω satisfies the Lq−Dini conditions

(5.1a)-(5.1b) instead of the classical Lq-conditions (with (5.1b) replaced by
∫ 1

0

wq(δ)
δ dδ<∞

or
∫ 1

0 log( 1
δ )

wq(δ)
δ dδ<∞). In our judgement, this condition cannot be weaken since in the

case of β < 0, there need a 1 factor contribution to guarantee the series’s convergence
instead of a small ε(ε>0) factor for the case of β≥0.

Inspired by the result in Section 2-Section 4, some further problems can be considered
as follows:

1. Whether the condition on Ω in Theorem 5.1-Theorem 5.4 be weakened?

2. Whether the reverse of Theorem 5.3-Theorem 5.4 is true?

3. Can someone give any characterizations of Ċp,λ(Rn) via the following Hardy type
operator

HΩ f (x)=
1

|x|n

∫

|t|<|x|
Ω(x−t) f (t)dt?

Here Ω(x) is homogeneous of degree 0 and

∫

Sn−1
Ω(x′)dσ(x′)=0.
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