
Journal of Fiber Bioengineering and Informatics 8:1 (2015) 161–169
doi:10.3993/jfbi03201516

Hybrid Subspace Fusion for Microcalcification

Clusters Detection ⋆

Xinsheng Zhang∗, Hongyan He, Naining Cao, Zhengshan Luo

School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Early detection of breast cancer, a significant public health problem in the world, is the key for
improving breast cancer early prognosis. Mammography is considered the most reliable and widely
used diagnostic technique for early detection of breast cancer. However, it is difficult for radiologists
to perform both accurate and uniform evaluation for the enormous mammograms with widespread
screening. Microcalcification clusters is one of the most important clue of the breast cancer, and their
automated detection is very helpful for early breast cancer diagnosis. Because of the poor quality of the
mammographic images and the small size of the microcalcifications, it is a very difficult task to perform
detecting the early breast cancer. In this paper, we propose a novel approach based on hybrid subspace
fusion for detection microcalcification clusters, and successfully apply it to detection task in digital
mammograms. In such a system, subspace learning algorithms will be selectively fused according to the
ability of preserving the classification information. Experimental results show that the proposed method
improved the performance and stability of microcalcification cluster detection and could be adapt to
the noise environments better. The proposed methods could get satisfactory results on sensitivity and
reduce false positive rate, which provide some new ideas and methods for the research and development
of computer-aided detection system in the breast cancer detection community.
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1 Introduction

In digital mammograms, an important sign of the early breast cancer is the existence of Micro-
calcification Clusters (MCs). One of the key techniques for early diagnosis of the breast cancer
is to detect MCs and to judge whether they are malignant or not in mammograms. However,
there is only about 3% information in mammograms, which can be seen with the naked eyes.
Due to the most details in mammograms cannot been perceived by human eyes, it is even very
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difficult for a skillful radiologist to find the sign of early breast cancer, i.e., micalcification clus-
ters, as a result missing the best time for treatment. To detect early sign of this disease and
we need to do research on how to build a computer-aided diagnosis system to aid doctors to
diagnose breast cancer in early stage. Machine learning techniques have been successfully applied
to it [1–5].

Most of these methods learn hypotheses from a large amount of diagnosed mammogram samples,
i.e., the data collected from a number of necessary medical examinations with the corresponding
diagnoses made by the doctors, to aid the other doctors to do a diagnosis in the future. Because
of the big dimensionality of the image samples, there always are an overfitting problem caused
the curse of dimensionality in those machine learning methods [6].

This curse of dimensionality is compounded by extra complexity introduced by data set het-
erogeneity. Heterogeneous data sets usually require more sample data points than homogeneous
data sets for machine learning performance. Combining heterogeneous data types for classifica-
tion is a difficult machine learning problem, but one that has shown promise in bio-informatics
applications. Data fusion is the study of optimal information processing in heterogeneous data
environments through intelligent integration of heterogeneous data. The development of da-
ta fusion was motivated chiefly by the increasing demand for more accurate information, more
practical and robust procedures to manage data efficiently, and improved system reliability and
performance.

Decision fusion has the ability to capture general trends in data while remaining robust to the
effects of noise. As the noise and complexity of a data set increase, it becomes easier for a classifier
model to overfit the data rather than capture the underlying data trends. Currently, researchers
have proposed a lot of microcalcification detection methods based on ensemble learning. As Li et
al. [7] proposed a Co-Forest-based ensemble learning method to detect microcalcifications when
labeled samples is limited. Jesneck et al. [8] proposed an optimized breast cancer detection method
based on heterogeneous multi-source information fusion to improve diagnostic performance, which
can combine heterogeneous information, such as from different modalities, feature categories, or
institutions. Experimental results showed that the decision fusion directly optimized clinically
significant performance measures, such as AUC and pAUC, and sometimes outperformed two
well known machine-learning techniques. But a single type of image features was not always a
good choice to improve the performance of detecting microcalcification clusters. To improve the
performance of detection system, Massimo D. S. et al. [9] proposed a microcalcification cluster
detection algorithm based on information fusion with a multiple expert system. In this system,
there are several experts, some of which are devoted to classify the single microcalcifications and
others are aimed to classify the cluster considered as a whole. Then the knowledge of multiple
experts are fused together to make a final overall decision.

Methods discussed above have achieved some good results by fusing different learning methods,
but most of these methods are carried out the classification task based on the certain fixed charac-
teristics or domain knowledge, without considering how to get these features or dynamic domain
knowledge. To take advantage of decision fusions strengths and to keep more information, based
on results of previous research, subspace learning and ensemble learning of the latest research
study, we pursued a data fusion approach that was a hybrid of the feature fusion and decision
fusion techniques to perform the MCs detection task. We first extracted features from the raw
data (carefully selected sample database). We applied these features to a local classifier and
thresholds to these classifiers outputs, creating local binary decisions. We then combined these
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decisions with decision fusion theory. And finally we applied the method to detect microcalci-
fication clusters, mainly aimed to solve: 1) How to select multiple hybrid subspace features; 2)
How to select the level of fusing (fusion feature subspace level or fusion decision subspace level);
3) How to fusion the subspace after careful selection.

2 Data Fusion

Since the 90’s, ensemble learning or data fusion has become to important research in the field
of machine learning theory, and has become a powerful tool in dealing with problems of pattern
recognition community. Ensemble methods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any of the constituent learning algorithms.
Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning
ensemble refers only to a concrete finite set of alternative models, but typically allows for much
more flexible structure to exist between those alternatives.

Existing studies about data fusion or ensemble learning include a variety of algorithms, such
as Bagging and Boosting et al. In general, we can get a better prediction classifier with a fusion
method than with any single classifier. Furthermore, data fusion or ensemble learning can avoid
overfitting phenomena when learning. One of the fundamental problems in machine learning is to
improve the generalization ability of learning systems, that is, how to use existing data to train
a learner as well as possible so that it can easily handle the new data.

Traditionally, researchers divide the level of fusion techniques into three levels [10]:

1) Data-level fusion: to fuse/ensemble the raw input source together;

2) Feature-level fusion: to fuse/ensemble the extracted features from the original input source;

3) Decision-level fusion: to fuse/ensemble results of every single decision or classifiers together.

As discussed above, there are three levels of fusion architecture of for the final decision. For
the data-level fusion, it will fuse different mortality original data or signal together. And in
the feature-level fusion, it will fuse features from different feature space together. While in the
decision-level fusion, each single learner or classifier will make a decision according the original
image data or extracted features and then get the final overall decision by fusing the single
obtained decisions.

In order to improve the overall performance of the hybrid fusing system, we will focus on
how to fuse different subspace (hybrid subspace features) and decision together. Based on this,
we propose a new fusing method using hybrid selective feature subspaces to make classification
decision.

For a learning task, we can train a group of learners. Theoretically, it is better for us to choose
from a group of base learners when available to fuse than to select all base learners to fuse or
ensemble [11, 12]. This is the meaning of “Many Could Be Better Than All”, which provides
the theoretical basis for the selective fusion. The main idea of selective fusion is to select some
of base learners according to some policy to get better results. Predictive learning task can be
divided into regression with an output of continuous value and classification with an output of
discrete value. In this paper, we will choose base learners with continuous output, and employ
the weighted average method in the final result fusion.



164 X. Zhang et al. / Journal of Fiber Bioengineering and Informatics 8:1 (2015) 161–169

3 Selective Fusion Based on Hybrid Subspace Learning

3.1 Idea of the Algorithm

At present, there are many methods for subspace learning. Subspace learning is a kind of statisti-
cal analysis method. Currently, subspace learning generally are divided into linear and nonlinear
methods. The traditional linear subspace learning methods are mainly included PCA (Principal
Components Analysis) [13], LDA (Linear Discriminate Analysis) [14], factor analysis [15], projec-
tion pursuit (Projection Pursuit) [16], etc. Nonlinear subspace learning methods can be divided
into two categories, one is based on the global nonlinear subspace learning methods, including
MDS (Multitidimensional Scaling) [17], SPE (Stochastic Proximity Embedding) [18], Isomap [19],
FastMVU (Fast Maximum Variance Unfolding) [20], LPP (Linearity Preserving Projection) [21],
NPE (Neighborhood Preserving Embedding) [22], LLTSA (Linear LTSA) [23], etc; methods for
global alignment of the linear model based mainly LLC (Locally Linear Coordination) [24], Man-
ifold charting [25], CFA (Coordinated Factor Analysis) [26] and so on.

On the same issue different feature extraction methods using subspace learning may get different
subspace features. For classification problems, there is no method with subspace learning can
achieve good effect on any kind of data, because there are often noises in the real data, and
subspace learning algorithms are always sensitive to noises, which leads difficult to set learning
parameters, and thus will greatly affect the accuracy of subspace learning. Hybrid subspace
learning aims at achieving higher classification accuracy rate than any single feature subspace
method by ensemble or fusing hybrid subspace features to overcome the limitations of single
feature subspace and then achieve better adaptability. At present, most of subspace learning
algorithms fusion feature vectors from different subspace together to improve the classification
ability of the feature vectors. When combining all of them as a vector, because of the correlation,
discriminant information may be lost, although every single feature vector in its corresponding
subspace has a good classification ability. Therefore, the method of direct feature fusion in multi-
subspace, to a certain extent, may add computing complexity to the classification algorithm but
good classification ability.

In fact, a pattern in one feature subspace of are easily to recognize, but it would be difficult
to recognize after the pattern is projected onto another subspace. That is the original easily
recognized pattern may be difficult to recognize, and that difficult to recognize may turn out to
be identifiable. Therefore, based on the characteristic of the subspace learning algorithm and the
ability to discriminate information in original subspace, we could selectively fuse multiple feature
subspaces together to improve the discriminant performance of the learning system.

3.2 Description of the Algorithm

In order to take full advantage of the selective advantages of and subspace learning algorithm, we
designed a hybrid subspace selective fusion algorithm (Hybrid Subspace Selective Fusion, HSSF)
to perform MCs detection task (shown in Fig. 1).

As shown in Fig. 1, there are two different levels of selective fusion in Stage 3. Given different
levels of fusion, we could get different algorithms. In this paper, we only consider the feature
subspace fusion level, and thus design a new selective fusion method with subspace learning (shown
in Algorithm 1). In each of the corresponding subspace, we can train these corresponding base
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Fig. 1: Framework of selective hybrid subspace fusion method

learners fk(·) and then fuse them with these single learners to get a better performance classifier.
Each baser learner is set a weight τ ′i when selective fusion each subspace. Since every subspace is
first obtained by randomly selecting the training sample and training base classifier with randomly
selected training sample, we believe that the resulting base classifier is different from each other
(also known as diversity), and independent of others. Therefore, based on this premise, well-
behaved subspace learning methods can be selectively integrated into the final corresponding
fusion classifier model.

4 Experimental Results and Analysis

4.1 Experimental Data

Among the algorithm performance evaluation, in order to avoid fitting problems, we carry our
experiments by the procedure of training, validation and retesting. Sample sets used in the
experiments are divided into training, verification and test samples, where the test samples are
not all involved in the training process. After getting the trained fusion model, a test will be
performed on this fusion model to test its efficiency and performance with the test samples. This
algorithm uses the methods described in [3] to generate data sets. As described in Table 1, two
training sets were randomly selected from the sample database in the experiment, one (S1) used
to train learning algorithm for subspace and the other (S2) used to train a classifier (for training
and validation). In order to test the fusion algorithm performance, we select another sample set
(S3) as a test set to test the final fusion model.

Table 1: Dataset distribution used in experiments

Training dataset 1 (S1) Training dataset 2 (S2) Test dataset 3 (S3)

Positive samples 1000 500 500

Negative samples 1000 500 500
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Algorithm 1 Hybrid subspace selective fusion method (HSSF)

Input: Training data set with N samples: S1
t ;

Training data set with M samples: S2
t ;

Subspace learning algorithm set: Σ = T1, · · · , TK ;
Trained projection function set: Ξ = Φ1(·), . . . ,ΦK(·);
Base learners set: f(·);
Accuracy threshold: T .

Output: Model of trained fusion classifier ENSHSSF

1: for k = 1 to K do
2: Train subspace learning algorithm Tk with dataset S1

t ;
3: Get the projection function Φk(·) and its parameters;
4: end for // End stage 1
5: Ψ ← {}; // Set of subspace learning algorithms, corresopnding base learners and related

parameters
6: for k = 1 to K do
7: Project S2

t to get S2
t,k

′ and reconstruction error ζk using projection function Φk(·);
8: Train base learner f(·) using 50% of samples from S2

t,k
′ to obtain the trained base learner

fk(·) ;
9: Get the generalization error ξk of fk(·) using samples from the other 50% of S2

t,k
′;

10: ℑ ← {fk(·), ξk,Φk(·), ζk};
11: Add ℑ to Ψ;
12: end for // End stage 2
13: Ψ

′ ← {}; // Set of selected subspace learning algorithms, corresopnding base learners and
related parameters

14: for k = 1 to K do
15: τk ← log(1/(e−ξk + e−ζk)) ;
16: ℑ′ ← {fk(·), ξk,Φk(·), ζk, τk};
17: if τk ≥ T then
18: Add ℑ′

to Ψ
′
;

19: end if
20: end for // End stage 3 (selective decision-level fusion)
21: ENSHSSF ← Ψ

′
;

22: L← |Ψ′|;
23: Given any sample X and ENSHSSF ; // / Stage 4: test the final result of trained fusion

classifier
24: for J = 1 to L do
25: Project X onto subspace using ℑj(j = 1, . . . , L) from Φ

′
and get Fj(j = 1, . . . , L);

26: Feed Fj to the trained base learner fj(j = 1, . . . , L) and obtain the prediction
hj(j = 1, . . . , L);

27: Compute the final overall prediction h∗ =
L∑

J=1

τ
′
jhj, where τ

′
j is the normalized result of τj.

28: end for

4.2 Experimental Parameter Configuration

In order to verify the effectiveness of the algorithm in this paper, 25 subspace learning algorithms
are selected as a set of basic hybrid subspace learning algorithms. In the training procedure
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of subspace learning algorithm, parameter settings for each algorithm are settled according to
empirical values and samples from training dataset 1 S1 (shown in Table 1) are used to train
and test subspace learning algorithm. Support Vector Machines (SVMs) with RBF kernel are
employed to train and valid the learned algorithms with training dataset 2 S2 (shown in Table
1), where σ = 15, C = 1000. When we test the fusion classifier, the same base classifier and
parameter settings will be selected to perform the testing procedure with Test dataset 3 (S3) as
shown in Table 1.

4.3 Experimental Results

We first test the performance of the proposed algorithm and select those subspaces where τk is
greater than a threshold as the candidate subspaces of the next step according to the discriminant
ability (measured by the SVM classifier) after mapping onto them. As shown in Table 2, four
indicators to evaluate and choose based on a single integrated algorithm subspace subspace-
based hybrid performance: accuracy (Accuracy), sensitivity (Sensitivity / True Positive Rate),
specificity (Specificity / 1- The area under the FPR), ROC curve (Area Under ROC Curve,
Az). From Table 2, the selective integration of learning subspace method based on hybrid four
indicators are better than a single subspace-based learning approach.

Table 2: Performance evaluation of MCs detection with the selected singule subspace learning methods
and the ensemble learning algorithm

Selected Methods Accuracy Sensitivity Specificity Az

PCA 0.8786 0.8786 0.8786 0.9355

Prob PCA 0.8393 0.8369 0.8393 0.8907

GDA 0.7589 0.8112 0.7664 0.8269

DiffusionMaps 0.6982 0.6637 0.7074 0.7931

LPP 0.8214 0.8169 0.8215 0.8884

NPE 0.6821 0.6449 0.695 0.797

LLTSA 0.6839 0.702 0.6854 0.8022

HSSF 0.9286 0.9444 0.9291 0.9674
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Fig. 2: Boxplot of the evaluation result with algorithm 1 (HSSF): (a) Accuracy; (b) Area Under ROC
Curve (Az)
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Furthermore, in order to test the stability of the proposed algorithm, we train and test this
algorithm respectively, and in each round the training procedure will be performed N = 10×i(i =
1, . . . , 10) times. Let S = S1 ∪ S2, in each run 50% of samples were randomly selected as the
training sample set, and the remaining 50% as the test sample set. The experimental results are
shown in Fig. 2, which gives a statistical analysis of the experimental results box plots. The figure
shows that the algorithm in terms of stability or in the detection performance have achieved good
results.

5 Conclusion

In digital mammograms, an important sign of the early breast cancer is the existence of Micro-
calcification Clusters (MCs). One of the key techniques for early diagnosis of the breast cancer is
to detect MCs and to judge whether they are malignant or not in mammograms. In our paper,
we first briefly summarizes the status of subspace learning methods, and then introduces the
principle of integrated learning levels and selective integration of learning and design a hybrid
subspace selective fusion approach to detect MCs. In our algorithm, the subspace learning algo-
rithms will be selectively fused according to the ability of preserving the classification information.
Experimental results show that the proposed method can improve the performance and stability
of MCs detection task and could get satisfactory results on sensitivity and reduce false positive
rate, which can achieve better results than a single detection subspace learning-based approach,
and stability of the method is better, to better adapt to the noise environment..
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