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Abstract. In this paper we prove first the existence and uniqueness results for the
weak solution, to the stationary equations for Bingham fluid in a three dimension-
al bounded domain with Fourier and Tresca boundary condition; then we study the
asymptotic analysis when one dimension of the fluid domain tend to zero. The strong
convergence of the velocity is proved, a specific Reynolds limit equation and the limit
of Tresca free boundary conditions are obtained.
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1 Introduction

A Bingham fluid is a rigid viscoplastic fluid that is a particular kind of non-Newtonian
fluid. The name is associated to Eugene C. Bingham (1878-1945) who, for the first time, in
1916, proposed a mathematical description for this visco-plastic behaviour [3]. There are
many materials in nature and industry exhibiting the behavior of the Bingham medium.
For example, heavy crude oils, colloid solutions, powder mixtures, metals under pressure
treatment, blood in a capillary, foodstuffs and toothpaste. The mathematical models for
such materials involve the constituent law for viscous incompressible fluids with an extra
stress tensor component modeling the visco-plastic effects.

The analysis of the Bingham fluid flow variational inequality was carried out in [10],
where the authors investigated existence, uniqueness and regularity of the solution for
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the steady and instationary flows in a reservoir. Existence and extra regularity results
for the d-dimensional Bingham fluid flow problem with Dirichlet boundary conditions
are also studied in [11,12]. More recently, the authors in [1] have proved the asymptotic
analysis of a dynamical problem of isothermal elasticity with non linear friction of Tresca
type. The study of the a nonlinear boundary value problem governed by partial differ-
ential equations which describe the evolution of linear elastic materials with a nonlinear
term |u®|Pu’, p=p—2 for p>1 has been considered in [2]. The numerical solution of the
stationary Bingham fluid flow problem is studied in e.g., [8,9,13, 14].

In this paper, we are interested in the asymptotic behaviour of a Bingham fluid in a
thin domain QFf C IR3. We assume the Fourier boundary condition at the top surface and
anonlinear Tresca interface condition at the bottom one. The weak form of the problem is
a variational inequality. We use the approach which consists in transposing the problem
initially posed in the domain ()° which depend on a small parameter ¢ in an equivalent
problem posed in the fixed domain () which is independent of e. We prove that the lim-
it solution satisfies also a variational inequality. We further obtain a weak form of the
Reynolds equation and give a lower-dimensional Bingham law, prevalent in engineer-
ing literature. In [6], the author studied a similar problem, in which, only the Direchlet
conditions on the boundary have been considered.

The outline of this paper is as follows. In Section 2, basic equations and assumptions
are given, also the related weak formulation and existence and uniqueness of the weak
solution. In the Section 3, we establish some estimates and convergence theorem by us-
ing the Korn and Poincaré inequalities (developed recently in [4,5]). The limit problem
with a specific weak form of the Reynolds equation, the uniqueness of the limit velocity
distributions, and two-dimensional constitutive equation of the Bingham fluid are given
in the last section.

2 Problem statement and variational formulation

Let w be fixed region in the plane x’ = (x1,x;) € R%. We suppose that w has a Lipschitz
boundary and is the bottom of the fluid domain. The upper surface I'] is defined by
x3 =¢eh(x’) where (0 <& <1) is a small parameter that will tend to zero and / a smooth
bounded function such that 0 < h <h(x') <h for all (x/,0) in w. We denote by Q¢ the
domain of the flow:

Q= {(x,x3) eR*: (¥',0) €w, 0<x3<eh(x)}.

The boundary of Q¢ is T¢. We have I =T} UT; U@ where I'] is the lateral boundary.
Let o denotes the total Cauchy stress tensor:

ot = —P€1+0'D'€,
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where ¢ denotes its deviatoric part, and p¢ the pressure. The fluid is supposed to be
viscoplastic, and the relation between ¢” and D (u¢) is given by the Bingham model:

UD'S—MM—M D(uf), when D(uf)#0
IR '
oD <af, when D(u®)=0,
or equivalently:
1 ot
D(uE) _ ﬂ (1— W)UD’F', When ’(TD’S| >0{€,

0, otherwise,
here a® > 0 is the yield stress, u > 0 is the constant viscosity, u¢ is the velocity field and

D(uf) = (Vut+(Vu)T) /2.
For any tensor T = (T;;), the notation |7| represents the matrix norm:

1 :
T=—72() i) -
=7 (zj i)
The flow of an incompressible Bingham fluid in stationary case is described by

e The law of conservation of momentum
—div(c®)=f* in OF. (2.1)
e The incompressibility equation

div(u®)=0 in OF. (2.2)

Our boundary conditions is describe as

o At the surface I'| we assume

&) LIEyE =0
oc () } on I7, (2.3)

ut-n=0
where [* >0 on which we will bring precisions.
e OnI7, the velocity is known and parallel to the w-plane

u*=0 on TI%. (2.4)
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e On w, there is a no-flux condition across w so that
ut-n=0, (2.5)

the tangential velocity on w is unknown and satisfies Tresca boundary conditions
with friction coefficient k¢ [10]:
ot | <k*=u%=0,

. 26
¢ | =kE = 3N >0, ul=—Ac* } on @ (26)

Here n = (n1,ny,n3) is the unit outward normal to T¢, and

uy,=ut-n, ub =ut—uf-n,
oh=(0%n)-n, oi=0"n—(c})n,

are, respectively, the normal and the tangential velocity on w, and the components
of the normal and the tangential stress tensor on w.

To get a weak formulation, we introduce:
K={¢pecH' (O¥)*: ¢=00nT5, ¢-n=0o0nwUI]}, (2.7a)
Gio=1{pEK: div(p)=0}, L§j(Q°)= {qeL2(Q€) /Q quZO}. (2.7b)

A formal application of Green’s formula, using (2.1)-(2.6) leads to the weak formulation:
Find uf € K&, andp® € L3(Q)) such that

a(uefqo—ue)—(ngdivqo)He/rguS(qv—u) +i(@)—j(w) = (f,¢—uf), VoK', (28)

1

where
a(u’,¢—u) 2#/ ij (u)dij (9 —uf)dx, (2.9a)
(p,dive) :/Qspgdivgodx, (2.9b)
9)= | Klglax' +v2 [ D(g)dx. 299

Theorem 2.1. Assume that €€ L?(QF)% and k* € LY (w), then there exists a unique uf € K&,
and p € L3(Q)F) (to an additive constant) solution to problem (2.8)-(2.9¢).

When the functions test belong to K§, , we obtain the variational problem: Find u €
K¢, such that
a(u,—u)+j(@) —j(u) = (f,¢—u), VoK, (2.10)
where

a(uf,o—ut) :a(ug,q)—u€)+l€/ ut(@p—u)dr.

I
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e Using the Cauchy-Schwarz inequality we obtain that the bilinear form i(-,-) is con-
tinuous. There exists a constant C(€)*) >0:

(@ )| < 2u+1IC(Q)) @l phos,  V(pw) € (Kg)™

e The bilinear form i(-,-) is coercive on Kf, x K. . There exists [15] a constant ¢ >0
such that

Ay ) Zelplinn Ve K.
e jisa convex, continuous and proper functional on K%, , V(¢,9) € (K&, )?

() =) < (]2 [k oo 0 C(Q) +v20%) [ 9~ Pl 1,00

Then the existence and uniqueness of u® € K, satisfying the variational inequality
(2.10) (cf. [13]).

e The proof of the existence of p® € L3(Q)) such that (uf,p) satisfies (2.8) is given
in [16].

Theorem 2.2. Let uf be a solution of the variational inequality (2.10). We assume that el =1
and h satisfy the following condition

C(:) g% 2.11)
where
(1) 2Ha—x2h£ c(@) (1+HEH€ C(u‘))>'
Then ,
V0= (42 212)

Proof. From [4], we recall the following inequalies (Korn, Poincaré and Young respective-

ly),

/ V()P <2 / D (1) Pdx+C(T%) / I 2d, (2.13a)
QF Qe I
_ _ €,2
/ |uf|? < 2he / |2+ 27" out (2.13b)
Qs ; Q¢ 1 0x3
b2
ab <n? —1—17_2 V(a,b) €R?, V7. (2.13¢)

Now choosing in (2.10), ¢ =0, we get

a(ug,u5)+lg/ ]u8|2d1’+/ kglueldx’—kx/itxs/ ]D(ug)]de/ feudx, (2.14)
g w Qe Q¢
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we have by the Cauchy-Schwarz inequality and (2.13b)
| futax<|Floaditloo
e |2 1/2 1 1/2) ge |2 1/2
<v/2he| £ 0,00 (/Q VuPdx) "+ 2(R)e) 2 oo (/r wPdr) (2.15)
1

Using Young's inequality (2.13c) for 7= 1/p/2, a=( [ |Vuf|?dx)1/2 and b= v/2he| f*|o,0r:;
theny=1,a= \/l_g(frﬁ [uf|2)1/2 andb = /2he/I¢| f¢|o 0, we deduce

—2
_ 172 M2
€ . €2 <E/ £|2 £)2 . )
Vel floce [ IVuPax) < [ VePae (S5 1fBas @16)
VaRel Floor ([ |u5|2)1/2<l—£/ e e (2.16b)
00 e —2Jr Je V) 100 '
From (2.13a)-(2.16b), we obtain
ZS
2y/ ]D(ug)lzdx—k—/ ]u‘g]sz—i—\/E(xS/ |D(u€)]dx—|—/k£]u|dx’
O 2 Jre o w

2’62

E €2 @ €2
g4/081w Pax+ (=545 1 R 2.17)

By this estimate we estimate |D(u°)[§ ). and [u* |%,r§l in (2.13b), we have

_2 —
1 2h°e?  he
€\|2 - €2 e €2
2 [ ID(u)Par<g [ [Vt P o 1)1 B
and
_2 —
€ €2 ‘MC(ri)/ €2 2C(r§) 2h 82 E €2
C(Fl)/rilu Par < 55 [V P = (S50 B
thus (2.12) follows from (2.11). O

3 Change of the domain and some estimates

In this section, we will use the technique of scaling in () on the coordinate x3, by in-
troducing the change of the variables z = x3/e. We obtain a fixed domain ) which is
independent of ¢:

We denote by I'=T; UT'; Uw its boundary, then we define the following functions in
Q:

2

08(x,z) =ul(x,x3), i=1,2, 05(x,z)=e §(x,x3) and pf(x,z) =€*pf(x,x3).
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Let us assume the following dependence (with respect of ¢) of the data:
f(xX,2)=e2fe(x,x3), a=ent, [=elf, k=ck".
Let

K={¢peH'( )3'43:0 onTy, ¢-n=0onwUI},
Kgiv={$eK:div(p)=0},

V.= {v: (v1,02) € L2(Q)?: % cL*(Q); v=0o0n FL},

the norm of V, is

2 Jv:
olv. = (X (I o+ |5

i=1

)
00//

By injecting the new data and unknown factors in (2.8) and after multiplication by ¢, we
deduce

o [ez;t(zzz#i—:)—ﬁ 2D vy [ (o3 2O

- o a(4> au Ol 9(d3—15)
2773 ne / 73 3 !
+./Q (2;48 5 P ) dx dz+ E / ys + e ) ax; dx'dz

2 .
+4Di/ 05 (", 1 () (i (x 1 (x')) = 05 (2, (7)) ) [ 1+ | Ve () 2!

+ [ 1205, (Ba( () =5 (¢ o () 1 [T () Pt
+ [ Rgs|-la s +vax [ (1D@)]-|D(@)))ax'az

> (fudi— )dx’dz+ (f3,433—ﬁ§)dx’dz, (3.1)
=17
where
B 9v; av] 2 12 avl 287)3 5 /003212
Do) = {—1]2_1 (Gora) (i) +2(50) T

Now we establish the estimates and convergences for the velocity field 7® and the pres-
sure p‘in the domain ).

Theorem 3.1. Let the assumptions of Theorems 2.1 and 2.2 hold, then there exists a constant C
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independent of e such that

2 ans aﬁs 2 au
2 21273 3 <
€ ]Z: ‘ax] 0,0 12‘ oz |OQ oz loa |oQ_C, (3.2a)
filoa=C for =12 (3.2b)
e300 <C, (3.20)
W <c foriz12 (3.2d)
axi — - It .
L < . '
3z |10 =SCt (3.2¢)

Proof. Passing to the fixed domain () in (2.12), using the new data and unknown factors,
we deduce (3.2a).

To get (3.2b)-(3.2¢), using (2.13b)-(2.17), we obtain
-1 €11€12 < V_h €2 8h'e 4h € €
o P < B2V u ook ( o ) Bt 2| Va3,
asel*="[and Elf 5= |13 . from (3.2a) we have
: il 8 4i’
Y 1[50 +ensf5n < ( 7 +2h >C+(Vl )|f|00/

i=1

hence (3.2b)-(3.2¢).

For get the first estimate on the pressure in (3.2d), we choose in (3.1) ¢ = (15 &, 125,145,
g€ H}(Q)) we obtain

‘/Qap gdx/dz‘<lflcl(2| !m+| |m)+(c2+2@\/@>|g|m
+(2_ﬁ)@mcﬁcsmonl@ll,m

then (3.2d) follows for i=1.
When i=2, we choose ¢ = (115,15+¢,115). For get (3.2¢), we take ¢= (45, 25,05+¢). O

Theorem 3.2. Under the same assumptions as in Theorem 3.1, there exist u* = (uy,u3) €V, and
p* € L3(QY) such that :

0 —u;, i=1,2, weaklyin V,, (3.3a)
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’\8

L0, i,j=1,2, weaklyin L*(Q), (3.3b)
ax]
o3 2
e —0 weakly in L(Q), (3.3¢)
5 015
I E 3 .0, i=1,2, weakly in LZ(Q), (3.3d)
pf— p* weakly in L*(QY), p*depend only of x'. (3.3e)
efi§ —0 weakly in L*(QQ). (3.3f)

Proof. From (3.2a) and (3.2b), we deduce (3.3a). Also (3.3b) follow from (3.2a) and (3.3a).
As div(1°) =0, by (3.3b), we obtain (3.3c). From (3.2¢) and (3.2a), (3.3d) holds. Using
(3.2d) and (3.2e) we get (3.3e). Because div(11°) =0, by (3.2c) and with a particular choice
of test function, we get (3.3f). O

4 Study of the limit problem

In this section, we give both the equations satisfied by p* and u* in () and the inequalities
for the trace of the velocity u*(x’,0) and the stress (du*/0z)(x’,0) on dw.

Passing all nonlinear terms on the right and the linear terms on the left in the vari-
ational inequality (3.1). Then, we apply the liminf, o on the left and the lim,_,o on the
right, using the convergence results of the Theorem 3.2, we deduce

2 aur A , M .k,
Y% PO e [ ) (B ) S o ) o Nt

aXQ

[ (2 202 a1 [ ) () ()

axl X2
2
”‘/Q H—‘ 'd2+k/ || —|u*|)d ; —u*), VHell(K). (41)
Moreover if
06 A ! a0 ! / 1
/0(4?1(36 z))axl(x)—i—(pz(x,z))a—xZ(x ))dxdz:O, Vo e Cy(w), 4.2)
then
au*agbl_u : x (2l / /
D’ / WD) a1y [ (o B ) 1 1)~ (Y
i=1
2
a / 8_2 N az‘ Jax'dz+ / ¢l —wDdx' >} (f.—u®), 4.3)

j=1
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where
={¢=(¢1,$2) € H'(Q)?: 35 such that ¢ = (¢1,$2,$3) €K}
Lemma 4.1. The variational inequality (4.3) is equivalent the following system
* 2 n n
y/ﬂ‘%‘ dx’dz+l/w ]u*(x',h(x’)|2dx’+k/w |u*|dx’
A oury ., Pk gat
—Hx/ ‘—‘dx dz—/ Furdx'dz=0, (4.4)
al oz 0

and

('bd ’dz+l/ WH) (& h(x)dx’ +k/ b’ —Hx/ ‘a('b‘dxdz

5
> /Q Fédx'dz, Yhex(K), 4.5)

where ©.(K) = {¢ € I1(K) : ¢ satisfies condition (4.2)}.

Proof. According to [4, Lemma 5.3], we can choose ¢ =2u* and ¢ =0 respectively in (4.3),
we obtain (4.4) and (4.5). Let’s show reciprocally that (4.4) and (4.5) implies (4.3). For
this, we consider the mapping

A: 2(K)— LY (w)2x LY(Q)?,
pr—r A($) = (kp, 5

Let us define F by

AA d ou* 9 / 7 * / / / £ 3! 2
( ¢ (P H/Q auz £dx dz—H/w(u $)(x',h(x")dx —/Qf(pdx dz, VpeX(K). (4.6)

N

For allg@EZ(K) we choose ¢ =1, then ¢ =—1 in (4.5), we obtain
h 843 145 A alf’ /
— || < -— . .
F(kp ) |< [ Riglax'+a [ |5E]ax'a: (4.7)

By (4.7) F is a continuous linear functional on the subspace of L!(w)?x L}(Q))? which
is the image of X(K) by A. Then, by the Hanh-Banach theorem, there exists (x,7) €
L®(w)?x L®(Q)?2, with | x|w,eco <1, |7T|q,0 <1, such that

(k¢ / k! — / ””dx’dz (4.8)

In particular, from (4.4) and (4.8), we get

~ ou* ~ ou*
* / ~ / * / A /
/k|u |dx —|—1X/ ‘—az ‘dx dZ—/ )(ku dx —Hx/ 7T 9z dz. (49)
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Also, from (4.6) and (4.8), we have

8 al’bdx’dz—kl/(u*lf))(x’,h(x’)dx’—f-/)(I%lf)dx’

+a/0 ‘de dz— /f¢dx dz=0, VHeX(K). (4.10)
Then
Qaa”;%;”*)dx'dzﬁ / (X (N [P () —u* (& h(x))]dx’
+5c/0(‘g—f‘—‘%‘)dx’dz+k/ $]— [u*])d /flp u*)dx'dz
:/wi%y;@ydx'—/wxiaﬁdxura/()(%(dx’dz—a/ﬂna—fdx’dzzo,
whence (4.3) follows. 0

Lemma 4.2. The solution u* of the variational inequality (4.3) is unique in V.

Proof. Let u*!, u*? be two solutions of (4.3). Taking ¢ =u*? and ¢ =u*" respectively, as
test functions in (4.3), we get

_‘u/ ‘az ‘ dx’dz—l/ |( M*’2)(x’,h(x')|2dx’20,
then )
2 0wt
Using Poincaré inequality, we deduce the uniqueness in V. ]

Theorem 4.1. Lef us set

0*=—-Vp*+0* and (?*:yaauz +ar, (4.11)
then . 3t /3
_O O G OIZT e Gorin 12(Q)2
= [ z+"‘yau*/az|] F-Vprin [2(Q)?, (4.12)

where 7t finds in (4.8).
Proof. If ou*/0z =0, from (4.11) we get |[c*| <&. Using now (4.9), we have

. ou* ou*
R =

! x| _
- >dxdz+/ (|u*|—xu*)dx' =0,
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since [X]w,c0 <1and |77|q,c <1, we deduce

ou*| odu* o
= 1= 5, and |u*|=xu*. (4.13)
Hence, if |0u*/9dz| #0 by (4.11) we obtain
- ou* ou*/oz
*_ A~
(o —y—az +a7]8u*/az|' (4.14)

In this case

7| = <”+|au*&w> (%‘ = u|ou* /3z| +& > &,

therefore, we can write

K = L out/oz .
a - T -~ 1 *
z oc’ EEL if |[o*|>a&,

e

P
au*{ 0, if [0 <&,

which is a lower-dimensional Bingham law.
Besides, from (4.10) there exists p* € L2(Q)? (see [6,14]) such that

Ju*d / Aol A a_lﬁ / _/ PRl
= ad d+l/u1p V(' h(x dx+/nk1pdx+¢x/ﬂmazdxdz [ Fipav'a:
— / Vp*pdx'dz, Vipell(K). (4.15)

@)

Using (4.14), (4.15) becomes

i / AR / (¥ §) (', h(x)dx' + / nkipdx’
Q o0z w w
- / Flpdx'dz— / Vprddr'dz, Vi eTI(K), (4.16)
o) o)
from which (4.12) follows if we take in (4.16) P € H} (Q)%. O

Theorem 4.2. Under the assumptions of preceding theorems, the traces s*, T* satisfy the follow-
ing inequality

/(hSVp +F— —s +pt/ Xy dy+zx/ / S{;gé ,¢)dédy

h Ah [t our /9 o ~
g () -5 [ S (v €)ag) Vo) =0, VheH'(w), @17

where

Fa)= [ P )y~ F(), F(y) = I R )i,



M. Dilmi, H. Benseridi and A. Saadallah / Adv. Appl. Math. Mech., 6 (2014), pp. 797-810 809

Proof. We integrate twice (4.12) between 0 and z, we obtain

k(] «_ o [FOW/OC N
pu*(x',z)+us*—a ; |au*/a§’(x ,6)de+ut Z—|—1X|T*’Z
/Z/CY’ \aydE— V2 (4.18)
= Jo FEv)dy Y :
in particular for z=h we obtain
" u* /9 ™
—puu*(x',h) 4 pus* — A¢+ut h+a&—h
pu” (x )+ s Tourjag] X E)dE o
h (;IA / *hZ
:/0 /0 f(x',y)dydc—Vp ox (4.19)

integrating (4.19) between 0 and &, we get

v ou/a T
- )dy+ps*h— d
P‘/ x'y)dy+pis w// Tour jag] & QYT T A

— /0 /0 /0 f(x’,t)dtdédy—Vp*g. (4.20)
From (4.19)-(4.20), we deduce (4.17). O
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