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1 Introduction

In [1], results on the existence and uniqueness are provided for doubly-weighted pseudo-
almost periodic solution for equations

u' () =A)u(t)+g(tu(t)), teR, (1.1)

where A(t) for t €R is a family of closed linear operators on D(A(t)) satisfying the well-
known Acquistapace-Terreni conditions, and g:IR x X — X is doubly-weighted pseudo-
almost periodic in t € R uniformly in the second variable.

The existence of weighted pseudo-almost periodic, weighted pseudo-almost auto-
morphic, and pseudo-almost periodic solutions to differential equations constitutes one
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of the most attractive topics in qualitative theory of differential equations due to pos-
sible applications. Some contributions on weighted pseudo-almost periodic functions,
their extensions, and their applications to differential equations have recently been made,
among them are for instance [2-17] and the references therein. However, the problem
which consists of the existence of doubly-weighted pseudo-almost periodic(mild) solu-
tions to evolution equations in the form (1.1) is quite new and untreated and thus consti-
tutes one of the main motivations of the theme. In the present work, we consider a more
general setting and use slightly different techniques to study the existence of doubly-
weighted pseudo-almost periodic solutions to the following classes of partial evolution
equations

% [u(t) +f(t,B(t)u(t))] —A(Hu(t)+g(t,C(Hu(t)),  teR, (1.2)
where A(t) for t € R is a family of closed linear operators on D(A(t)) satisfying the
well-known Acquistapace-Terreni conditions, B(t),C(t) (f € R) are families of (possibly
unbounded) linear operators, and f:RxX— X%, ¢: RxX+— X are doubly-weighted
(u,v)-pseudo almost periodic in t € R uniformly in the second variable.

The paper is organized as follows: Section 2 is devoted to preliminary results related
to the existence of an evolution family, intermediate spaces, properties of weights, and
basic definitions and results on the concept of doubly-weighted pseudo-almost periodic
functions. In Section 3 we study the existence of a doubly-weighted mean for almost pe-
riodic functions. In Section 4 we prove the existence of doubly-weighted pseudo-almost
periodic solutions to (1.2). In Section 5, we give an application to illustrate our results.

2 Preliminaries

2.1 Evolution family and exponential dichotomy

In this section, we introduce the inter and extrapolation spaces for A(t). Consider a
family of closed linear operators A(t) for t € R on X with domain D(A(t)) satisfying the
so-called Acquistapace-Terreni conditions:

Hyp: JweR,0€(5,m),K,L>0and u,ve (0,1] with u+v>1 such that

ZGU{O}Cp(A(t)—w>9A,

RMA(Y) —w)|| < —— 2.1)

14 A)
[ (a0)-w)R (2,4 ~w) [R(w,A()) ~R(w,A()) ]| SLT’V}, 22)

fort,s€e R, AeXy:={AeC\{0}:]argA|<0}.
For a given family of linear operators A(t), the existence of an evolution family asso-
ciated with it is not always guaranteed. However, if A(t) satisfies Acquistapace-Terreni,
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then there exists a unique evolution family (see [18-20])
U={U(t,s):t,seR such that t>s}
on X associated with A(t).

Definition 2.1. An evolution family (U(t,s))¢>s on a Banach space X is called hyperbolic (or
has exponential dichotomy) if there exist projections P(t),t € R, uniformly bounded and strongly
continuous in t, and constant N >1, 6 >0 such that

e (i) U(t,s)P(s)=P(t)U(t,s) for t>sand t,s€R;

o (ii) the restriction Ug(t,s): Q(s)X — Q(t)X of U(t,s) is invertible for t > s and t,s € R
(and we set Uq(t,s) =U(s,t)1);

o (iii)
[U(t,s)P(s)|| < Ne°U=5) and  ||Up(s,)Q(H)]| < Ne®U=5) 1 >s,t,s€R.  (2.3)
Here and below we set Q:=1—DP.

Next, in the sequel we make extensive use of the real interpolation spaces of order
(a,00) between X and D(A(t)), where a € (0,1). See [21-23] for proofs and further infor-
mation on theses interpolation spaces.

Let A be a sectorial operator on X and « € (0,1). The real interpolation space is

Xt ={xeX, ||| :=sup|r*(A—w)R(r,A~w)x| <oo}.

r>0

It is straightforward that
X¢ =X, 2llf == %], X{:=D(A),

and ||x[|{:=||(w—A)x||. Moreover, let X" :=D(A) of X. In particular, we will frequently
be using the following continuous embedding

D(A)=Xj = D((w—A)") =X =XcX, (2.4)

for all 0 <a < <1, where the fractional powers are defined in the usual way. We also use
the following continuous embedding.

[R[Fs

Xg—D(A) ™, (2.5)

for0<a<p<1.
Given the family of linear operators A(t) for t € R, satisfying (H1), we set

Xi ::Xf(t), X! ::XA(t),
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for 0<a <1 and t€ R, with the corresponding norms.

Next, for t € R, we set X! := Xf(t) and X' := XA Tt holds that the evolution family
(U(t,s))i>s generated by A(t) has an exponential dichotomy with constants N >0, § >
0, and dichotomy projections P(t), t € R. Moreover, 0 € p(A(t)) for each t € R and the
following holds

sup [|A(s) A(#) [ 5, x) < co-

t,s€eR
It holds that [23]
Iyl <c(@) vl “llA®y]*,  yeD(A()). (2.6)

We have the following fundamental estimates for the evolution family U(t,s).
Proposition 2.1 ([24]). For x€X, 0<a <1 and t > s, the following hold.

(i) There is a constant c(«), such that
[U(t,s)P(s)x|, < ca)e 2079 (t—s) = x]. (2.7)

(i) There is a constant m(«), such that

IUo(s,£)QUt)x[ly < m(a)e2)||x]. (2.8)

Now, we recall the basic properties of weights. Let U be the collection of functions
(weights) p: R — (0,00), which are locally integrable over R such that p > 0 almost every-
where. For y €U, T >0, and 2 € R, we set

Qr:=[-T,T|, Qr+a:=[-T+a,T+a,
V(QT)::/Q p(x)dx.

T

We define the space of weights U by
Uy := {yeU:;gﬂgy(x) =10 >0and %gr;oy(QT) :oo}
and the set of weights Up by

UB::{VEUOQ: supp(x)=p1 <oo}.

xeR

We also need the following set of weights, which makes the spaces of weighted pseudo-
almost periodic functions translation-invariant,

U({Z}”::{VEUOQ: lim ”(:(J;)T) <eoand lim %<wforallreﬂi}.
X—0 —00 T
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Let US, denote the collection of all continuous functions (weights) j:IR — (0,00) such that
i >0 almost everywhere. Define

Uf,o::{yelUgoﬂono: Jim X0 <ooforallrelR}.
X—r00 ‘u(x)

o e e . . . Iy
Definition 2.2. Let yu,v € Ue. One says that y is equivalent to v and denote it p<v, if £ € Up.

Let u,v,7 € Uw. It is clear that u <y (reflexivity); if u <v, then v < u (symmetry); and
if y<v and v <1y, then u <y (transitivity). Therefore, < is a binary equivalence relation
on Ug.

Proposition 2.2. Let y,v € UMY, If u<v, then c=p+veUD.

Proposition 2.3. Let u,v € U3,. Then their product = pv € Ug,. Moreover, if u <v, then
oc:=u+velUyg,.

The next theorem describes all the nonconstant polynomials belonging to the set of
weights Uc.

Theorem 2.1. ([25]) If u € Uy, is a nonconstant polynomial of degree N, then N is necessarily
even (N =2n' for some nonnegative integer n'). More precisely, u can be written in the form

n ) My
u(x)=a] | (x —I—ukx—l—bk>
k=0
where a >0 is a constant, ay and by are some real numbers satisfying a% —4b, <0, and my are

nonnegative integers for k=0,...,n. Furthermore, the weight y given above belongs to Ug,.

Definition 2.3. A function f € C(R,X) is called (Bohr) almost periodic if for each € >0 there
exists 1(€) >0 such that every interval of length 1(e) contains a number T with the property that

| f(t+T)—f(t)||<e foreachteR.

The collection of all almost periodic functions will be denoted AP(X).

Definition 2.4. A function F € C(R xY,X) is called (Bohr) almost periodic in t € R uniformly
iny€Y if for each e >0 and any compact KCY there exists I (&) such that every interval of length
1(€) contains a number T with the property that

|\F(t+7,y)—F(ty)||<e foreachtcR,yeK.

The collection of those functions is denoted by AP(Y,X).
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If 1,v € U, we then define
PAPy(X,u,v):= {feBC(]R,X) lim —— Hf )Hv(a)da:O}.
T—eo QT)

Similarly, we define PAPy(Y,X,u,v) as the collection of jointly continuous functions F:
R XY — X such that F(-,y) is bounded for each y €Y and

1
tim o { [ IFGw Ive)ds =0

uniformly iny €Y.

Definition 2.5. Let y,v € Uq. A function f € C(R,X) is called doubly-weighted pseudo-almost
periodic if it can be expressed as f=g+¢, where g€ AP(X) and ¢ € PAPy(X,u,v). The collection
of such functions will be denoted by PAP (X, u,v).

Definition 2.6. Let y,v € Us. A function F € C(RxY,X) is called doubly-weighted pseudo-
almost periodic if it can be expressed as F=G+®, where GE AP(Y,X) and P€PAPy (Y, X, u,v).
The collection of such functions will be denoted by PAP(Y, X, u,v).

3 Existence of a doubly-weighted mean for almost periodic
functions

Let yt,v € U. If f:IR—Xis a bounded continuous function, we define its doubly-weighted
mean, if the limit exists, by

M(fuv):=lim —— / v (t)dt.
o= im o [ o
It is well-known that if f € AP(X), then its mean defined by

exists and is called the Bohr transform of f.
It is also well-known that a(f,A) is nonzero at most at countably many points [26].
The set defined by

Ub(f)::{)\elR:a(f,A)#O}
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is called the Bohr spectrum of f [27].

In [12], the original question which consists of the existence of a weighted mean for
almost periodic functions was raised. In particular, the authors have shown through an
example that there exist weights for which a weighted mean for almost periodic functions
did not exist. In this section we investigate the broader question, which consists of the
existence of a doubly-weighted mean for almost periodic functions. Namely, we give
some sufficient conditions, which guarantee the existence of a doubly-weighted mean
for almost periodic functions. Moreover, under those conditions, it will be shown that
the doubly-weighted mean and the classical (Bohr) mean are proportional. Further, it
will be shown that if the doubly-weighted Bohr spectrum of an almost periodic function
exists, then it is either empty or coincides with the Bohr spectrum of that function. In [1],
it is proved that for y,v € Uy and f:IR — X an almost periodic function such that

(QT) 1 oMt ‘
Jim o) = ) Joy 0] 0 G
for all 0# A € 0, (f), the doubly-weighted mean of f,
M) = Jim = [ (ot

exists. Furthermore, M (f,u,v) =60,, M(f).
Consider the set of weights U, defined by

(Qt+'c)
S

s T—o0

< oo forall TEIR}.

Setting Cr=lim;_,, %, one can easily see that C; <D, <o forall T€R.

Definition 3.1. ([1]) Fix u,v € U and suppose that imr_,« V% % =0 If f:R—Xisan

almost periodic function such that (3.1) holds, we then define its doubly-weighted Bohr transform
as

A (f)(A) ::Tli_rgoy(éT) f(He My(t)dt  forall AER.
Now since t — g, (t) := f(t)e~"* € AP(X) it follows that
ﬁ;w(f) ()\) :BwM(f(‘) e ) ;wa(f )\)
That is, under (3.1),

2 (f)(A) 1= lim ﬁ / Fe v

=0,y lim — f( Je “tdt=0,,a(f,A), forall A€R.

w T—o02
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4 Main results

In this section, we fix the two weights p,v € Uy, such that PAP(X,p,v) is translation-
invariant and that
[V(QT)

1(Qr)

Assume that R(w, A(-)) € AP(B(X)) and that there there exists a function H:[0,00)+[0,00)
with HeL![0,00) such that for every e>0 there exists I (¢) such that every interval of length
I(e) contains a T with the property

inf

inf ] =60 >0. 4.1)

[A(t+T)U(t+T,5+T)P(s+7) = A()U(t,8)P(s) | px x,) <eH(t—s)

for all t,s € R with t>s.
Assume further that there exists 0 <a < <1 such that

X{i =X, Xtﬁ =X for all t € R, with uniform equivalent norm,
where

x,{j:{xex, supur“(A—w)R(nA—w)xH<°°}f

r>0

X4 = {xEX, sup||[rf(A—w)R(r,A—w)x| <oo}.

r>0

Furthermore, if 0<a < B <1, then we let k=k(a,B), k1 =k1 (), ko =k2(B) be the bounds of
the continous injections
Xﬁ<—>X“, Xy — X, Xﬁ<—>X.

that is

lulla <k|lu|lp for each ueXg, ||ul| <ki|lull, for each ucX,,
and [|u|| <kz||ul|g for each u € X4g.

For yt,v €Ul and 0<a < B <1let f:IRx X+ Xg be in PAP(X,Xg,u,v) such that

1£(tu) = f(£,0) [l p < Kllu—woll,

for all u,ve X and t €R. with K¢ >0.
To state our main result in this paper, we need the following extra-hypotheses

(H1) Letu,v€UUc. We suppose g:R x X— X belongs to PAP(X, X, y,v) and there exists
K¢ >0 such that

lg(tu) —g(t,v)|| <Kg|lu—vl],
for all u,veX and t€R.
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(H2) We suppose that the linear operators B(t),C(t) : X, — X for all t € R, are bounded
and set

(0 :=max (SUPHBU)HB(X,,C,X)/ fu]l]@:HCU)HB(x,X,X))-
S

teR

Furthermore, t— B(t) and t— C(t) are almost periodic.

To study the existence and uniqueness of doubly-weighted pseudo-almost periodic solu-
tions to (1.1) we first recall the notion of mild solution.

Definition 4.1. A function u: R — X, is said to be a mild solution to equation (1.2) provided
that the function T— A(t)U(t,T)P(T)f(t,B(T)u(T)) is integrable on (s,t),

T A(TU(LT)Q(D) F (7, B(D)u (1))

is integrable on (t,s) and
u(t) == f(LB(EU(D) +U(Ls) (u(s)+£(5,B(s)u(s)) )
—/tA (T)U(t,T)P(7)f(7,B(T)u(7))dt

/ Uo(t,7)Q(1)g(T,C(T)u(t))dr, 4.2)
for t >s and for all t,s € R.

In [28], it is shown under more hypotheses than (H1) and (H2) that a mild solution u
of (1.2) on IR satisfies for all t € R,

u(t) == (6B~ [ Als)U(L,5)P(s)f(5,B(5)u(s))ds
+ [ A Uo(t9)Q(s) £ (s, B(s)u(s)ds
+ [ Us)Pe)3ls,Cls)u(s))ds

— [ Ua(t,5)Q(e)8(5,C5)u(s)) s,

t

Throughout the rest of the paper we denote by I';,I';,I'3 and I'y, the nonlinear integral
operators defined by

(Flu)(t)::/_tooA(s)U(t,s)P(s)f(s,B(s)u(s))ds,
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(Ta) ()= [ AGS)Ua(t5)Q(6) £ (5, B(s)us) s,
(Tau)(t):= /_too U(t,s)P(s)g(s,C(s)u(s))ds,
(Ca) ()= [ Ua(t,9)Q()g(s,C(5)u(s))ds,

We now state our main result in this paper.
Theorem 4.1. If assumptions (H1)-(H2) hold and x <1 the equation (1.2) has a unique doubly-
weighted pseudo-almost periodic mild solution, where
k=kiKc® [5’1m(zx) Fc(a)2 %671 (1 —a)}
+ki1Kr@ [k-l—é’lm(oc,ﬁ) -1-41""5""171(0&,9)1"(1—“)] :

The proof of this results reposes on the following technique and preliminary lemmas.
Lemma 4.1. Under the hypotheses (H6) and (H7), the following assertion holds.
e ifuc PAP(R, Xy, u,v), then C(.)u(.) € PAP(R,X,u,v).

Proof. Letue PAP(IR, Xy, 1t,v). Then u=uq+uy where u1€ AP(RR, X, ), up€ PAPy(IR, Xy, 1, V).
We have

C(Hu(t)=C(H)ur(t)+C(t)ua(t), forall teR.
Since u; € AP(R,X,), for every € >0 there exists le such that every interval of length I,
contains a T such

€
< , teR.

“ (supiegllm ()] +)

Similarly, since C(t) € AP(B(X,,X)), we have

Hu1(t—|—1’)—u1(t)

HC(H—T)—C(t)H < € , teR.

B(Xe,X) (supteR!!ul(f)\‘a‘i"D)

Now
[C(t+T)ur (t+7) = C(t)ua (1)
<||[ct+n)—ct]um+o)|+||Ic [mE+-m @) |

<e

4

gHC(t+~c)— Hul(t+~c) ,

+C’DHM1 t+T)—1/l1(t)
a

HB(xa,x)

and hence t— C(t)u1 (t) belongs to AP(R,X).
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To complete the proof, it suffices prove that t — C(t)uz(t) belongs to PAPy (R, X, j,v),

we have . )
/.
}%@/_Zucu)uz(ﬂ“dv(ﬂ:o.

@ T
Cltun(t)[av(t)< 55 [ la(t) (o),

and hence

O

In [24], it is proved that for 0 <0 <a < <1 with 2a > 6-+1, then there exist two
constants m(«,),n(«,0) >0 such that

HA(S)UQ(t,s)Q(s)xH,Xgm(oc,,B)e‘s(f’s)HxHﬁ, for t <s, (4.3)
HA(s)U(t,s)P(s)xH,x§n(a,9)(t—s)‘“e‘g(t_s)HxHﬁ, for t>s. (4.4)

Lemma 4.2. Assume that (H2) hold, then the integral operators I'y and I'y defined above map
PAP(Xg,p,v) into itself.

Proof. Let u € PAP(Xg,pt,v). From Lemma 4.1 it follows that the function t — B(t)u(t)
belongs to PAP(X,u,v). It follows that ¢(-) = f(-,Bu(-)) is in PAP(Xg,u,v) whenever
u € PAP(Xy,p,v). In particular,
[lleo,p =sup|| f (£, Bu(t)) ]| p < co.
teR

Since ¢(-) = f(-,Bu(-)) is in PAP(Xg,u,v) then ¢ = ¢1+¢2, where ¢; € AP(RR,X;) and
¢2 € PAPy(R,Xg,11,v), that is, T'1¢p =E(¢1) +E(¢2) where

Eq)l(t)::/:oA(s)U(t,s)P(s)q)l(s)ds,
Ecpz(t)::[mA(s)U(t,s)P(s)¢2(s)ds.

Firstly, we show that E¢; € BC(IR,X), using estimate (4.4), we obtain

121 (1) ||p< /:o|\A(s)U(t,s)P(s)¢1(s)IIds
< n(a,0) /_ tm<f—5)"‘e§(”)H¢1Hﬁds
< n(w0)(3)' T (1) |1 .
Then E¢ € BC(R,Xp).
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Next, we prove that E(¢1) € AP(IR,X,). Since ¢1 € AP(R,Xp), then for every e >0

there exists I(€) > 0 such that every interval of length /(€) contains a T with the property
1 (t+7)—¢1(t)]|p <evi foreacht€eR,

404—151—04
where vy = ————. Now, we have

(T (1)
2 (t4+7) ~Ea(1) = [

— 00

t+T

A(s)U(t—l—r,s)P(s)cpl(s)ds—fwA(s)U(t,s)P(s)¢1(s)ds
—/ (s+T)U(t+71,54+T)+P(s+71) <¢1(s+r)—¢1(s))ds
—l—/ A(s+7)U t—I—T,s—l—T)P(s—I—T)—A(s)U(t,s)P(s))cpl(s)ds

Using equation (4.4) it follows that

H/ (s+m)U t+TIS+T)P(S+T)(qbl(s-l-r)—gbl(s))ds

Similarly, using assumption (H2), it follows that

| / As+TU(H+ T8+ T)P(s+T) = A U(ES)P(s) | ¢r()ds | <ellHl 9],
where || H|| 1 :/ H(s)ds < co. Finally, we have
0

1290 (t+7) ~E(@) (B < (14 Hl|s 91l )6, foreach teR,

and hence E(¢1) € AP(R,X,).

Now, we show that &(¢) € BC(R,Xp). Using estimate (4.4) and adopt the technique
developed for the function &(¢1).

To complete the proof, we will prove that E(¢2) € PAPy(R,Xg, ). So, let T>0. Again
from Eq. (4.4), we have

<éT) /T [(Egp2) (#)[[adv(t)
H [}2 / /+00”At s)U(t,t—s)P(t—s)P2(t—s)|adsdv(t)

IA

<o [ e et sty

<a,9)/0 st is <@/i\\¢2(t—s)\\ﬁdv(t)) ds.

<

=
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Now

1
tim o [ 9a(1-5)sctv(1) =0

T—)oo‘u

The function t+ ¢ (t—s) € PAPy(R,Xg,11,v) for every s€R. To completes the proof, using
the Lebesgue’s dominated convergence theorem.

The proof for Tpu(+) is similar to that of T'yu(-) except that one makes use of equation
(4.3) instead of equation (4.4). O

Lemma 4.3. If assumptions (H1)-(H2), hold, then the integral operators I's and I'y defined above
map PAP(IR, X, 1t,v) into itself.

Proof. Let u € PAP(IR, Xy, ,v). From Lemma 4.1 it follows that
C(-)u(:) e PAP(R,X,u,v).

Setting h(t) = g(t,Cu(t)). It is straightforward that h € PAP(R,X,,v). So, write next
h =1 +1po, where ¢; € AP(R,X) and ¢, € PAPy(R,X,u,v), that is, I'sh =E(¢1) +E(¢2)
where

t

1(s)ds

s)i1(s
t ()92 (s)ds

u(t

/oou
= [ U

Firstly, we show that Z¢; € BC(R,Xp), using estimate (2.7), we obtain

HEl/Jl(f)Hﬁ</ IU(t,s)P(s)ir(s) | ds

<c() /tw(f—s)“"e‘g“‘s)l\%Hﬁds
)
<c(@)(5)' " T(1=a)llgrp-

Then Elpl € BC(IR,X‘B)
Next, we prove that Z(¢;) € AP(R,X,). Since ¢; € AP(R,Xy), then for every € >0
there exists I(€) >0 such that every interval of length I(e) contains a T with the property

|1 (t4+7) =1 (t)||p <em, foreach t€R,

1

where 17 = T ()T (=2 Now

t+T1

B (F4+7) — B () = / U(t47,5)P ()1 (s)ds — /_t _U(L)P(s)a(s)ds

—o0
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:/_t U(t+1,5+T)P(s+7) (l[)1<S+T)—l/J1(S))dS
+f (u(t+r,s+~c)p(s+r)—u(t,s)p(s))¢1(s)ds.
Using equation (2.7) it follows that
<<
a2

Similarly, using assumption (H2). Let € >0, from [36] we know that

”/tooll(t—l—r,s—l-r)P(s—i-T) <¢1(s+r)—¢1(s)>ds

r—T(t+r,s+r) € AP(B(X)), fort,seRR,

where we may take the same almost periods for ¢,s with ||t —s|| <h>0. Hence, there exists
I(e) >0 such that every interval of length I(e) contains a number 7 >0 with the property
that, forteR,c>0:

€

|U(t+T,s+T)P(s+71)—U(ts)P(s)]| < 2Tl

Therefore,
[E(W1) (t4+7) —E(1) (D) [« <€
for each t € R, and hence E(ip1) € AP(R,Xy).
Now, we show that Z(1») € BC(IR,Xp). Using estimate (2.8) and adopt the technique
developed for the function Z(i).
Finally, to complete the proof, we will prove that &(1,) € PAPy(IR,Xg,1,v). Now, let
T >0. Again from equation (2.8), we have

o [ @ Olldv(t)

u(Qr) J-
T +o0
Sy(éT)/—T/O [U(t,t—s)P(t—s)2(t—s)|[odsdv(t)
= Vc((gi) /_TT/0+OOSa€%S|\1P2(t—s) |pdsdv(t)

< c<a)/0+°°s—«e—§s (@/iulpz(t_s)uﬁdv(t)> ds.

. 1 T
Jim s | (=) () =0
The function t+— > (t—s) € PAPy(R,Xg, p,v) for every s€R. To completes the proof, using
the Lebesgue’s dominated convergence theorem.

The proof for T'yu(-) is similar to that of T'su(+) except that one makes use of Eq. (2.7)
instead of Eq. (2.8). O

Now
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Proof of Theorem 4.1: Consider the nonlinear operator M defined on PAP(X,, 1) by

IMu(t):—P(t,B(t)u(t))—/_t A(s)U(t,s)P(s)F(s,B(s)u(s))ds
+/ s)Ug(t,s)Q(s )F(S,B(s)u(s))ds—i—/twU(t,s)P(s)G(S,C(s)u(s))ds
—/ Uo(t,5)Q(s)G(s,C(s)u(s))ds,

t

for each t € R. Next, in view of Lemma (4.2) and Lemma (4.3), it follows that M maps
PAP(R,X,,u) into itself. To complete the proof one has to show that M is a contraction
map on PAP(IR, Xy, 1). Let u,v € PAP(IR,X,, ). Firstly, we have

IT1(0) () =T1 (1) ()l
t )
n(oc,@)/ (t—s)""e‘l(t_s)HF(s,B(s)v(s))—F(s,B(s)u(s))Hﬁds
t )
n(a,0)Kro / (t—s) "% 19)||u(s) —u(s)||ds
t )
n(zx,G)KpcD/ kl(t—s)_"‘e_K(t_s)Hv(s)—u(s)H,de
t
gn(a,e)kalw|\v—u||oo,a/ (t—5) %~ §(—5)ds
= 4175 1 (a,0) T (1 —a) Krky |0 — 12| co 0
Next, we have

IT2(0) () ~T() (1)
< m(aB) [ e F(sB(s)o(s)) —~F(s,B)u(s)) s
< mla )Ke [ B(s)os) ~BE)u(s) ds
maB)Kee [ ke o(s) —us) fads
< m(a YKk oo [0S
— 6 m(a, B)Kreoky |0 — oo,
Now, we have
I3 (0)()~T(w) (1)
< [ U P G(5,C5)o(5) ~ Gls,Cls ()] ads
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<e(w) [ (t-5) e (s o(s) - Clo)u(s) s
< coleGc(oc)/t (t—s) "% 279 ||u(s) — u(s)]|ods

< Ke@kic(a)2™ 6 1T (1—a) || — | con-
Finally, we have
ITa(0) (£) =Ta (1) (£) [
< mi@) [ G (s,C(s)0(s)) ~ G5, C()u(s)) s
t
< m(rx)KG/ =) C(s)v(s) —C(s)u(s)||ds
t
< wklm(zx)KG/ =9 1p(s) — u(s) |lods
t
—+o0
< Kcm(oc)coklﬂv—uﬂool,x/ %) ds
t
< Keo ™ tokym(a)|[v— |-
Combining previous approximations it follows that
Mo —Mu[ooq <||0— 1|00 -

Then M is a contraction map on PAP(IR,X,, ). Therefore, M has unique fixed point in
PAP(R,Xq, i), that is, there exist unique u € PAP(IR,X,,#) such that Mu = u. Therefore,
Eq. (1.2) has unique doubly-weighted pseudo-almost periodic mild solution. O

5 Application

To illustrate the result in Theorem 4.1, we consider the following equation.

% [U(t,.)_|_f(t,k(t,x)VU(f/'))]

d2

:@v(t,-)—l-v(t,-)[sin(at)+sin(bt)—2]+g(t,k(t,x)Vv(t,-)), on Rx[0,1], (5.1)

with boundary conditions
v(t,0)=v(t,1)=0, t€R, (5.2)

where the coefficients a,b€R with §ZQ, f:RxX—Xg, g:RxX—X and ky,k2:Rx [0,1]—=R
are continuous functions.
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In order to rewrite Eq. (5.1) in the abstract form equation (1.2). We choose the spaces
X = L2([0,1]), endowed with the norm ||-||,. We also consider the operator A: D(A) C
X—X, given by

D(A)=H*(0,1)NH{(0,1) and  Au=u"  forucD(A).

Itis well known that A is the infinitesimal generator of an exponentially stable Cyp-semigro-

up (T(t)) ., such that | T(¢)] < e~ for t>0. Define next a set of linear operator A(t) as
follows:

D(A(t))=D(A)=H?*([0,1])nH([0,1]),
A(t)v=(A+sin(at)+sin(bt) —2)v, veD(A).

Hence D(A(t))=D(A) and
IA(H)—A(s) || = H (sin(at) —sin(as) +sin(bt) —sin(bs) ) H < (la|+b])|t—s],

for all s,t € R, then the assumption (HO) is satisfied.
A(t) generate an evolution family U(t,s);>s such that

U(t,s)v=T(t—s)exp (/St(sin(ur)—l—sin(br) —2)dT> v.

Since ||U(t,s)|| <e ™(=5) for t >s and t,s € R, it is easy to verify that A(t) satisfy the
assumption (H1) with M =1, § = 7. Next, since ¢ sin(at)+sin(bt) is almost periodic,
then R(w,A(-)) € AP(R,£(X)) and the assumption (H2) is satisfied. Take 1 <a <1 and
let B, such that 0 < pu <a < B <1 with 2a > u+1. We introduce the linear operators
B(t),C(t): Xy X for all € R defined by

B(t)p=ki(t,")Vg and C(t)p=ka(t,-)Ve for tc R and ¢ €X,,

where X, = (L*([0,1]),H*([0,1])NH;([0,1])), ., and k(t,-) : (0,1) = R is continuous and
almost periodic in t € R uniformly in x € [0,1]. Let F: R x X+ X be the mapping defined
by

F(t,¢)(x)=f(t,9(x)),  for x&[0,1]
and G:R x XX defined by

G(t9)(x)=g(t,9(x)),  forxc[01].
Lety : R—X, be the function defined by y(t)=v(t,-), for t€R. Then the system (5.1)-(5.2)

takes the abstract form

S WO+FEBOYE) ANy +GECHyYD),  teR 63
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Let
el if +<0,

”(t)zv(t):{ 1 if £>0.

If we assume that f and g are doubly-weighted (y,v)—pseudo almost periodic in t € R
uniformly in # € X and satisfying globally Lipschitz with respect to the second argument
in the following sense: there exists Ky >0 and K¢ >0 such that

[ —fwo| <killu—o

J-sts0] <o

, forall t€R and u,v € Xg,
L2([o,1])

, forall teR and u,veX.
L2([o,1])

Hence all assumption of Theorem (4.1) are satisfied and the equation (5.1) has a unique
doubly-weighted (y,v)-pseudo almost periodic solution.
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