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Abstract. Let N≥2, αN =Nω
1/(N−1)
N−1 , where ωN−1 denotes the area of the unit sphere

in R
N . In this note, we prove that for any 0<α<αN and any β>0, the supremum

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|β

(
eα|u|

N
N−1

−
N−2

∑
j=0

αj

j!
|u|

Nj
N−1

)
dx

can be attained by some function u∈W1,N(RN) with ‖u‖W1,N(RN)=1. Moreover, when
α≥αN , the above supremum is infinity.
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1 Introduction and main results

Let N≥2 and αN =Nω
1/(N−1)
N−1 , where ωN−1 is the area of the unit sphere in R

N. For any

bounded domain Ω⊂R
N, we denote W1,N

0 (Ω) the closure of C∞
0 (Ω) under the norm

‖u‖
W1,N

0 (Ω)=

(∫

Ω
|∇u|Ndx

)1/N

.

The classical Trudinger-Moser inequality [1–5] says

sup
u∈W1,N

0 (Ω),‖u‖
W1,N

0 (Ω)
≤1

∫

Ω
eαN |u|

N/(N−1)
dx<∞. (1.1)
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Define a function ζ :N×R→R by

ζ(N,t)= et−
N−2

∑
j=0

tj

j!
=

∞

∑
j=N−1

tj

j!
.

The inequality (1.1) was extended by Cao [6], Panda [7], do Ó [8], Adachi-Tanaka [9] to

the whole R
N, namely

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
ζ(N,α|u|

N
N−1 )dx<∞, ∀0<α<αN , (1.2)

where

‖u‖W1,N(RN)=

(∫

RN
(|∇u|N+|u|N)dx

)1/N

.

The critical case of (1.2), α= αN , was obtained by Ruf [10] and Li-Ruf [11]. Later, using

the Young inequality, Adimurthi-Yang [12] provided a very simple proof of the critical

Trudinger-Moser inequality in R
N , as well as the singular Trudinger-Moser inequality.

One of conclusions in [12] is that the inequality

∫

RN

ζ(N,α|u|
N

N−1 )

|x|β
dx<∞, (1.3)

holds for any α>0, 0≤β<N and any u∈W1,N(RN) (N≥2).
It was proved by Ruf [10] and Ishiwata [13] that the supremum

sup
u∈W1,2(R2),‖u‖

W1,2(R2)
≤1

∫

R2
(eαu2

−1)dx,

can be attained when α∗≤α<4π for some constant α∗
>0, and can not be attained when

0<α≪1. In the case α=αN and N≥3, the existence of extremal functions for the supre-

mum in (1.2) was obtained by Li-Ruf [11]; while in the case 0<α<αN, the existence result

was proved by Ishiwata [13].

From now on, we assume N≥2. In this note, we first prove a Trudinger-Moser type

inequality, namely

Theorem 1.1. (i) For any β>0, any α>0 and any u∈W1,N(RN), there holds
∫

RN
|u|βζ(N,α|u|

N
N−1 )dx<∞.

(ii) For any β>0 and any 0<α<αN , we have

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx<∞. (1.4)

(iii) For any β>0 and any α≥αN , the above supremum is infinity.
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Concerning the extremal function for (1.4), we have the following:

Theorem 1.2. For any β>0 and any 0<α<αN , the supremum

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx

can be attained by some function u∈W1,N(RN) with ‖u‖W1,N(RN)=1.

Remark 1.1. In Theorems 1.1 and 1.2, if |u|β is replaced by a general term φ(|u|β), where

φ : [0,∞)→ [0,∞) is an increasing function satisfying

lim
α→0+

limsup
s→+∞

φ(s)

ζ(N,αs
N

N−1 )
<+∞,

then the same conclusion still holds.

Our proof of Theorems 1.1 and 1.2 is based on the Hölder inequality, the Trudinger-

Moser inequality (1.2) and concentration-compactness analysis. Before ending the intro-

duction, we mention Carleson-Chang [14], Flucher [15], Lin [16], Li [17], Yang [18–20],

Lu-Yang [21], Wang-Ye [22] and Yang-Zhu [23, 24] for existence of extremal functions

for Trudinger-Moser inequalities on bounded Euclidean domain or compact Riemannian

surface.

The remaining part of this note is organized as follows: Section 2 gives some prelimi-

nary results, and we prove Theorem 1.1 in Section 3. Finally, Theorem 1.2 will be proved

in Section 4.

2 Preliminaries

In this section, we first introduce an elementary inequality due to Yang [25]. It would

bring a great convenience during our calculation. Namely,

Lemma 2.1. Let t≥0 and p≥1. Then for any integer N≥2,

(
ζ(N,t)

)p
≤ ζ(N,pt).

We next recall several definitions on the Schwarz rearrangement [26]. Let Ω be a

bounded smooth domain in R
N and u be a nonnegative function belonging to W1,N

0 (Ω).
BR represents a ball of radius R centered at the origin. |Ω| is the volume of Ω. Define a

function u∗ :BR→R satisfying:

(a) |BR|= |Ω|;

(b) |{x∈BR : u∗(x)> t}|= |{x∈Ω : u(x)> t}| for t>0.
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Then u∗ is called the Schwarz rearrangement of u. u∗ is a decreasing radially symmetric

function. Suppose H : R→R is a continuous and increasing function. By the rearrange-

ment, one gets

∫

BR

H(u∗(x))dx=
∫

Ω
H(u(x))dx,

∫

BR

|∇u∗|Ndx≤
∫

Ω
|∇u|Ndx.

For the whole Euclidean space R
N , the Schwarz rearrangement can be similarly de-

fined. For each t ≥ 0, let χ{u>t}∗ be the characteristic function of the set {u > t}∗ =BR,

where |BR|= |{u> t}|. Define the Schwarz rearrangement of u by

u∗(x)=
∫ ∞

0
χ{u>t}∗(x)dt.

Thus u∗ is a decreasing radially symmetric function. In addition, u∗ satisfies

∫

RN
H(u∗(x))dx=

∫

RN
H(u(x))dx,

∫

RN
|∇u∗|Ndx≤

∫

RN
|∇u|Ndx.

Throughout this note, BR denotes a ball centered at the origin with radius R; while

B
c
R denotes its complement. on(1)→ 0 as n→∞. We often denote various constants by

the same C. The reader can easily recognize it from the context. Moreover, we do not

distinguish sequence and subsequence during the analysis.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proof of the first two parts of Theorem 1.1

is based on the Hölder inequality, Lemma 2.1, the Sobolev embedding theorem, the

Trudinger-Moser inequality (1.2) and the inequality (1.3). The third part of Theorem 1.1

will be proved by a computation of the Moser function sequence.

Proof of Theorem 1.1 For any β>0, any α>0 and any u∈W1,N(RN), we have by the

Hölder inequality and Lemma 2.1,

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx≤

(∫

RN

|u|βpdx
)1/p(∫

RN

(
ζ(N,α|u|

N
N−1 )

)p′
dx
)1/p′

≤
(∫

RN
|u|βpdx

)1/p(∫

RN
ζ(N,αp′ |u|

N
N−1 )dx

)1/p′

≤C
(∫

RN
ζ(N,αp′ |u|

N
N−1 )dx

)1/p′

, (3.1)

for some constant C only depending on N, β, p, where 1/p+1/p′=1 and p>max{1,N/β}.

Notice that the integral on the left-hand side of (3.1) is the special case of (1.3), namely

β=0. Thus, the proof of (i) is complete.
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Assume 0<α<αN and u∈W1,N(RN) with ‖u‖W1,N(RN)≤1. Choose q′>1 sufficiently

close to 1 such that αq′<αN . Again using the Hölder inequality and Lemma 2.1, we obtain

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx≤

(∫

RN

|u|βqdx
)1/q(∫

RN

(
ζ(N,α|u|

N
N−1 )

)q′
dx
)1/q′

≤
(∫

RN
|u|βqdx

)1/q(∫

RN
ζ(N,αq′ |u|

N
N−1 )dx

)1/q′

, (3.2)

where 1/q+1/q′ = 1. The two integrals on the left-hand side of (3.2) are both bounded,

thanks to (1.2) and the Sobolev embedding theorem. Thus, the proof of (ii) is complete.

Finally, we prove for any α≥αN ,

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx=∞. (3.3)

Recall Moser’s function sequence,

mn(x,r)=
1

ω1/N
N−1





(logn)(N−1)/N, |x|≤ r/n,

(logn)−1/N log(r/|x|), r/n< |x|≤ r,

0, |x|> r.

By straightforward calculation, we have

∫

RN
|∇mn(x,r)|Ndx=

1

ωN−1

∫

r
n≤x≤r

1

(logn)|x|N
dx=1, (3.4)

∫

|x|≤ r
n

|mn(x,r)|Ndx=
1

ωN−1

∫

|x|≤ r
n

(logn)N−1dx=
( r

n

)N (logn)N−1

N
= on(1). (3.5)

Integration by parts, it follows that

∫

r
n≤ |x|≤ r

|mn(x,r)|Ndx

=
1

logn

∫ r

r
n

tN−1
(

log
r

t

)N
dt

=−
1

N

( r

n

)N
(logn)N−1+

1

logn

∫ r

r
n

tN−1
(

log
r

t

)N−1
dt

=−
( r

n

)N{ 1

N
(logn)N−1+

1

N
(logn)N−2+

N−1

N2
(logn)N−3

+···+
(N−1)(N−2)···3

NN−2
logn

}
+

1

logn

(N−1)!

NN−2

∫ r

r
n

tN−1
(

log
r

t

)
dt

=on(1). (3.6)
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Combining (3.5) and (3.6), we get

∫

RN
|mn(x,r)|Ndx=

1

ωN−1

∫

|x|≤ r
n

(logn)N−1dx+
1

ωN−1

∫

r
n≤|x|≤r

(
log r

|x|

)N

logn
dx

=on(1). (3.7)

In view of (3.4) and (3.7), we obtain

‖mn(x,r)‖N
W1,N(RN)=

∫

RN
|mn|

Ndx+
∫

RN
|∇mn|

Ndx=1+on(1).

Considering m̃n(x,r)=mn(x,r)/‖mn(x,r)‖W1,N(RN), it follows that

∫

RN
|m̃n|

βζ
(

N,αm̃
N

N−1
n

)
dx≥

∫

|x|≤ r
n

|m̃n|
β

(
eαm̃

N
N−1
n −

N−2

∑
j=0

αj

j!
m̃

N
N−1 j
n

)
dx

≥

(
n

α

ω
1/(N−1)
N−1 eO(1)+O

(
(logn)N−2

))ω
1− β

N
N−1 rN

(
logn

) N−1
N β

(1+on(1))NnN
.

For any α≥αN , we have

(logn)
N−1

N β ·n

α

ω
1/(N−1)
N−1

nN
≥ (logn)

N−1
N β →∞, (n→∞).

Thus (3.3) holds and therefore we complete the proof of the Theorem 1.1. �

4 Proof of Theorem 1.2

In this section, we will apply concentration-compactness analysis to obtain the existence

of extremal function for supremum in (1.4).

Proof of Theorem 1.2 For any u∈W1,N(RN), we let u∗ be the Schwarz rearrangement

of |u|, then
∫

RN
|u∗|Ndx=

∫

RN
|u|Ndx,

∫

RN
|∇u∗|Ndx≤

∫

RN
|∇u|Ndx,

∫

RN
|u∗|βζ(N,α|u∗ |

N
N−1 )dx=

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx.

Therefore, without loss of generality, we can take a nonnegative decreasing symmetric

maximizing sequence {un(x)}(n ∈ N) for the supremum in (1.4). Thus, for such un ∈
W1,N(RN) with ‖un‖W1,N(RN)≤1, there holds

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|βζ(N,αu

N
N−1 )dx= lim

n→∞

∫

RN
|un|

βζ(N,αu
N

N−1
n )dx. (4.1)
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Since ‖un‖W1,N(RN)≤1, there exists some function ũ∈W1,N(RN) such that un⇀ũ weakly in

W1,N(RN) taking the subsequence if necessary. Clearly ũ is also nonnegative decreasing

symmetric. In order to verify Theorem 1.2, it is sufficient to show the following result:

lim
n→∞

∫

RN
|un|

βζ(N,αu
N

N−1
n )dx=

∫

RN
|ũ|βζ(N,αũ

N
N−1 )dx. (4.2)

Now we prove (4.2). Given any R>0, obviously we have

∫

RN

(
|un|

βζ(N,αu
N

N−1
n )−|ũ|βζ(N,αũ

N
N−1 )

)
dx

=
∫

BR

(
|un|

βζ(N,αu
N

N−1
n )−|ũ|βζ(N,αũ

N
N−1 )

)
dx

+
∫

B
c
R

(
|un|

βζ(N,αu
N

N−1
n )−|ũ|βζ(N,αũ

N
N−1 )

)
dx

= : I+ I I. (4.3)

By the radial lemma [27], we get for any x∈R
N\{0},

|un(x)|N ≤
N

ωN−1
‖un‖

N
LN(RN)

1

|x|N
.

Note that

‖un‖LN(RN)≤‖un‖W1,N(RN)≤1.

Then a straightforward calculation shows

∫

B
c
R

|un|
βζ(N,αu

N
N−1
n )dx=

∫

B
c
R

( ∞

∑
j=N−1

αj

j!
u

N
N−1 j+β
n

)
dx

≤
ωN−1

β

∞

∑
j=N−1

αj

j!

( N

ωN−1

) 1
N−1 j+

β
N 1

R
N

N−1 j+β−N
.

It follows that

lim
R→∞

lim
n→∞

∫

Bc
R

|un|
βζ(N,αu

N
N−1
n )dx=0. (4.4)

With a similar consideration, we can easily get

lim
R→∞

lim
n→∞

∫

Bc
R

|ũ|βζ(N,αũ
N

N−1 )dx=0. (4.5)

Combining (4.4) and (4.5), we obtain

lim
R→∞

lim
n→∞

I I=0. (4.6)
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Now we estimate I. To see this, We denote for all t≥0,

f (t)= tβζ(N,αt
N

N−1 ).

We obtain by using mean value theorem,

I≤
∣∣∣
∫

BR

(
|un|

βζ(N,αu
N

N−1
n )−|ũ|βζ(N,αũ

N
N−1 )

)
dx
∣∣∣

≤β

∫

BR

ηβ−1ζ(N,αη
N

N−1 )|un−ũ|dx

+
αN

N−1

∫

BR

ηβζ′(N,αη
N

N−1 )η
1

N−1 |un−ũ|dx

=β

∫

BR

ηβ−1ζ(N,αη
N

N−1 )|un−ũ|dx

+
αN

N−1

∫

BR

η
1

N−1+βζ(N,αη
N

N−1 )|un−ũ|dx

+
αN−1N

(N−1)!

∫

BR

ηN−1+β|un−ũ|dx

= : I1+ I2+ I3. (4.7)

Here η is nonnegative and lies between un and ũ. Choose p2 >1 and p′2 >1 respectively

such that αp2<αN and αp′2<αN . By the Hölder inequality and Lemma 2.1, we have

I2≤
αN

N−1

∫

BR

u
1

N−1+β
n ζ(N,αu

N
N−1
n )|un−ũ|dx

+
αN

N−1

∫

BR

ũ
1

N−1+βζ(N,αũ
N

N−1 )|un−ũ|dx

≤αN N
(∫

BR

u
( 1

N−1+β)p1
n dx

) 1
p1
(∫

BR

ζ(N,αp2u
N

N−1
n )dx

) 1
p2
(∫

BR

|un−ũ|p3dx
) 1

p3

+αN N
(∫

BR

ũ( 1
N−1+β)p′1dx

) 1
p′1

(∫

BR

ζ(N,αp′2 ũ
N

N−1 )dx
) 1

p′2

(∫

BR

|un−ũ|p
′
3dx
) 1

p′3

≤C1‖un−ũ‖Lp3 (BR)+C2‖un−ũ‖
Lp′3 (BR)

,

where 1/p1+1/p2+1/p3=1, 1/p′1+1/p′2+1/p′3=1. C1 is a constant depending only on

N,R,α,β,p1,p2; while C2 is a constant depending only on N,R,α,β,p′1,p′2. Letting n→∞

and next R→∞, then

lim
R→∞

lim
n→∞

I2=0. (4.8)

Meanwhile, we have by the Hölder inequality,

I3≤C
(∫

BR

(un+ũ)(N−1+β)sdx
)1/s(∫

BR

|un−ũ|tdx
)1/t

≤C‖un−ũ‖Lt(BR)
,
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where 1/s+1/t=1 and C is a constant that depends only on N,R,α,β,s. Then we have

lim
R→∞

lim
n→∞

I3=0. (4.9)

In order to estimate I1, we distinguish two cases as follows.

Case 1: β≥1. If β≥1. An obvious analog of (4.8) is

lim
R→∞

lim
n→∞

I1=0. (4.10)

Combining (4.7)-(4.10), we get

lim
R→∞

lim
n→∞

I= lim
R→∞

lim
n→∞

(I1+ I2+ I3)=0.

This together with (4.3) and (4.6) leads to

lim
n→∞

∫

RN

(
|un|

βζ(N,αu
N

N−1
n )−|ũ|βζ(N,αũ

N
N−1 )

)
dx=0,

which is equivalent to (4.2).

Case 2: 0< β < 1. The difficulty in this case lies in the estimate of I1 in (4.7). Since

−1<β−1<0, the integrability of uβ−1 is not clear. The Hö inequality can not be applied

directly. This motivates us to define the function by

g(t)= tβ−1ζ(N,αt
N

N−1 )=
∞

∑
j=N−1

αj

j!
t

N
N−1 j+β−1,

for any t ≥ 0. One checks easily that g(t) is an increasing function. Moreover, for any

nonnegative function u∈W1,N(RN) with ‖u‖W1,N(RN)≤1,

g(u)=uN+β−1

(
∞

∑
j=N−1

αj

j!
u

N
N−1 (j−N+1)

)

=uN+β−1
(
χ{u>1}+χ{u≤1}

)
(

∞

∑
j=N−1

αj

j!
u

N
N−1 (j−N+1)

)

≤uN+β−1

(
∞

∑
j=N−1

αj

j!
u

N
N−1 j

)
+

∞

∑
j=N−1

αj

j!

=uN+β−1ζ(N,αu
N

N−1 )+
∞

∑
j=N−1

αj

j!
, (4.11)

where χ{u>1} denotes the characteristic function of set {x∈R
N :u(x)>1}. Take p>1 such

that αp<αN . In view of (4.11), we have by the Minkowski inequality and Lemma 2.1,

(∫

BR

g(u)pdx

)1/p

≤

(∫

BR

u(N+β−1)pζ(N,αpu
N

N−1 )dx

)1/p

+

(
∞

∑
j=N−1

αj

j!

)
|BR|

1/p.
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Since (N+β−1)p>1, we conclude that the first term in the above inequality is finite by

virtue of the analysis of Case 1. Obviously, the second term is also bounded. Therefore

g(u)∈Lp(BR) for some p>1.

By calculation, one has

I1=
∫

BR∩{un≤1}
βg(η)|un−ũ|dx+

∫

BR∩{un>1}
βg(η)|un−ũ|dx

≤
∫

BR∩{un≤1}

(
g(un)+g(ũ)

)
|un−ũ|dx+

∫

BR∩{un>1}

(
g(un)+g(ũ)

)
|un−ũ|dx

≤
∫

BR∩{un≤1}

(
g(1)+g(ũ)

)
|un−ũ|dx+

∫

BR∩{un>1}

(
ζ(N,αu

N
N−1
n )+g(ũ)

)
|un−ũ|dx.

Note that g(ũ) ∈ Lp(BR) for some p > 1. The first term tends to 0 as n → ∞ thanks to

the Hö inequalitythe Minkowski inequality and the Sobolev embedding theorem. Again

using these inequalities together with inequality (1.2) and Lemma 2.1, we conclude that

the second term tends to 0 as n→∞. Therefore

lim
R→∞

lim
n→∞

I1=0.

This together with (4.8) and (4.9) implies

lim
R→∞

lim
n→∞

I=0. (4.12)

Hence, (4.2) follows from (4.3), (4.6) and (4.12) in this case.

Combining the above two cases, we conclude that (4.2) holds. It follows from (4.1)

and (4.2) that ũ attains the supremum in (1.4).

Finally, we prove ‖ũ‖W1,N(RN)=1. Suppose not. Clearly, ũ 6≡0. Assume ‖ũ‖W1,N(RN)<1.

We set ū= ũ/‖ũ‖W1,N(RN), then ‖ū‖W1,N(RN)=1. Moreover, we obtain

sup
u∈W1,N(RN),‖u‖

W1,N(RN )
≤1

∫

RN
|u|βζ(N,α|u|

N
N−1 )dx

≥
∫

RN
|ū|βζ(N,α|ū|

N
N−1 )dx>

∫

RN
|ũ|βζ(N,α|ũ|

N
N−1 )dx,

which contradicts the fact that ũ attains the supremum in (1.4). Thus, ‖ũ‖W1,N(RN) = 1.

Therefore ũ is the desired extremal function. The proof of Theorem 1.2 is completely

finished. �
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