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1 Introduction

In [1] has been obtained a representation in an explicit form of the solution of the linear

partial differential equation of the higher order in two variables with initial condition

whose coefficients were real-valued coefficients. The aim of the present manuscript is

resolve an analogous problem for a linear partial differential equation of the higher or-

der in two variables with initial condition whose coefficients are real-valued simple step

functions.

The paper is organized as follows.

In Section 2, we consider some auxiliary notions and facts which come from works

[1–3]. In Section 3, we get a representation in an explicit form of the weak solution of
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the partial differential equation of the higher order in two variables with initial condition

whose coefficients are real-valued simple step functions.

2 Some auxiliary notions and results

Definition 2.1. Fourier differential operator (F) ∂
∂x in R∞ is defined as follows :
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For n ∈N, let FDn[−l,l[ be a vector space of all n-times differentiable functions on

[−l,l[ such that for arbitrary 0≤ k≤ n−1, a series obtained by a differentiation term by

term of the Fourier series of f (k) pointwise converges to f (k+1) for all x∈ [−l,l[.

Lemma 2.1. Let f ∈ FD(1)[−l,l[. Let GM be an embedding of the FD(1)[−l,l[ in to R∞ which

sends a function to a sequence of real numbers consisting from its Fourier coefficients. i.e., if

f (x)=
c0

2
+

∞

∑
k=1

ck cos

(

kπx

l

)

+dk sin

(

kπx

l

)

(x∈ [−l,l[),

then GF( f )=( c0
2 ,c1,d1,c2,d2,. . .). Then, for f ∈FD(1)[−l,l[, the following equality

(

G−1
F ◦(F)

∂

∂x
◦GF

)

( f )=
∂

∂x
( f ) (2.2)

holds.

Proof. Assume that for f ∈FD(1)[−l,l[, we have the following representation

f (x)=
c0

2
+

∞

∑
k=1

ck cos
(kπx

l

)

+dk sin
( kπx

l

)

(x∈ [−l,l[).

By the definition of the class FD(1)[−l,l[, we have

d

dx
( f )=

∂

∂x

(

c0

2
+

∞

∑
k=1

ck cos
( kπx

l

)

+dk sin
( kπx

l

)

)
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By the definition of the composition of mappings, we have

(
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By the scheme used in the proof of Lemma 2.1, we can get the validity of the following

assertion.
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Lemma 2.2. Let GM be an embedding of the FDn[−l,l[ in to R∞ which sends a function to a

sequence of real numbers consisting from its Fourier coefficients.

Then, for f ∈FD(n)[−l,l[ and Ak∈R(0≤ k≤n), the following equality

(

G−1
F ◦

( n

∑
k=0

Ak((F)
∂

∂x
)k
)

◦GF

)

( f )=
n

∑
k=0

Ak
∂k

∂xk
( f ) (2.3)

holds, where Ak are real numbers for 0≤ k≤n.

Example 2.1. [2] If A is the real matrix

(

σ ω

−ω σ

)

, (2.4)

then

etA = eσt

(

cos(ωt) sin(ωt)
−sin(ωt) cos(ωt)

)

. (2.5)

Lemma 2.3. For m≥1, let us consider a linear autonomous nonhomogeneous ordinary differential

equations of the first order

d

dt
((ak)k∈N)=

( 2m

∑
n=0

An

(

(F)
∂

∂x

)n
)

×((ak)k∈N)+( fk)k∈N (2.6)

with initial condition

(ak(0))k∈N =(Ck)k∈N, (2.7)

where

(i) (Ck)k∈N ∈R∞;

(ii) f =( fk)k∈N is the sequence of continuous functions of a parameter t on R.

For each k≥1, we put

σk =
m

∑
n=0

(−1)n A2n

(

kπ

l

)2n

, (2.8)

ωk=
m−1

∑
n=0

(−1)n A2n+1

(

kπ

l

)2n+1

. (2.9)

Then the solution of (2.6)-(2.7) is given by

(ak(t))k∈N = e
t

(

∑
2m
n=0 An

(

(F ) ∂
∂x

)n)

×(Ck)k∈N+
∫ t

0
e
(τ−t)

(

∑
2m
n=0 An

(

(F ) ∂
∂x

)n)

× f (τ)dτ, (2.10)
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where exp
(

t(∑2m
n=0 An

(

(F) ∂
∂x

)n
)
)

denotes an exponent of the matrix t(∑2m
n=0 An

(

(F) ∂
∂x

)n
) and

it exactly coincides with an infinite-dimensional (1,2,2,.. .)-cellular matrix D(t) with cells (Dk(t))

k∈N for which D0(t)=(etA0) and

Dk(t)= eσk t

(

cos(ωkt) sin(ωkt)
−sin(ωkt) cos(ωkt)

)

, (2.11)

where for k≥1, σk and ωk are defined by (2.8)-(2.9), respectively.

Proof. We know that if we have a linear autonomous inhomogeneous ordinary differen-

tial equations of the first order

d

dt
((ak)k∈N)=E×((ak)k∈N)+( fk)k∈N (2.12)

with initial condition

(ak(0))k∈N =(Ck)k∈N, (2.13)

where

(i) (Ck)k∈N ∈R∞;

(ii) ( fk))k∈N is the sequence of continuous functions of parameter t on R;

(iii) E is an infinite dimensional (1,2,2,.. .)-cellular matrix with cells (Ek)k∈N.

Then the solution of (2.6)-(2.7) is given by (cf. [2], §6, Section 1)

(ak(t))k∈N = etE×(Ck)k∈N+
∫ t

0
e(τ−t)E× f (τ)dτ, (2.14)

where etE and e(τ−t)E denote exponents of matrices tE and (τ−t)E, respectively.

Note that t∑
2m
n=0 An

(

(F) ∂
∂x

)n
is an infinite-dimensional (1,2,2,.. .)-cellular matrix with

cells (tEk)k∈N such that tE0=(tA0) and

tEk =

(

tσk tωk

−tωk tσk

)

(2.15)

for k ≥ 1. Under notations (2.8)-(2.9), by using Example 2.1 we get that for t ∈ R, etE

exactly coincides with an infinite-dimensional (1,2,2,.. .) -cellular matrix D(t) with cells

(Dk(t))k∈N for which D0(t)=(etA0) and

Dk(t)= eσk t

(

cos(ωkt) sin(ωkt)
−sin(ωkt) cos(ωkt)

)

. (2.16)

Note that, for 0≤τ≤t, the matrix e(τ−t)E exactly coincides with an infinite-dimensional

(1,2,2,.. .)-cellular matrix D(τ−t).
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The following proposition is a simple consequence of Lemma 2.3.

Corollary 2.1. For m≥1, let us consider a linear partial differential equation

∂

∂t
Ψ(t,x)=

2m

∑
n=0

An
∂n

∂xn
Ψ(t,x) ((t,x)∈ [0,+∞[×[−l,l[) (2.17)

with initial condition

Ψ(0,x)=
c0

2
+

∞

∑
k=1

ck cos
( kπx

l

)

+dk sin
( kπx

l

)

∈FD(0)[−l,l[. (2.18)

If ( c0
2 ,c1,d1,c2,d2,. . .) is such a sequence of real numbers that a series Ψ(t,x) defined by

Ψ(t,x)=
etA0 c0

2
+

∞

∑
k=1

eσk t
(

(ck cos(ωkt)+dk sin(ωkt))cos

(

kπx

l

)

+(dk cos(ωkt)−ck sin(ωkt))sin(
kπx

l
)
)

(2.19)

belongs to the class FD(2m)[−l,l[ as a series of a variable x for all t≥0, and is differentiable term

by term as a series of a variable t for all x∈ [−l,l[, then Ψ is a solution of (2.17)-(2.18).

3 Solution of a linear partial differential equation of the higher

order in two variables with initial condition when coefficients

are real-valued simple step functions

Let 0= t0 < ···< tI =T and −l= x0< ···< xJ = l. Suppose that

An(t,x)=
I−1

∑
i=0

J−1

∑
j=0

A
(i,j)
n ×χ[ti,ti+1[×[xj,xj+1[(t,x),

where A
(i,j)
n are given real numbers for 0≤ k≤n,0≤ i< I,0≤ j< J.

For m≥1, let us consider a partial differential equation

∂

∂t
Ψ(t,x)=

2m

∑
n=0

An(t,x)
∂n

∂xn
Ψ(t,x) ((t,x)∈ [0,T[×[−l,l[) (3.1)

with initial condition

Ψ(0,x)=
c0

2
+

∞

∑
k=1

ck cos
( kπx

l

)

+dk sin
( kπx

l

)

∈FD(0)[−l,l[. (3.2)
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Definition 3.1. We say that Ψ(t,x) is a weak solution of (3.1)-(3.2) if the following conditions

hold:

(i) Ψ(t,x) satisfies (3.1) for each (t,x)∈ [0,T[×[−l,l[ for which t 6= ti(0≤ i≤ I) or x 6=xj(0≤
j≤ J);

(ii) Ψ(t,x) satisfies (3.2);

(iii) for each fixed x∈ [−l,l[, the function Ψ(t,x) is continuous with respect to t∈ [0,T[, and for

each t∈ [0,T[ the function Ψ(t,x) is continuous with respect to x on [−l,l[ except points

{xj : 0≤ j≤ J−1}.

First, let fix j and consider a partial differential equation

∂

∂t
Ψ(0,j)(t,x)=

2m

∑
n=0

A
(0,j)
n

∂n

∂xn
Ψ(0,j)(t,x) ((t,x)∈ [0,+∞[×[−l,l[) (0,j)(PDE)

with initial condition

Ψ(0,j)(t0,x)=
c0

2
+

∞

∑
k=1

ck cos
(kπx

l

)

+dk sin
(kπx

l

)

=
c
(0,j)
0

2
+

∞

∑
k=1

c
(0,j)
k cos

( kπx

l

)

+d
(0,j)
k sin

( kπx

l

)

∈FD(0)[−l,l[, (0,j)(IC)

By Corollary 2.1, under some restrictions on ( c0
2 ,c1,d1,c2,d2,. . .), a series Ψ(0,j)(t,x) de-

fined by

Ψ(0,j)(t,x)=
etA

(0,j)
0 c

(0,j)
0

2
+

∞

∑
k=1

eσ
(0,j)
k t
(

(c
(0,j)
k cos(ω

(0,j)
k t)+d

(0,j)
k sin(ω

(0,j)
k t))cos

(

kπx

l

)

+(d
(0,j)
k cos(ω

(0,j)
k t)−c

(0,j)
k sin(ω

(0,j)
k t))sin

(

kπx

l

)

)

(3.3)

is a solution of (0,j)(PDE)-(0,j)(IC).

Now let consider a partial differential equation

∂

∂t
Ψ(1,j)(t,x)=

2m

∑
n=0

A
(1,j)
n

∂n

∂xn
Ψ(1,j)(t,x) ((t,x)∈ [0,+∞[×[−l,l[) (1,j)(PDE)

with initial condition

Ψ(1,j)(t1,x)=Ψ(0,j)(t1,x). (1,j)(IC)

We will try to present the solution of the (1,j)(PDE) by the following form

Ψ(1,j)(t,x)=
etA

(1,j)
0 c

(1,j)
0

2
+

∞

∑
k=1

eσ
(1,j)
k t
(

(c
(1,j)
k cos(ω

(1,j)
k t)+d

(1,j)
k sin(ω

(1,j)
k t))cos

(

kπx

l

)
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+(d
(1,j)
k cos(ω

(1,j)
k t)−c

(1,j)
k sin(ω

(1,j)
k t))sin(

kπx

l
)
)

. (3.4)

In order to get validity of the condition (1,j)(IC), we consider the following infinite

system of equations:

et1 A
(1,j)
0 c

(1,j)
0

2
=

et1 A
(0,j)
0 c

(0,j)
0

2
, (3.5)

eσ
(1,j)
k t1(c

(1,j)
k cos(ω

(1,j)
k t1)+d

(1,j)
k sin(ω

(1,j)
k t1))

= eσ
(0,j)
k t1(c

(0,j)
k cos(ω

(0,j)
k t1)+d

(0,j)
k sin(ω

(0,j)
k t1))(k∈N), (3.6)

eσ
(1,j)
k t1(d

(1,j)
k cos(ω

(1,j)
k t1)−c

(1,j)
k sin(ω

(1,j)
k t1))

= eσ
(0,j)
k t1(d

(0,j)
k cos(ω

(0,j)
k t1)−c

(0,j)
k sin(ω

(0,j)
k t1))(k∈N). (3.7)

We have

c
(1,j)
0 = et1(A

(0,j)
0 −A

(1,j)
0 )c

(0,j)
0 . (3.8)

For k∈N we can rewrite Eqs. (3.6)-(3.7) as follows:

c
(1,j)
k cos(ω

(1,j)
k t1)+d

(1,j)
k sin(ω

(1,j)
k t1)= e(σ

(0,j)
k −σ

(1,j)
k )t1(c

(0,j)
k cos(ω

(0,j)
k t1)

+d
(0,j)
k sin(ω

(0,j)
k t1)), (3.9)

−c
(1,j)
k sin(ω

(1,j)
k t1)+d

(1,j)
k cos(ω

(1,j)
k t1)= e(σ

(0,j)
k −σ

(1,j)
k )t1(d

(0,j)
k cos(ω

(0,j)
k t1)

−c
(0,j)
k sin(ω

(0,j)
k t1)). (3.10)

Setting

A= e(σ
(0,j)
k −σ

(1,j)
k )t1(c

(0,j)
k cos(ω

(0,j)
k t1)+d

(0,j)
k sin(ω

(0,j)
k t1)) (3.11)

and

B= e(σ
(0,j)
k −σ

(1,j)
k )t1(d

(0,j)
k cos(ω

(0,j)
k t1)−c

(0,j)
k sin(ω

(0,j)
k t1)), (3.12)

for k∈N, we obtain

c
(1,j)
k cos(ω

(1,j)
k t1)+d

(1,j)
k sin(ω

(1,j)
k t1)=A (3.13)

and

−c
(1,j)
k sin(ω

(1,j)
k t1)+d

(1,j)
k cos(ω

(1,j)
k t1)=B. (3.14)

It is obvious that the system of Eqs. (3.13)-(3.14) has the unique solution which can be

done as follows:

c
(1,j)
k =Acos(ω

(1,j)
k t1)−Bsin(ω

(1,j)
k t1) (3.15)



On a Linear Partial Differential Equation of the Higher Order in Two Variables 9

and

d
(1,j)
k =Bcos(ω

(1,j)
k t1)+Asin(ω

(1,j)
k t1) (3.16)

for k∈N.

By Corollary 2.1, under some restrictions on (
c
(1,j)
0
2 ,c

(1,j)
1 ,d

(1,j)
1 ,c

(1,j)
2 ,d

(1,j)
2 ,. . .), the series

Ψ(1,j)(t,x) defined by (3.4) is the solution of (1,j)(PDE)-(1,j)(IC).

It is obvious that under nice restrictions on coefficients participated in (3.1) and (3.2),

we can continue our procedure step by step. Correspondingly we can construct a se-

quence (Ψ(s,j))0≤s≤I−1,1≤j≤J−1 such that Ψ(s,j) satisfies a linear partial differential equation

∂

∂t
Ψ(s,j)(t,x)=

2m

∑
n=0

A
(s,j)
n

∂n

∂xn
Ψ(s,j)(t,x) ((t,x)∈ [0,+∞[×[−l,l[) (s.j)(PDE)

with initial condition

Ψ(s,j)(ts,x)=Ψ(s−1,j)(ts,x)=
c
(s,j)
0

2
+

∞

∑
k=1

c
(s,j)
k cos

(kπx

l

)

+d
(s,j)
k sin

( kπx

l

)

. (s,j)(IC)

Theorem 3.1. If for coefficients (
c
(i,j)
0
2 ,c

(i,j)
1 ,d

(i,j)
1 ,c

(i,j)
2 ,d

(i,j)
2 ,. . .)(1 ≤ i ≤ I,1 ≤ j ≤ J) functions

Ψ(i,j)(t,x) satisfy conditions of Corollary 2.1, then a function Ψ(t,x) : [0,T[×[−l,l[→R defined

by
I−1

∑
i=0

J−1

∑
j=0

Ψ(i,j)(x,t)×χ[ti ,ti+1[×[xj,xj+1[(t,x) (3.17)

is a weak solution of (3.1) and (3.2).

Example 3.1. Let consider a linear partial differential equation of the 22 order in two

variables

∂

∂t
Ψ(t,x)=A(t,x)×

∂2

∂x2
Ψ(t,x)+B(t,x)×

∂22

∂x22
Ψ(t,x) ((t,x)∈ [0,2π[×[0,π[) (3.18)

with initial condition

Ψ(0,x)=
0.015

2
+5sin(x), (3.19)

where

A(t,x)=0.5×χ[0,π[×[0,π[(t,x)+0.55×χ[π,2π[×[0,π[(t,x)

and

B(t,x)=2×χ[0,π[×[0,π[(t,x)+2.5×χ[π,2π[×[0,π[(t,x).

The programm in MatLab (cf. [4] ) for a solution of (3.18) and (3.19), has the following

form:
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Figure 1: Graphic of the solution of the LPDE-(3.18) with IC-(3.19).

A1=[0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2];
A2=[0,0.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2.5];
C1=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
D1=[5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
A10=0;A20=0;C10=0.015;

for k=1 :20

S1(k)=A10;S2(k)=A20;

for n=1 :10

S1(k)=S1(k)+(−1)(n)∗A1(2∗n)∗k(2∗n);
S2(k)=S2(k)+(−1)(n)∗A2(2∗n)∗k(2∗n);
end

end

for k=1 :20

O1(k)=0;

O2(k)=0;

end

for k=1 :20

for n=1 :10

O1(k)=O1(k)+(−1)n∗A1(2∗n+1)∗k(2∗n+1);
O2(k)=O2(k)+(−1)n∗A2(2∗n+1)∗k(2∗n+1);
end

end
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[T1,X1]=meshgrid(0 : (pi/10) : pi,0 : (pi/10) : pi);
Z1=0.5∗C10∗exp(T1.∗A10);
for k=1 :20

Z1=Z1+C1(k)∗exp(T1∗S1(k)).∗cos(X1.∗k).∗cos(T1∗O1(k))+D1(1)∗exp(T1∗S1(k)).∗
cos(X1.∗k).∗sin(T1∗O1(k))+

D1(k)∗exp(T1∗S1(k)).∗sin(X1.∗k).∗cos(T1∗O1(k))−C1(k)∗exp(T1∗S1(k)).∗sin(X1.∗
k).∗sin(T1∗O1(k));

end

C20=exp(pi∗(A10−A20))∗C10;

for k=1 :20

A(k)=exp((S1(k)−S2(k))∗pi)∗(C1(k)∗cos(O1(k)∗pi)+D1(k)∗sin(O1(k)∗pi));
B(k)=exp((S1(k)−S2(k))∗pi)∗(D1(k)∗cos(O1(k)∗pi)−C1(k)∗sin(O1(k)∗pi));
end

for k=1 :20

C2(k)=A(k)∗cos(O2(k)∗pi)−B(k)∗sin(O2(k)∗pi);
D2(k)=B(k)∗cos(O2(k)∗pi)+A(k)∗sin(O2(k)∗pi);
end

[T2,X2]=meshgrid(pi : (pi/10) : (2∗pi),0 : (pi/10) : pi);
Z2=0.5∗C20∗exp((T2)∗A20);
for k=1 :20

Z2=Z2+C2(k)∗exp(T2∗S2(k)).∗cos(X2.∗k).∗cos(T2∗O2(k))+D2(1)∗exp(T2∗S2(k)).∗
cos(X2.∗k).∗sin(T2∗O2(k))+

D2(k)∗exp(T2∗S2(k)).∗sin(X2.∗k).∗cos(T2∗O2(k))−C2(k)∗exp(T2∗S2(k)).∗sin(X2.∗
k).∗sin(T2∗O2(k));

end

surf(T1,X1,Z1)
hold on

surf(T2,X2,Z2)
hold off

Example 3.2. Let consider a linear partial differential equation of the 21 order in two

variables

∂

∂t
Ψ(t,x)=A(t,x)Ψ(t,x)+B(t,x)×

∂2

∂x2
Ψ(t,x)

+100
∂3

∂x3
Ψ(t,x)+2

∂21

∂x21
Ψ(t,x) ((t,x)∈ [0,2π[×[0,π[) (3.20)

with initial condition

Ψ(0,x)=
0.015

2
+100sin(x), (3.21)

where

A(t,x)=1χ[0,π[×[0,π[(t,x)+0χ[π,2π[×[0,π[(t,x)
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Figure 2: Graphic of the solution of the LPDE-(3.20) with IC-(3.21).

and

B(t,x)=χ[0,π[×[0,π[(t,x)−χ[π,2π[×[0,π[(t,x).

The graphical solution of (3.20)-(3.21) can be obtained by MatLab programm used in

Example 3.1 for the following data:

A1=[0,1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0];

A2=[0,−1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0];

C1=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

D1=[100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

A10=1;A20=0;C10=0.15;

We see that we have no graphic on the region [π,2π[×[0,π[ which hints us that co-

efficients of the LPDE (3.20)-(3.21) on that region do not satisfy conditions of Theorem

3.1.

Remark 3.1. Notice that for each natural number M>1, one can easily modify the Mat-

Lab program described in Example 3.1 for obtaining the graphical solution of the linear

partial differential equation (3.1)-(3.2) whose coefficients (An(t,x))0≤n≤2M are real-valued

simple step functions on [0,T[×[−l,l[ and f is a trigonometric polynomial on [−l,l[.

Remark 3.2. The approach used for a solution of (3.1)-(3.2) can be used in such a case

when coefficients (An(t,x))0≤n≤2M are rather smooth continuous functions on [0,T[×[−l,l[.
If we will approximate (An(t,x))0≤n≤2M by real-valued simple step functions, then it is
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natural to wait that under some “nice restrictions” on (An(t,x))0≤n≤2M the solutions ob-

tained by Theorem 3.1, will give us a “good approximation” of the solution of the re-

quired linear partial differential equation of the higher order in two variables with corre-

sponding initial conditions.
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