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1 Introduction

In [1] has been obtained a representation in an explicit form of the solution of the linear
partial differential equation of the higher order in two variables with initial condition
whose coefficients were real-valued coefficients. The aim of the present manuscript is
resolve an analogous problem for a linear partial differential equation of the higher or-
der in two variables with initial condition whose coefficients are real-valued simple step
functions.

The paper is organized as follows.

In Section 2, we consider some auxiliary notions and facts which come from works
[1-3]. In Section 3, we get a representation in an explicit form of the weak solution of
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the partial differential equation of the higher order in two variables with initial condition
whose coefficients are real-valued simple step functions.

2 Some auxiliary notions and results

Definition 2.1. Fourier differential operator (F) % in R* is defined as follows :
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For n €N, let FD"[—1,I[ be a vector space of all n-times differentiable functions on
[—1,1] such that for arbitrary 0 <k <n—1, a series obtained by a differentiation term by
term of the Fourier series of f(¥) pointwise converges to f**1) for all x € [—1,1].

Lemma 2.1. Let f € FDWW[—L1[. Let G be an embedding of the FDW[—L1[ in to R® which
sends a function to a sequence of real numbers consisting from its Fourier coefficients. i.e., if

kmx

f(x) z%o—l—gckcos <T) +dysin (@) (xe[=L1]),

then Gr(f)=(%,c1,d1,c2,d3,...). Then, for f € DM [—1,1], the following equality

(G0 (F) - 0Gr) (f) = 2 (f) @2)

holds.
Proof. Assume that for f € FD(M[~1,1], we have the following representation

f(x)z%%rgckcos(k?)+dksin(k$) (xe[=L1]).

By the definition of the class F D [—1,1[, we have

%(f) = % (czo—l—lickcos (kg) +d;sin (@))
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By the definition of the composition of mappings, we have
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By the scheme used in the proof of Lemma 2.1, we can get the validity of the following
assertion.
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Lemma 2.2. Let Gy be an embedding of the FD"[—1,1[ in to R® which sends a function to a
sequence of real numbers consisting from its Fourier coefficients.
Then, for f € FD"[~1,1[ and Ay € R(0 <k <n), the following equality

G=1o(Y A 9 1) oG " A o
(6o (L AFIge ) oG ) ()= 1 A (1) @3
holds, where Ay are real numbers for 0 <k <n.
Example 2.1. [2] If A is the real matrix
cow
(5, ¢, 4

e (wf) sin(wt)

tA__ ot [ cos(wt sin(wt

e = (—sin(wt) cos(wt))' 25)

Lemma 2.3. For m>1, let us consider a linear autonomous nonhomogeneous ordinary differential
equations of the first order

2m n
@)= (LA ((F55) ") < (anheen) + e 26)
with initial condition
(a1(0)) kemw = (Ci)ken, (2.7)

where
() (Cr)ren €ERT;
(ii) f=(fr)ren is the sequence of continuous functions of a parameter t on R.

For each k>1, we put

UL K\

Uk:Z(_l)nAZn(T> , (2.8)
n=0
m—1 o\ 201

Wi = (=1)"Azn 1 (T) . (2.9)
n=0

Then the solution of (2.6)-(2.7) is given by

t(Zﬁ’”oAn ((f)%) > t (t—t) <Z§’”0An ((f)%) >
(a() Jren =e % (Ce)ken + /0 e « f(r)dt, (2.10)
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where exp (H(X2" 0 An ((F)2)")) denotes an exponent of the matrix t(Y-2"y A, ((F)2)") and
it exactly coincides with an infinite-dimensional (1,2,2,...)-cellular matrix D(t) with cells (Dy(t))
ke for which Do(t) = (e'0) and

_ ot [ cos(wyt)  sin(wyt)
Di(t)=e t(—sin(wkt) cos(wkt)>’ @.11)

where for k>1, 0y and wy are defined by (2.8)-(2.9), respectively.

Proof. We know that if we have a linear autonomous inhomogeneous ordinary differen-
tial equations of the first order

d

a((ak)ke]N) =EX ((ak)ken) + (fi)ken (212)

with initial condition
(ax(0) ) ken = (Ci)keN, (2.13)
where
(©) (Ci)kenw €R™;
(i) (fk))ken is the sequence of continuous functions of parameter ¢t on R;

(iii) E is an infinite dimensional (1,2,2,...)-cellular matrix with cells (Ey)ken-

Then the solution of (2.6)-(2.7) is given by (cf. [2], §6, Section 1)

(ax(£) )ken =€'F X (Cr)ken + /O THE f(t)dr, (2.14)

where e'f and e(7~YF denote exponents of matrices tE and (7 —t)E, respectively.
n
Note that ty"2" A, ((]—" ) %) is an infinite-dimensional (1,2,2,...)-cellular matrix with
cells (tEx)ken such that tEg=(tAp) and

. toy twy
tE,= (_ o w}() (2.15)

for k> 1. Under notations (2.8)-(2.9), by using Example 2.1 we get that for t € R, e'F
exactly coincides with an infinite-dimensional (1,2,2,...) -cellular matrix D(t) with cells
(D (t))ken for which Dg(t) = (ef40) and

_ ot [ cos(wyit)  sin(wyt)
Di(t)=e t(—sin(wkkt) cos(wit))' (2.16)

Note that, for 0<T<t, the matrix e(T—1)E exactly coincides with an infinite-dimensional
(1,2,2,...)-cellular matrix D(t—t). O
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The following proposition is a simple consequence of Lemma 2.3.

Corollary 2.1. For m>1, let us consider a linear partial differential equation

2 A x) ((t,x)€[0,4o00[x[=LI[) (2.17)
with initial condition
kr kmx
_ (0)
¥(0,x) 2 04 E ckcos( l )—l—dksm( l ) e FDW[-LI]. (2.18)

If (%,¢1,d1,c2,d3,...) is such a sequence of real numbers that a series ¥ (t,x) defined by

etAoc

Y (t,x)= 5 04 Zeakt <(ckcos(wkt) +dsin(wyt) ) cos (@)
k=1

+ (dgcos(wyt) —cksin(wkt))sin(g)) (2.19)

belongs to the class FD?™)[—1,1] as a series of a variable x for all t >0, and is differentiable term
by term as a series of a variable t for all x € [—1,1[, then ¥ is a solution of (2.17)-(2.18).

3 Solution of a linear partial differential equation of the higher
order in two variables with initial condition when coefficients
are real-valued simple step functions

Let0=ty<---<t;j=Tand —I=x9<--- <xj=1I. Suppose that

—1]-1

ZZA XX t; tl+] [x]',Xj+][(t’x)’

i=0j=0

where A,(f’j ) are given real numbers for 0<k<n,0<i<I,0<j<].

For m>1, let us consider a partial differential equation

2m n
%‘I’(t,x) :EAnu,x)a%w(t,x) ((bx) € [0, T[x[—L1]) (3.1)

with initial condition

km kmx
¥(0,x) =L 1Y rcos +djsin e FDO[—L1I]. (3.2)
2 ;; ¢ ( I ) . ( I )
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Definition 3.1. We say that ¥ (t,x) is a weak solution of (3.1)-(3.2) if the following conditions
hold:

(i) Y (t,x) satisfies (3.1) for each (t,x) € [0,T[x [1L1[ for which t #t;(0<i<I) or x #x;(0<
i<]);
(ii) Y (t,x) satisfies (3.2);

(iii) for each fixed x € [—1,1], the function ¥ (t,x) is continuous with respect to t € [0,T|, and for
each t € [0,T] the function ¥ (t,x) is continuous with respect to x on [—1,1] except points
{x;:0<j<J—1}.

First, let fix j and consider a partial differential equation

d

2m L
= F(0) (1) :;;)A,SO’])W‘I’(OJ) (t,x) ((t,x) €[0,400[x[~1,1]) (0,))(PDE)

with initial condition

‘Y(o,]')(tol :E-I-chcos(kl )-l—dksm(kTC)

krtx .
ch ( %)+ sin(<15) eFDO L1, (0)(1C)
By Corollary 2.1, under some restrictions on (%,¢1,d1,¢2,d,...), a series Y0, (t,x) de-
fined by
oA 00 o , , ,
W0, (t,x)= i CO +Z e ( cos( (0, )t)+d,€0’])sin(w,§0’])t))cos <k?>
(0,) (0) 1y 00 i (O )y i ( KTTX
+(dy " cos(wy " t) — o sin(wy, ]t))sm<T>) (3.3)

is a solution of (0,j)(PDE)-(0,j)(IC).
Now let consider a partial differential equation

P} 2m L ]
¥ (%) :E}A,&Lﬂwwm (t,x) ((t,x) €[0,+00[x[~1,I]) (1,j)(PDE)

with initial condition
Yy, (t,x) =¥ g, (f1,%). (1,)ac
We will try to present the solution of the (1,j)(PDE) by the following form

A T L)y o (L) i (L) knx
¥ (tx)= +Ee‘7k ( cos( wy g t)+d, g sin(w, 7t))cos (T)
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1,j 1,j 1j) . 1] . kmx
-I-(d,E ])cos(wlg ])t)—clg ])sm(wlg ])t))sm(T)). (3.4)

In order to get validity of the condition (1,j)(IC), we consider the following infinite
system of equations:

1AM (L) Al (0)

0o _ 0
=T (3.5)
et (clgl’j) cos(wlgl’j) t1) +d,(<1’j) sin(w,(:’j) t1))
— et (e cos(w® ) +d sin(w"t)) (keN), (3.6)
et (d,g1 f) cos(wlgl’j)tl) - clgl’j) sin(w,&l’j)tl))
= ¢ (d%) cos (w0 ty) — " sin(w* 1)) (ke N). (3.7)
We have ‘ T
(1) — o (A -47) (04) (38)
For k€N we can rewrite Egs. (3.6)-(3.7) as follows:
c,El’j) cos(wlgl’j)tl) —i—d,((l’j) sin(w,((l’j)tl) _ @ " (c,((o’j) cos(w,&o’j)tl)
+d sin(w"h)), (3.9)
— () sin(w,((l’j)tl) +d,(<1’j) cos(w,((l’j)tl) = e(aﬁo'j>*0151'j))tl (d,((o’j) cos(w,ﬁo’j)tl)
—c,EO’j) sin(wlgo’j)tl)). (3.10)
Setting
A== (0 cog (w0 1)) +d % sin(w ) (3.11)
and 0 1) , , . .
B=cl% "% )1 (@) cos(w ") — M sin(w*1)), (3.12)
for k€N, we obtain
c;il'j) Cos(wzgl,j) t) +d1(<1'j) Sin(“]lgllj) h)=A (313)
and , , , .
—C;EL]) sin(wlgl’])tl) +d,(<1’])cos(w,(<1’])t1) =B. (3.14)

It is obvious that the system of Egs. (3.13)-(3.14) has the unique solution which can be
done as follows: ' ' '
c,(:’]) :Acos(wlgl’])tl) —]Bsin(w,il’])h) (3.15)
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and
d,((l’]) = chos(w,((l’])tl) +Asin(w,£l’])t1) (3.16)

for ke N. »
) . . . .
By Corollary 2.1, under some restrictions on (COT,cgl’] ),dgl’] ),cél’] ),dgl’] ),. ..), the series
Y (t,x) defined by (3.4) is the solution of (1,j)(PDE)-(1,j)(IC).
It is obvious that under nice restrictions on coefficients participated in (3.1) and (3.2),
we can continue our procedure step by step. Correspondingly we can construct a se-
quence (¥ j))o<s<1-1,1<j<j-1such that ¥, ;) satisfies a linear partial differential equation

P} 2m L )
§‘P(s,j)(t,x) = Z_:OA;SS'])@‘Y(S,]‘) (t,x) ((t,x) €[0,+o00[x[-11]) (sj)(PDE)
with initial condition
6”& i) (XN | o) (R :
Yisj) (ts,x) =% (-1 (ts,x) = 5 + Z ¢, cos (T) +d, " sin (T) ) (sj)(IC)

Theorem 3.1. If for coefficients (@,cgl’]),d%”]),cg’]),dgl’]),...)(1 <i<I,1<j<]) functions
¥ (i) (t,x) satisfy conditions of Corollary 2.1, then a function ¥ (t,x):[0,T[x [~11[— R defined
by

1-1]-1

Z.Z(:)].Z(:)T(i'f) (X 8) X X[t 11 [ ;21| (B ) (3.17)

is a weak solution of (3.1) and (3.2).

Example 3.1. Let consider a linear partial differential equation of the 22 order in two
variables

) az 822
57 L (%)= A(tx) x 55 ¥ (£,0) +B(t,x) x 555 ¥ (1) ((8,x) €[0,27[x[0,7])  (3.18)
with initial condition
0.015 .
Y(0,x)= — +5sin(x), (3.19)
where
A(t,x) =0.5% X[o,x[x[0,7] (£, %) +0.55 X X |27 x [0, (£, %)

and

B(t,%) =2X X[0,x[x [0, (£:X) +2-5 X X[, 27t x [0, [ (%)

The programm in MatLab (cf. [4] ) for a solution of (3.18) and (3.19), has the following
form:
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Ficture 1

Figure 1: Graphic of the solution of the LPDE-(3.18) with 1C-(3.19).

A1=10,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2];
A2=10,0.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2.5];
C1=10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
D1=15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
A10=0; A20=0;C10=0.015;

fork=1:20

S1(k) = A10;52(k) = A20;

forn=1:10
S1(k)=S1(k)+(—=1)n) x A1(2%n) xk(2xn);
S2(k)=S2(k)+(—1)n)* A2(2xn) xk(2xn);

end

end
fork=1:20
O1(k)=0;
O2(k)=0;
end
fork=1:20
forn=1:10

O1(k)=01(k)+(=1)"« A1(2xn+1) xk(2xn+1);
02(k) =02(k)+(—1)"x A2(2xn+1) xk(2xn+1);
end
end
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[T1,X1] =meshgrid (0: (pi/10): pi,0: (pi/10): pi);

Z1=0.5%C10*exp(T1.xA10);

fork=1:20

Z1=Z1+C1(k)*exp(T1xS51(k)).xcos(X1.xk).xcos(T1xO1(k))+D1(1)*exp(T1xS1(k)).*
cos(X1.xk).xsin(T1xO1(k))+

D1(k)xexp(T1xS1(k)).xsin(X1.xk).*cos(T1xO1(k))—C1(k)xexp(T1xS1(k)).xsin(X1.x
k).xsin(T1x01(k));

end
C20=exp(pi*(A10— A20))=C10;
fork=1:20

A(k)=exp((S1(k)—S2(k))*pi)*(C1(k)*cos(O1(k)xpi)+ D1(k)*sin(O1(k)*pi));

B(l;) =exp((S1(k) —S2(k))*pi)*(D1(k)*cos(O1(k)=pi) —C1(k) *xsin(O1(k) x pi));

en

fork=1:20

C2(k)= A(k)*cos(O2(k)*pi)— B(k)*sin (O2(k)*pi);

D2(k) = B(k)*cos(02(k)pi)+ A(k) xsin (02 (k) xpi);

end

[T2,X2] =meshgrid(pi: (pi/10): (2% pi),0: (pi/10): pi);

Z2=0.5%C20xexp((T2)+A20);

fork=1:20

Z2=272+C2(k)xexp(T2x52(k)).xcos(X2.xk).xcos(T2x02(k))+D2(1)*exp(T2xS2(k)).*
cos(X2.xk).xsin(T2x02(k))+

D2(k)xexp(T2xS52(k)).xsin(X2.xk).*xcos(T2xO02(k)) —C2(k)xexp (T2xS52(k)).*xsin(X2.%
k).xsin(T2x02(k));

end

surf(T1,X1,Z1)

hold on

surf(T2,X2,72)

hold off

Example 3.2. Let consider a linear partial differential equation of the 21 order in two
variables

0 0?
=¥ (t,x)=A(t,x)¥(t,x)+B(tx) x @‘i’(t,x)

ot
83 21
—I—lOOﬁ‘I’(t,x) —I-ZBxﬁ‘*I’(t,x) ((t,x) €[0,27t[x [0, 7t[) (3.20)
with initial condition
0.015 .
¥(0,x)= —— +100sin(x), (3.21)

where
A(t,x) =1x10,7(x 0,7 (%) +0X [ 270 x [0,7[ (£,X)
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Picture 2

Figure 2: Graphic of the solution of the LPDE-(3.20) with IC-(3.21).

and
B(t,x) = X{0,7[x 0,7 (£:X) = X {27t x [0, [ (£, X)-

The graphical solution of (3.20)-(3.21) can be obtained by MatLab programm used in
Example 3.1 for the following data:

A1=10,1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0];

A2=10,-1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0];

C1=]0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

D1=1100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

A10=1;A20=0;C10=0.15;

We see that we have no graphic on the region [77,277[x [0,77[ which hints us that co-
efficients of the LPDE (3.20)-(3.21) on that region do not satisfy conditions of Theorem
3.1.

Remark 3.1. Notice that for each natural number M > 1, one can easily modify the Mat-
Lab program described in Example 3.1 for obtaining the graphical solution of the linear
partial differential equation (3.1)-(3.2) whose coefficients (A (t,x))o<n<2m are real-valued
simple step functions on [0, T[x[—1,I[ and f is a trigonometric polynomial on [—1,1[.

Remark 3.2. The approach used for a solution of (3.1)-(3.2) can be used in such a case
when coefficients (A, (t,x))o<n<2m are rather smooth continuous functions on [0, T[x [—1,1[.
If we will approximate (A, (t,x))o<n<om by real-valued simple step functions, then it is
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natural to wait that under some “nice restrictions” on (A, (t,x))o<n<2m the solutions ob-
tained by Theorem 3.1, will give us a “good approximation” of the solution of the re-
quired linear partial differential equation of the higher order in two variables with corre-
sponding initial conditions.
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