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Abstract. The following viscoelastic wave equation with a time-varying delay term in
internal feedback

|ut|ρ utt−∆u−∆utt+
∫ t

0
g(t−s)∆u(s)ds+µ1ut(x,t)+µ2ut(x,t−τ(t))=0,

is considered in a bounded domain. Under appropriate conditions on µ1, µ2 and on
the kernel g, we establish the general decay result for the energy by suitable Lyapunov
functionals.
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1 Introduction

In this paper, we consider the initial boundary value problem for a nonlinear viscoelastic

equation with a linear damping and a time-varying delay term of the form:

|ut|ρ utt−∆u−∆utt+
∫ t

0
g(t−s)∆u(s)ds+µ1ut(x,t)

+µ2ut(x,t−τ(t))=0, in Ω×(0, ∞), (1.1)

ut(x,t)= f0(x,t), x∈Ω, t∈ [−τ(0) ,0), (1.2)

u(x,0)=u0(x),ut(x,0)=u1(x), x∈Ω, (1.3)

u(x,t)=0, x∈∂Ω,t≥0, (1.4)
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where ρ>0, Ω⊂RN (N≥1) is a bounded domain with a smooth boundary ∂Ω. Moreover,

µ1 and µ2 are real constants with µ1>0, τ(t)>0 represents the time-varying delay, g is the

kernel of the memory term and the initial data (u0,u1, f0) are given functions belonging

to suitable spaces.

It is well known that delay effects, which arise in many practical problems, might

induce some instabilities, see [1−6]. Hence, questions related to the behavior of solutions

for the PDEs with time delay effects have become active area of research in recent years.

Many authors have focused on this problem and several results concerning existence,

decay and instability have been obtained, see [2−12] and reference therein. In this regard,

Datko et al. [4] showed that a small delay in a boundary control is a source of instability.

Nicaise et al. [7] studied a system of wave equation with a linear boundary damping

term with a delay as follows































utt−∆u=0, in Ω×(0, ∞),

u(x,t)=0, x∈Γ0,t≥0,
∂

∂ν (x,t)=µ1ut(x,t)+µ2ut(x,t−τ), in Γ1×(0, ∞),

u(x,0)=u0(x),ut(x,0)=u1(x), x∈Ω,

ut(x,t−τ)= f0(x,t−τ), x∈Ω, t∈ (0,τ).

(1.5)

where ν is the unit outward normal to ∂Ω. Under the condition

µ2<µ1, (1.6)

they established a stabilization result by applying inequalities obtained from Carleman

estimates for the wave equation by Lasiecka et al. [13] and by using compactness-uniqueness

arguments. Conversely, if (1.6) does not hold, they showed that there exists a sequence of

delays for which the corresponding solution of (1.5) is unstable. And, they also obtained

the same results if both the damping and the delay act in the domain.

The case of time-varying delay in the wave equation has been studied by Nicaise et al.

[10] in one space dimension, in which they obtained an exponential decay result subject

to the condition

µ2≤
√

1−dµ1, (1.7)

where d is a constant such that

τ′(t)≤d<1, ∀t>0. (1.8)

Later, under the condition |µ2|<
√

1−dµ1 in which the positivity of the coefficient µ2

is not necessary, Nicaise et al. [11] extended this result to general space dimension. In

fact, they proved exponential stability of the solution for the wave equation with a time-

varying delay in the boundary condition in a bounded and smooth domain in RN . Re-

cently, inspired the works of Nicaise et al. [11] and M. Kirane et al. [5], Liu [14] considered
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the following problem

utt−∆u+
∫ t

0
g(t−s)∆u(s)ds+µ1ut(x,t)+µ2ut(x,t−τ(t))=0, (1.9)

in a bounded domain with the conditions (1.2)-(1.4). In that work, they established gen-

eral decay results of the energy via suitable Lyapunov functionals under the condition

|µ2|<
√

1−dµ1.

In the absence of the delay term (i.e. µ2=0) in (1.1), related problems have been exten-

sively studied and there are numerous results related to existence, asymptotic behavior

and blow-up of solutions. For example, Cavalcanti et al. [15] considered the following

problem:

|ut|ρ utt−∆u−∆utt+
∫ t

0
g(t−s)∆u(s)ds−γ∆ut =0, (1.10)

with the same initial and boundary conditions (1.3)-(1.4), where a global existence result

for γ≥0 and an exponential decay result for γ>0 were established under the assumptions

0<ρ≤ 2
N−2 if N≥3 or ρ>0 if N=1, 2 and g(t) decays exponentially. Lately, these decay

results were extended by Messaoudi and Tatar [16] to a situation where a source term is

present. Recently, Messaoudi and Tatar [17] studied problem (1.10) for case of γ=0, they

showed that the solution goes to zero with an exponential or polynomial rate under some

restrictions on the relaxation function. For other related works, we refer the readers to

[18−23] and references therein.

Motivated by previous works, it is interesting to investigate whether there are similar

decay results as in [14] for problem (1.1)-(1.4), in which more general form than that

of problem (1.9) is considered. Our proof technique closely follows the arguments of

[14,23], with the modifications being needed for our problem. The content of this paper

is organized as follows. In Section 2, we provide assumptions that will be used later, state

and prove the existence result Theorem 2.3. In Section 3, we prove our stability result that

is given in Theorem 3.5. Finally, we give some examples to illustrate our result.

2 Preliminary results

In this section, we shall give some assumptions which will be used throughout this work.

We use the standard Lebesgue space Lp(Ω) and Sobolev space H1
0(Ω) with their usual

products and norms.

Lemma 2.1 (Sobolev-Poincaré inequality). Let 2≤ p≤ 2N
N−2 , the inequality

‖u‖p≤ cs‖∇u‖2 , for u∈H1
0(Ω),

holds with some positive constant cs.



Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term 25

Assume that ρ satisfies

0<ρ≤ 2

N−2
if N≥3 or ρ>0 if N=1,2. (2.1)

Regarding the relaxation function g(t), we assume that it verifies:

(A1) g : R+→R+ is a bounded C1 function satisfying

1−
∫

∞

0
g(s)ds= l>0, (2.2)

and there exists a positive nonincreasing function ξ such that, for t≥0,

g′(t)≤−ξ(t)g(t) and
∫

∞

0
ξ(s)ds=∞. (2.3)

(A2) For the time-varying delay τ(t), we assume as in [24] that there exist positive con-

stants τ0 and τ1 such that

0<τ0≤τ(t)≤τ1, t>0. (2.4)

Moreover, we assume that τ∈W2,∞ [0,T], T>0 and

τ′(t)≤d<1, t>0, (2.5)

and that µ1, µ2 satisfy

|µ2|<
√

1−dµ1. (2.6)

In order to prove the existence of solutions of problem (1.1)-(1.4), we introduced the new

variable z as in [24],

z(x,κ,t)=ut(x,t−τ(t)κ), x∈Ω, κ∈ (0,1),

which implies that

τ(t)zt(x,κ,t)+
(

1−z′(t)κ
)

zκ(x,κ,t)=0, in Ω×(0,1)×(0,∞).

Therefore, problem (1.1)-(1.4) can be transformed as follows



















































|ut|ρ utt−∆u−∆utt+
∫ t

0 g(t−s)∆u(s)ds+µ1ut(x,t)

+µ2z(x,1,t)=0, in Ω×(0, ∞),

τ(t)zt(x,κ,t)+(1−z′(t)κ)zκ(x,κ,t)=0, x∈Ω, κ∈ (0,1), t>0,

z(x,0,t)=ut(x,t), x∈Ω, t>0,

z(x,κ,0)= f0(x,−τ(0)κ), x∈Ω,

u(x,0)=u0(x),ut(x,0)=u1(x), x∈Ω,

u(x,t)=0, x∈∂Ω,t≥0,

(2.7)
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Now, we are ready to give the well-posedness of problem (1.1)-(1.4) which can be ob-

tained by the arguments of [5,23].

Theorem 2.2. Suppose that (2.1), and (A1)-(A2) hold. Assume further that u0,u1∈H1
0 (Ω) and

f0∈L2(Ω×(0,1)) . Then there exists a unique solution (u,z) of (2.7) satisfying

u, ut∈C
(

[0, T); H1
0(Ω)

)

and z∈C
(

[0, T); L2(Ω×(0,1))
)

,

for T>0.

3 Asymptotic behavior

In this section, we shall investigate the asymptotic behavior of problem (1.1)-(1.4). Now,

inspired by [24], we define the energy function of problem (1.1)-(1.4) as

E(t)=
1

ρ+2
‖ut‖ρ+2

ρ+2+
1

2

(

1−
∫ t

0
g(s)ds

)

‖∇u(t)‖2
2+

1

2
(g◦∇u)(t)

+
1

2
‖∇ut(t)‖2

2+
ζ

2

∫ t

t−τ(t)

∫

Ω

eλ(s−t)u2
t (x,s)dxds, (3.1)

where

(g◦φ)(t)=
∫ t

0
g(t−s)

∫

Ω

|φ(s)−φ(t)|2dxds

and ζ is a positive constant such that

2µ1−
|µ2|√
1−d

−ζ>0, ζ− |µ2|√
1−d

>0, (3.2)

and

λ<
1

τ1

∣

∣

∣

∣

log
|µ2|

ζ
√

1−d

∣

∣

∣

∣

. (3.3)

Lemma 3.1. E(t) is a nonincreasing function on [0,T] and

E′(t)=−c1‖ut‖2
2−c2

∫

Ω

u2
t (x,t−τ(t))dx+

1

2
(g′◦∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2

− λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)u2
t (x,s)dxds

≤1

2
(g′◦∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2≤0, ∀t≥0,

where

c1=µ1−
|µ2|

2
√

1−d
− ζ

2
>0 and c2=

ζ

2
(1−d)e−λτ1 −

√
1−d|µ2|

2
>0.



Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-varying Delay Term 27

Proof. Differentiating (3.1) and using (1.1), integrating by parts over Ω and exploiting the

assumption (A1), (2.4)-(2.6) and (3.2)-(3.3), we obtain

E′(t)≤−c1‖ut‖2
2−c2

∫

Ω

u2
t (x,t−τ(t))dx+

1

2
(g′◦∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2

− λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)u2
t (x,s)dxds

≤1

2
(g′◦∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2≤0, ∀t≥0.

Remark 3.2. It follows from the definition of E(t) that the energy function is uniformly

bounded and decreasing in t, which implies that

l‖∇u‖2
2+‖∇ut‖2

2≤2E(t)≤2E(0), ∀t≥0. (3.4)

Now, we define

G(t)=ME(t)+εΦ(t)+Ψ(t), (3.5)

where M and ε are positive constants which will be specified later and

Φ(t)=
1

ρ+1

∫

Ω

|ut|ρ utudx+
∫

Ω

∇ut(t)·∇u(t)dx, (3.6)

Ψ(t)=
∫

Ω

(

∆ut−
1

ρ+1
|ut|ρ ut

)

∫ t

0
g(t−s)(u(t)−u(s))dsdx. (3.7)

The following lemma tells us that G(t) and E(t) are equivalent.

Lemma 3.3. Let u be a solution of problem (1.1)-(1.4), then there exist two positive constants β1

and β2 such that

β1E(t)≤G(t)≤β2E(t), ∀ t≥0,

for M sufficiently large.

Proof. Using Young’s inequality, Lemma 2.1 and (3.4), we have

∣

∣

∣

∣

1

ρ+1

∫

Ω

|ut|ρ utudx

∣

∣

∣

∣

≤ 1

ρ+2
‖ut‖ρ+2

ρ+2

+
c

ρ+2
s

(ρ+2)(ρ+1)

(

2E(0)

l

)

ρ
2

‖∇u‖2
2 (3.8)

and
∣

∣

∣

∣

∫

Ω

∇ut(t)·∇u(t)dx

∣

∣

∣

∣

≤ 1

2
‖∇ut‖2

2+
1

2
‖∇u‖2

2 . (3.9)
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Further, we observe from (3.7) that

Ψ(t)=−
∫

Ω

∇ut ·
∫ t

0
g(t−s)(∇u(t)−∇u(s))dsdx

− 1

ρ+1

∫

Ω

|ut|ρ ut

∫ t

0
g(t−s)(u(t)−u(s))dsdx. (3.10)

By Young’s inequality, Hölder’s inequality (2.2) and (3.4), we have
∣

∣

∣

∣

−
∫

Ω

∇ut ·
∫ t

0
g(t−s)(∇u(t)−∇u(s))dsdx

∣

∣

∣

∣

≤ 1

2
‖∇ut‖2

2+
1

2

∫

Ω

(

∫ t

0
g(t−s)(∇u(t)−∇u(s))ds

)2

dx

≤ 1

2
‖∇ut‖2

2+
1−l

2
(g◦∇u)(t), (3.11)

and
∣

∣

∣

∣

− 1

ρ+1

∫

Ω

|ut|ρ ut

∫ t

0
g(t−s)(u(t)−u(s))dsdx

∣

∣

∣

∣

≤ 1

ρ+2

(

‖ut‖ρ+2
ρ+2+

1

ρ+1

∫

Ω

(

∫ t

0
g(t−s)(u(t)−u(s))ds

)ρ+2

dx

)

≤ 1

ρ+2

(

‖ut‖ρ+2
ρ+2+

(1−l)ρ+1c
ρ+2
s

ρ+1

∫ t

0
g(t−s)‖∇u(t)−∇u(s)‖ρ+2

2 ds

)

≤ 1

ρ+2

(

‖ut‖ρ+2
ρ+2+

(1−l)ρ+1c
ρ+2
s

ρ+1

(

4E(0)

l

)

ρ
2

(g◦∇u)(t)

)

. (3.12)

Combining (3.8)-(3.12) with (3.5) yields

|G(t)−ME(t)|= εΦ(t)+Ψ(t)

≤c3‖ut‖ρ+2
ρ+2+c4‖∇u‖2

2+c5‖∇ut‖2
2+c6(g◦∇u)(t)

≤c7E(t),

where c3=
1+ε
ρ+2 , c4= ε

(

c
ρ+2
s

(ρ+2)(ρ+1)

(

2E(0)
l

)

ρ
2
+ 1

2

)

, c5=
ε+1

2 ,

c6= ε

(

1−l

2
+
(1−l)ρ+1c

ρ+2
s

(ρ+2)(ρ+1)

(

4E(0)

l

)

ρ
2

)

, and c7=max(c3,c4,c5,c6).

Thus, from the definition of E(t) by (3.1) and selecting M sufficiently large, there exist

two positive constants β1 and β2 such that

β1E(t)≤G(t)≤β2E(t).
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Theorem 3.4. Let u0,u1∈H1
0(Ω) be given. Suppose that (2.1), (A1)-(A2) and (3.2)-(3.3) hold.

Then for each t0>0 the solution energy of problem (1.1)-(1.4) satisfies

E(t)≤Ke
−α
∫ t

t0
ξ(s)ds

, t≥ t0, (3.13)

where α and K are some positive constants given in the proof.

Proof. In order to obtain the decay result of E(t), it is sufficient to prove that of G(t). To

this end, we need to estimate the derivative of G(t). It follows from (3.6) that

Φ
′(t)=−‖∇u‖2

2+
∫

Ω

∇u(t)·
∫ t

0
g(t−s)∇u(s)dsdx−µ1

∫

Ω

ut(x,t)u(t)dx

−µ2

∫

Ω

ut(x,t−τ(t))u(t)dx+
1

ρ+1
‖ut‖ρ+2

ρ+2+‖∇ut‖2
2 . (3.14)

Using Hölder’s inequality, Young’s inequality and (A1), we obtain, for η>0, δ1>0,

∣

∣

∣

∣

∫

Ω

∇u(t)·
∫ t

0
g(t−s)∇u(s)dsdx

∣

∣

∣

∣

≤ 1

2
‖∇u‖2

2+
1

2

∫

Ω

(

∫ t

0
g(t−s)(|∇u(s)−∇u(t)|+|∇u(t)|)ds

)2

dx

≤ 1+(1+η)(1−l)2

2
‖∇u‖2

2+

(

1+ 1
η

)

(1−l)

2
(g◦∇u)(t), (3.15)

∣

∣

∣

∣

∫

Ω

ut(x,t)u(t)dx

∣

∣

∣

∣

≤δ1c2
s ‖∇u‖2

2+
c2

s

4δ1
‖∇ut‖2

2 , (3.16)

and
∣

∣

∣

∣

∫

Ω

ut(x,t−τ(t))u(t)dx

∣

∣

∣

∣

≤δ1c2
s ‖∇u‖2

2+
1

4δ1

∫

Ω

u2
t (x,t−τ(t))dx. (3.17)

Letting η= l
1−l in (3.15) and employing (3.16)-(3.17), we derive from (3.14) that

Φ
′(t)≤−

(

l

2
−δ1c2

s (µ1+|µ2|)
)

‖∇u‖2
2+

1−l

2l
(g◦∇u)(t)+

1

ρ+1
‖ut‖ρ+2

ρ+2

+
|µ2|
4δ1

∫

Ω

u2
t (x,t−τ(t))dx+

(

µ1c2
s

4δ1
+1

)

‖∇ut‖2
2 . (3.18)

Taking the derivative of Ψ(t) in (3.7) and using Eq. (1.1), we get

Ψ
′(t)=

∫

Ω

∇u(t)·
∫ t

0
g(t−s)(∇u(t)−∇u(s))dsdx

−
∫

Ω

(

∫ t

0
g(t−s)∇u(s)ds

)

·
(

∫ t

0
g(t−s)(∇u(t)−∇u(s))ds

)

dx
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+µ1

∫

Ω

ut(t)
∫ t

0
g(t−s)(u(t)−u(s))dsdx

+µ2

∫

Ω

ut(x,t−τ(t))
∫ t

0
g(t−s)(u(t)−u(s))dsdx

−
∫

Ω

∇ut(t)·
∫ t

0
g′(t−s)(∇u(t)−∇u(s))dsdx

− 1

ρ+1

∫

Ω

|ut|ρ ut

∫ t

0
g′(t−s)(u(t)−u(s))dsdx

−
(

∫ t

0
g(s)ds

)

‖∇ut‖2
2−

1

ρ+1

(

∫ t

0
g(s)ds

)

‖ut‖ρ+2
ρ+2 . (3.19)

In what follows we will estimate the right hand side of (3.19). Using Hölder’s inequality,

Young’s inequality and (2.2), for δ>0, we have
∣

∣

∣

∣

∫

Ω

∇u(t)·
∫ t

0
g(t−s)(∇u(t)−∇u(s))dsdx

∣

∣

∣

∣

≤δ‖∇u‖2
2+

1−l

4δ
(g◦∇u)(t). (3.20)

and
∣

∣

∣

∣

∫

Ω

(

∫ t

0
g(t−s)∇u(s)ds

)

·
(

∫ t

0
g(t−s)(∇u(t)−∇u(s))ds

)

dx

∣

∣

∣

∣

≤ δ
∫

Ω

(

∫ t

0
g(t−s)|∇u(s)|ds

)2

dx+
1

4δ

∫

Ω

(

∫ t

0
g(t−s)|∇u(t)−∇u(s)|ds

)2

dx

≤ 2δ(1−l)2‖∇u‖2
2+

(

2δ+
1

4δ

)

(1−l)(g◦∇u)(t). (3.21)

Utilizing Young’s inequality, Lemma 2.1 and (A1), the third term, the fourth term and the

fifth term on the right hand side of (3.19) can be estimated as, for δ2>0,
∣

∣

∣

∣

µ1

∫

Ω

ut(t)
∫ t

0
g(t−s)(u(t)−u(s))dsdx

∣

∣

∣

∣

≤ δ2µ1c2
s ‖∇ut‖2

2+
µ1c2

s (1−l)

4δ2
(g◦∇u)(t), (3.22)

∣

∣

∣

∣

µ2

∫

Ω

ut(x,t−τ(t))
∫ t

0
g(t−s)(u(t)−u(s))dsdx

∣

∣

∣

∣

≤|µ2|δ2

∫

Ω

u2
t (x,t−τ(t))dx+

|µ2|(1−l)c2
s

4δ2
(g◦∇u)(t), (3.23)

and
∣

∣

∣

∣

∫

Ω

∇ut(t)
∫ t

0
g′(t−s)(∇u(t)−∇u(s))dsdx

∣

∣

∣

∣
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≤ δ2‖∇ut‖2
2+

1

4δ2

∫

Ω

(

∫ t

0
g′(t−s)(∇u(t)−∇u(s))ds

)2

dx

≤ δ2‖∇ut‖2
2−

g(0)

4δ2

(

g′◦∇u
)

(t). (3.24)

Exploiting Young’s inequality, (2.1), Lemma 2.1, (2.3) and (3.4) to deal with the sixth term
∣

∣

∣

∣

1

ρ+1

∫

Ω

|ut|ρ ut

∫ t

0
g′(t−s)(u(t)−u(s))dsdx

∣

∣

∣

∣

≤ 1

ρ+1

(

δ2‖ut‖2(ρ+1)
2(ρ+1)

+
1

4δ2

∫

Ω

(

∫ t

0
g′(t−s)(u(t)−u(s))ds

)2

dx

)

≤ 1

ρ+1

(

δ2‖ut‖2(ρ+1)
2(ρ+1)

− g(0)c2
s

4δ2

∫

Ω

∫ t

0
g′(t−s)|∇u(t)−∇u(s)|2dsdx

)

≤δ2c
2(ρ+1)
s

ρ+1
(2E(0))ρ‖∇ut‖2

2−
g(0)c2

s

4δ2(ρ+1)

(

g′◦∇u
)

(t). (3.25)

A substitution of (3.20)-(3.25) into (3.19) leads to

Ψ
′(t)≤δc8‖∇u‖2

2+c9(g◦∇u)(t)−c10

(

g′◦∇u
)

(t)

+

(

c11−
∫ t

0
g(s)ds

)

‖∇ut‖2
2+|µ2|δ2

∫

Ω

u2
t (x,t−τ(t))dx

− 1

ρ+1

(

∫ t

0
g(s)ds

)

‖ut‖ρ+2
ρ+2 , (3.26)

where c8=1+2(1−l)2 , c9=
(

2δ+ 1
2δ +

µ1c2
s+µ2c2

s
4δ2

)

(1−l) , c10=
g(0)c2

s

4δ2(ρ+1)
+ g(0)

4δ2
, and c11=δ2µ1c2

s+

δ2+
δ5c

2(ρ+1)
s

ρ+1 (2E(0))ρ
. Additionally, since g is positive, continuous and g(0)> 0, for any

t0>0, we have
∫ t

0
g(s)ds≥

∫ t0

0
g(s)ds= g0, ∀ t≥ t0. (3.27)

Hence, we conclude from (3.5), Lemma 3.1, (3.18), (3.26) and (3.27) that for any t≥ t0>0,

G′(t)=ME′(t)+εΦ
′(t)+Ψ

′(t)

≤
(

M

2
−c10

)

(

g′◦∇u
)

(t)− g0−ε

ρ+1
‖ut‖ρ+2

ρ+2+

(

ε(1−l)

2l
+c9

)

(g◦∇u)(t)

−
(

ε

(

l

2
−δ1c2

s (µ1+|µ2|)
)

−δc8

)

‖∇u‖2
2

−
(

g0−ε

(

µ1c2
s

4δ1
+1

)

−c11

)

‖∇ut‖2
2

−
(

c2M− ε|µ2|
4δ1

−|µ2|δ2

)

∫

Ω

u2
t (x,t−τ(t))dx
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− λMζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)u2
t (x,s)dxds.

At this point, we choose δ1 such that

δ1c2
s (µ1+|µ2|)≤

l

4
,

and select δ to satisfy

δ≤ εl

8c8
.

Then, let δ2 be small so that

c11=δ2

(

µ1c2
s +1+

c
2(ρ+1)
s

ρ+1
(2E(0))ρ

)

≤ g0

2
,

After that, we choose ε so that

ε<min







g0

4
µ1c2

s
4δ1

+1
, g0







.

Finally, we pick M sufficiently large such that

M>max







2c10,
ε |µ2|

4δ1
+|µ2|δ2

c2







.

Consequently, there exist two positive constants λ1 and λ2 satisfying

G′(t)≤−λ1E(t)+λ2 (g◦∇u)(t), for all t≥ t0. (3.28)

Multiplying (3.28) by ξ(t), we have

ξ(t)G′(t)≤−λ1ξ(t)E(t)+λ2ξ(t)(g◦∇u)(t).

Then, employing the assumption g′(t)≤−ξ(t)g(t) by (2.3) and using the fact that−(g′◦∇u)(t)≤
−2E′(t) by Lemma 3.1, we get

ξ(t)G′(t)≤−λ1ξ(t)E(t)−λ2

(

g′◦∇u
)

(t)

≤−λ1ξ(t)E(t)−2λ2E′(t), for all t≥ t0. (3.29)

Next, we define

F(t)= ξ(t)G(t)+2λ2E(t),
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which is equivalent to E(t) by Lemma 3.3. Then, using (3.29) and the assumption ξ′(t)≤0,

∀t≥0 by (A1), we obtain

F′(t)≤ξ′(t)G(t)−λ1ξ(t)E(t)

≤−λ1ξ(t)E(t)≤−λ3ξ(t)F(t), ∀t≥ t0, (3.30)

for some positive constant λ3. An integration of (3.30) over (t0, t) gives

F(t)≤F(0)e
−λ3

∫ t
t0

ξ(s)ds
, ∀t≥ t0,

Therefore, the equivalent relation between F(t) and E(t) yields

E(t)≤Ke
−α
∫ t

t0
ξ(s)ds

, ∀t≥ t0, (3.31)

where α and K are some positive constants. This completes the proof.

Remark 3.5. We illustrate the energy decay rate given by Theorem 3.4 through the fol-

lowing examples which are introduced in [5,25].

(1) If g(t)= a
(1+t)ν , for a> 0 and ν> 1, then ξ(t)= ν

1+t satisfies the condition (2.3). Thus

(3.31) gives the estimate

E(t)≤K(1+t)−α.

(2) If g(t)=ae−b(1+t)ν

, for a,b>0 and 0<ν≤1, then ξ(t)=bν(1+t)ν−1 satisfies the condition

(2.3). Thus (3.31) gives the estimate

E(t)≤Ke−α(1+t)ν

.

(3) If g(t)= ae−blnν(1+t), for a,b>0 and ν>1, then ξ(t)= bνlnν−1(1+t)
1+t satisfies the condition

(2.3). Thus (3.31) gives the estimate

E(t)≤Ke−αlnν(1+t).

(4) If g(t)= a
(1+t)lnν(1+t)

, for a>0 and ν>1, then ξ(t)= ln(1+t)+ν
(1+t)lnν(1+t)

satisfies the condition

(2.3). Thus (3.31) gives the estimate

E(t)≤K((1+t)lnν(1+t))
−α

.
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