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1 Introduction

Energy-Transport model was first proposed by Stratton [1] and latter derived from the

semiconductor Boltzmann equation by Ben Abdallah et al. [2]. The strong coupling and

temperature gradients make it difficult to analyze the energy-transport model. There-

fore, we consider in this paper a simplified energy-transport model which still includes

temperature gradients with weakly coupling of the energy equation.

The simplified Energy-Transport model, achieved by Jüngel et al. in [3], consists of a

drift-diffusion-type equation for the electron density n(x,t), a nonlinear heat equation for

the electron temperature θ(x,t), and the Poisson equation for the electric potential V(x,t):

∂tn−div(∇(nθ)−n∇V)=0, (1.1)

div(κ(n)∇θ)=
n

τ
(θ−θL(x)), (1.2)
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λ2△V=n−C(x). (1.3)

Here, κ(n) is the thermal conductivity, we suppose that κ(n)=n, θL(x) is the lattice tem-

perature, and C(x) is the doping profile characterizing the device under consideration.

The energy relaxation time τ>0 and the Debye length λ>0 are scaled physical parame-

ters. Without lose of generality, we suppose that τ=θL(x)=λ=1, and set E(x,t)=∇V(x,t).
Then the model (1.1)-(1.3) can be changed into the following model for the electron den-

sity n(x,t), the electron temperature θ(x,t) and the electric field E(x,t):

∂tn−divj=0, j=(∇(nθ)−nE), (1.4)

div(n∇θ)=n(θ−1), (1.5)

divE=n−C(x). (1.6)

Eqs. (1.4)-(1.6) hold in the bounded main Ω⊂R3, with the initial boundary condition

n(x,0)=n0(x), (1.7)

j·~n|∂Ω =0, ∇θ ·~n|∂Ω =0, E·~n|∂Ω=0, (1.8)

where~n denotes the exterior unit normal vector on ∂Ω, and the initial datum n0(x) satis-

fies the following condition
∫

Ω

n0(x)−C(x)dx=0. (1.9)

Before we exposit our results, we review the energy-transport model in the literature.

The common form for energy-transport model [4] is

∂tn−
1

q
divJn =0,

∂tU(n,θ)−divJw =−Jn ·∇V+W(n,θ),

λ2△V=n−C(x),

with

Jn = L11

(∇n

n
− q∇V

kBθ

)

+

(

L12

kBθ
− 3

2
L11

)∇θ

θ
,

qJw = L21

(∇n

n
− q∇V

kBθ

)

+

(

L22

kBθ
− 3

2
L21

)∇θ

θ
,

where U(x,θ) is the density of the internal energy, W(n,θ) is the energy relaxation term

satisfying W(n,θ)(θ−θL(x))≤0,

W(n,θ)=−n(θ−θL(x))

τβ
, τβ=

π
5
2 θ

1
2−β

√
8Γ(β+2)s0

,
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where s0 is a constant, Jn, Jw are the carrier flux density and energy flux density or heat

flux, L the diffusion matrices, q the elementary charge, kB the Boltzmann constant.

L=(Lij)=µ0Γ(2−β)nkBθ
1
2−β

(

1 (2−β)kBθ

(2−β)kBθ (3−β)(2−β)k2
Bθ2

)

where µ0 comes from the electron elastic scattering rate and Γ denotes the Gamma func-

tion with Γ( 1
2)=

√
π and Γ(x+1)= xΓ(x) for x>0.

When the energy band is parabolic, the relation U is given as U= 3
2 nθ, which approxi-

mated by Boltzmann statistics. In general, we put β= 1
2 ,0, and − 1

2 . β= 1
2 is first employed

by Chen et al. in [5]. For the Chen model, Y. Li and L. Chen [6] have study the asymptotic

behavior of global smooth solution to the initial boundary problem in 1-D space. β= 0

used by Lyumkis et al. in [7], the Lyumkis model is a typical energy transport model in

application. In [8], the existence and uniqueness of (W2,1
p (Qτ))2×Lq(0,τ;W1

q (Ω)) solution

to Lyumkis model is discussed for N+2< p≤ q<∞ and 1≤N≤3. The global existence

and asymptotic behavior of smooth solutions to the initial-boundary value problem for

the 1-D Lyumkis energy transport model in semiconductor science was studied in [9].

Topical choice for β=− 1
2 comes from the diffusion approximation of the hydrodynamic

semiconductor model. Y. Li [10] studied the global existence and the large time behavior

of smooth solutions to the initial boundary value problem for a degenerate compressible

energy transport model. A simplified transient energy-transport system for semicon-

ductors subject to mixed Dirichlet-Neumann boundary conditions was analyzed in [3].

Under the assumption that the thermal conductivity κ(n,θ)= n, it proved the global-in-

time existence of bounded weak solutions. In [11], J.W. Dong and Q.C. Ju proved the

existence and uniqueness of stationary solutions to the energy-transport model for semi-

conductor in one space dimension, where the thermal conductivity κ(n,θ)=nθ. With the

rapid development of science and technology, more and more semiconductor devices of

nanoscale structure will come into use. K. Wang and S. Wang [12] studied the limit of

vanishing Debye length in a bipolar drift-diffusion model for semiconductors with phys-

ical contactinsulating boundary conditions in one-dimensional case. The existence of

global-in-time weak solution to a quantum energy-transport model for semiconductors

is proved in [13]. J.W. Dong and S.H. Cheng [14, 15] have studied the classical solution

to stationary one dimensional quantum energy-transport model with the k(n,θ)=n and

k(n,θ)=nθ respectively.

The main purpose of this article is to study the local existence, uniqueness, and asymp-

totic behavior of the solution to the 3-D simplified energy-transport model (1.4)-(1.6)

when the initial data is around a stationary solution to the corresponding linear drift-

diffusion model.

We consider the smooth solution of (1.4)-(1.6) around a typical stationary solution

(N ,1,E). The corresponding stationary problem is

△N−div(NE)=0, (1.10)



74 C. D. Liu, Y. Li and S. Wang / J. Partial Diff. Eq., 29 (2016), pp. 71-88

divE=N−C(x), (1.11)

with the boundary condition

[∇N−NE ]·−→n |∂Ω=0, E ·−→n |∂Ω=0. (1.12)

The isothermal stationary problem (1.10)-(1.12) was studied in [16] and it obtained

the following theorem.

Theorem 1.1. Assume that 0<C≤C(x)≤C and C(x)∈L∞(Ω), then the problem (1.10)-(1.12)

has a solution (N ,E), for which the following estimates hold:

0<C≤N (x)≤C, x∈Ω, (1.13)

c≤E(x)≤ c, x∈Ω, (1.14)

|E(x)|, |divE(x)|, |∇N (x)|, |△N (x)|≤ a0(C−C), x∈Ω, (1.15)

where a0 is a positive constant and c, c are constants.

Our main theorems on the local existence and exponential decay for the smooth solu-

tion of (1.4)-(1.9) are as follows.

Theorem 1.2. Assume that C(x)∈ L∞(Ω), n0(x)∈ H2(Ω) and n0(x)≥ 2D, D is a positive

constant. Then there exists a T>0, such that the problem (1.4)-(1.9) has a unique smooth solution

(n(x,t),θ(x,t),E(x,t)), satisfying

n(x,t)∈L∞([0,T),H2(Ω)); (θ(x,t),E(x,t))∈L∞([0,T),H3(Ω)).

Theorem 1.3. Suppose 0 < C ≤ C(x)≤ C, n0(x) ∈ H2(Ω) and n0(x)≥ 2D, D is a positive

constant. There exists a positive δ0 such that if ‖n0(x)−N (x)‖H2 ≤ δ0, then, the problem (1.4)-

(1.9) has a unique smooth solution (n(x,t),θ(x,t),E(x,t))∈Ω×[0,T), satisfying

‖E(·,t)−E(·)‖H3 +‖n(·,t)−N (·)‖H2 +‖θ(·,t)−1‖H3 ≤C0‖n0(x)‖H2 exp(−αt).

for some positive constants C0 and α.

The idea of proof is organized as follows. In Section 2 we focus on the local existence,

uniqueness of the smooth solution to the system (1.4)-(1.9). Section 3 is devoted to the

asymptotic behavior of the smooth solution to the system (1.4)-(1.9).

2 Local existence of the solution

In this section, we will prove the local existence of the solution with the help of Banach

Fixed Point Theorem and Gagliardo-Nirenberg inequalities.
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2.1 Linearize equation

First for any fixed n(x,t), we can obtain a unique E(x,t) by

divE=n−C(x), (2.1)

E|∂Ω=0, (2.2)

and we can obtain a unique θ(x,t) by

−div(n∇θ)=n(1−θ), (2.3)

(∇θ ·−→n )|∂Ω =0, (2.4)

then solve the following system for u

ut−div(θ∇u)+u(1−θ)+E·∇n+divEu=0. (2.5)

2.2 Existence of solution

In order to prove the local existence of the solution, we set the positive constant M0 =
‖n0‖2

H2 and define the space S .

S :={n(x,t)| sup
0≤t≤T

(‖n‖2
H2)+‖nt‖2

L2)≤M, M≥M0, n≥D}, (2.6)

where D is a positive constant, and the metric ‖|n(x,t)‖| defined by :

‖|n(x,t)‖|= sup
0≤t≤T

‖n‖2
L2+

∫ T

0
‖n‖2

H1 dt. (2.7)

We define the map F :n∈S→u by (2.1)-(2.5). Thus, we prove that there exists a T>0

such that F maps S into itself and F is contractive with metric (2.7).

Lemma 2.1. Assume that C(x)∈L∞(Ω), n0(x)∈H2(Ω) with n0(x)≥2D, then exists a T>0

such that F maps into itself.

Proof. In order to obtain our result, we only need to prove u∈S , for any given n∈S . By

Sobolev embedding theorem

sup
0≤t≤T

|n|≤M.

By (2.1), we have for all t∈ [0,T], E∈L∞(0,T;H3(Ω)) and divEt∈L∞(0,T;L2(Ω)).

We prove the lemma in several steps.

Step 1: Estimate of θ. Eq. (2.3) can be rewritten as

div(n∇θ)=n(θ−1). (2.8)
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Multiplying (2.8) by θ and integrating it over Ω, noting the boundary conditions (1.8),

we have
∫

Ω

n|∇θ|2dx+
∫

Ω

nθ2dx=
∫

Ω

nθdx.

With the help of Young inequality and n≤n≤n, we have

n
∫

Ω

|∇θ|2dx+
n

2

∫

Ω

θ2dx≤ 1

2n

∫

Ω

n2dx. (2.9)

By the above estimate, we can draw the conclusion that θ,∇θ∈L∞(0,T;L2(Ω)).
Multiplying (2.8) by △θ and integrating it over Ω, we have

∫

Ω

n(△θ)2dx=
∫

Ω

nθ△θdx−
∫

Ω

∇n·∇θ△θdx−
∫

Ω

n△θdx.

With the help of Young inequality and n≤n≤n, we have

n
∫

Ω

(△θ)2dx≤3ǫ1

∫

Ω

(△θ)2dx+
1

4ǫ1

∫

Ω

(nθ)2dx+
1

4ǫ1

∫

Ω

n2dx

+
1

4ǫ1

∫

Ω

(∇n·∇θ)2dx. (2.10)

For 1
4ǫ1

∫

Ω
(∇n·∇θ)2dx, we have the estimate by using the Young inequality and Gagliardo-

Nirenberg inequality as follows

1

4ǫ1

∫

Ω

(∇n·∇θ)2dx

≤ 1

4ǫ1

∫

Ω

|∇n|2|∇θ|2dx

≤m(ǫ2)

4ǫ1

∫

Ω

(|∇n|2) 5
2 dx+

ǫ2

4ǫ1

∫

Ω

(|∇θ|2) 5
3 dx

=
m(ǫ2)

4ǫ1

∫

Ω

|∇n|5dx+
ǫ2

4ǫ1

∫

Ω

|∇θ| 10
3 dx

≤ cm(ǫ2)

4ǫ1

(

∫

Ω

|∇n|2dx

)
1
4
(

∫

Ω

(△n)2dx

)
9
4

+
cǫ2

4ǫ1

(

∫

Ω

|∇θ|2dx

)
2
3
∫

Ω

(△θ)2dx

≤ c(M)m(ǫ2)

4ǫ1
+

c(M)ǫ2

4ǫ1

∫

Ω

(△θ)2dx. (2.11)

where c(M) is a constant depending on M, m(ǫ2) is a constant depending on ǫ2. We

choose 3ǫ1 =
n
4 , c(M)ǫ2

4ǫ1
= n

4 . Therefore inequality (2.10) becomes

n

4

∫

Ω

(△θ)2dx≤ 3

n

∫

Ω

(nθ)2dx+
3

n

∫

Ω

n2dx+
c(M)m(ǫ2)

4ǫ1
. (2.12)
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Hence △θ∈L∞(0,T;L2(Ω)).
Differentiating (2.8) with respect to x and multiplying it by ∇△θ, and integrating

over Ω, using the Young inequality and Gagliardo-Nirenberg inequality, we get

n
∫

Ω

(∇△θ)2dx≤5ǫ3

∫

Ω

(∇△θ)2dx+
1

4ǫ3

∫

Ω

|θ∇n|2dx+
1

4ǫ3

∫

Ω

|n∇θ|2dx

+
1

4ǫ3

∫

Ω

|∇(∇n·∇θ)|2dx+cm(ǫ3)(
∫

Ω

|∇n|2dx)
1
4 (
∫

Ω

(△n)2dx)
9
4

+
1

4ǫ3

∫

Ω

|∇n|2dx+cǫ3(
∫

Ω

(△θ)2dx)
2
3

∫

Ω

(∇△θ)2dx. (2.13)

Hence ∇△θ∈L∞(0,T;L2(Ω)).
Differentiating (2.8) with respect to t and multiplying it by θt, and integrating over

Ω, using the Young inequality, Sobolev embedding theorem, and integration by parts

whenever necessary, we get

(n−ǫ4)
∫

Ω

|∇θt|2dx+(n−2ǫ4)
∫

Ω

θ2
t dx≤ 1

4ǫ4

∫

Ω

n2
t dx+

1

4ǫ4

∫

Ω

(ntθ)
2dx+

1

4ǫ4

∫

Ω

|nt∇θ|2dx

≤M. (2.14)

Hence θt,∇θt ∈L∞(0,T;L2(Ω)).
Combined (2.9) with (2.11), (2.13), and (2.14), yields that θ ∈ L∞(0,T;H3(Ω)),θt ∈

L∞(0,T;H1(Ω)).

Step 2: Estimate of u.

Multiplying (2.5) by u and integrating it over Ω, using the Young inequality and inte-

gration by parts whenever necessary, we get

1

2

d

dt

∫

Ω

u2dx+
∫

Ω

θ|∇u|2dx+
∫

Ω

u2dx≤
∫

Ω

θu2dx+ǫ5

∫

Ω

u2dx

+
1

4ǫ5

∫

Ω

(E·∇n)2dx+
∫

Ω

u2divEdx.

Since θ∈L∞(0,T;H3(Ω)),E∈L∞(0,T;H3(Ω)),

1

2

d

dt

∫

Ω

u2dx+
∫

Ω

θ|∇u|2dx+
∫

Ω

u2dx≤M1

∫

Ω

u2dx+K1

∫

Ω

|∇n|2dx.

where M1 depends on θ, divE and ǫ5, K1 depends on E and ǫ5. By using Gronwall in-

equality and choosing T small enough, we have

∫

Ω

u2dx≤K1MTexp(M1T) :=A1≤M. (2.15)

Hence u∈L∞(0,T;L2(Ω)).



78 C. D. Liu, Y. Li and S. Wang / J. Partial Diff. Eq., 29 (2016), pp. 71-88

Multiplying (2.5) by −△u and integrating it over Ω, using the Young inequality,

Sobolev embedding theorem, and integration by parts whenever necessary, similar to

the above, we get

1

2

d

dt

∫

Ω

|∇u|2dx+
∫

Ω

|∇u|2dx+
∫

Ω

θ(△u)2dx≤M2

∫

Ω

|∇u|2dx

+K2

(

∫

Ω

|∇n|2dx+
∫

Ω

u2dx

)

,

where M2 depends on θ,∇θ and ǫ6, K2 depends on E,divE and ǫ6. From the Gronwall

inequality, by choosing T small enough, we obtain

∫

Ω

|∇u|2dx≤K2(M+A1)Texp(M2T) :=A2≤M. (2.16)

Hence ∇u∈L∞(0,T;L2(Ω)).
Differentiating (2.5) with respect to t and multiplying it by ut, and integrating over

Ω, using the Young inequality, Gagliardo-Nirenberg inequality, Sobolev embedding the-

orem, and integration by parts whenever necessary, we get

1

2

d

dt

∫

Ω

u2
t dx+

∫

Ω

u2
t dx+

∫

Ω

θ|∇ut|2dx≤M3

∫

Ω

u2
t dx+

∫

Ω

(u2+|∇u|2)dx

+K3(
∫

Ω

(|nt|2+|∇n|2)dx,

where M3 depends on θ,divE and ǫ7, K3 depends on E,Et and ǫ7. By using Gronwall

inequality, by choosing T small enough, we have

∫

Ω

u2
t dx≤ (K3T(M+A2))exp(M3T) :=A3≤M. (2.17)

Therefore ut∈L∞(0,T;L2(Ω)).
Multiplying (2.5) by △u and integrating it over Ω, using the Young inequality, Sobolev

embedding theorem, and Gagliardo-Nirenberg inequality, we get

∫

Ω

θ(△u)2dx≤6ǫ8

∫

Ω

(△u)2dx+
1

4ǫ8

∫

Ω

[u2
t +u2+u2θ2+(E·∇n)2+(divEu)]dx

+
c(M)m(ǫ9)

4ǫ8
+

c(M)ǫ9

4ǫ8

∫

Ω

(△u)2dx. (2.18)

Hence △u∈L∞(0,T;L2(Ω)).
Combining (2.15) with (2.16)- (2.18) yields that

sup
0≤t≤T

(‖u‖2
H2 +‖ut‖2

L2)≤K4≤M.
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Lemma 2.2. Assume that C(x)∈L∞(Ω), n0(x)∈H2(Ω) with n0(x)≥2D, then exists a T>0

such that the map F :S→S is a contraction mapping with metric (2.7).

Proof. For given n1(x,t) and n2(x,t), suppose (u1,θ1,E1) and (u2,θ2,E2) are the solutions

to the Eqs. (2.19)-(2.21) respectively.

ut−div(∇(uθ)−uE)=0, (2.19)

−div(n∇θ)=n(1−θ), (2.20)

divE=n−C(x). (2.21)

Let δn=n1−n2,δu=u1−u2,δθ= θ1−θ2,δE=E1−E2, we have

(δu)t−div(∇(u1δθ+δuθ2)−u1δE−δuE2)=0, (2.22)

−div(n1∇(δθ)+δn∇θ2)=δn−n1δθ−δnθ2, (2.23)

div(δE)=δn, (2.24)

with the initial boundary condition

δu(x,0)=0, δθ(x,0)=0, (2.25)

∇(δu)·−→n |∂Ω =0, ∇(δθ)·−→n |∂Ω=0, δE·−→n |∂Ω =0. (2.26)

Since n,u∈S , with the help of Sobolev embedding theorem, we obtain

sup
0≤t≤T

(u,E,divE,θ,∇θ)≤M.

We can use (2.24) and (δE)(0,t)=0 to get that

∫

Ω

|δE|2dx,
∫

Ω

|divδE|2dx≤
∫

Ω

(δn)2dx.

Multiplying (2.23) by δθ, integrating it over Ω, by the boundary condition we obtain

∫

Ω

n1(δθ)2dx+
∫

Ω

n1|∇(δθ)|2dx=
∫

Ω

δnδθdx−
∫

Ω

δnθ2δθdx+
∫

Ω

δn∇(δθ)·∇θ2dx. (2.27)

Notice that θ∈L∞(0,T;H3(Ω)). By using Young inequality, we have

n1

∫

Ω

(δθ)2dx+n1

∫

Ω

|∇(δθ)|2dx≤ǫ10

∫

Ω

(δθ)2dx+
1

4ǫ10

∫

Ω

(δn)2dx+ǫ10M
∫

Ω

(δθ)2dx

+
M

4ǫ10

∫

Ω

(δn)2dx+ǫ10M
∫

Ω

|∇δθ|2dx

+
M

4ǫ10

∫

Ω

(δn)2dx.
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Consequently, we obtain that

∫

Ω

(δθ)2dx+
∫

Ω

|∇(δθ)|2dx≤
∫

Ω

(δn)2dx. (2.28)

Multiplying (2.22) by δu, integrating it over Ω, by the boundary condition we obtain

1

2

d

dt

∫

Ω

(δu)2dx+
∫

Ω

θ2|∇δu|2dx=−
∫

Ω

u1∇δu·∇δθdx−
∫

Ω

δθ∇δu·∇u1dx

−
∫

Ω

δu∇δu·∇θ2dx+
∫

Ω

u1∇δu·δEdx

+
∫

Ω

δθ∇δu·E2dx.

By using Young inequality and Gagliardo-Nirenberg inequality, we have

d

dt

∫

Ω

(δu)2dx+
∫

Ω

|∇δu|2dx≤K
∫

Ω

|δu|2dx+ǫ11

∫

Ω

(|δE|2+|∇δθ|2+(δθ)2)dx

≤K
∫

Ω

|δu|2dx+3ǫ11

∫

Ω

|δn|2dx. (2.29)

By using Gronwall inequality, we obtain

∫

Ω

(δu)2dx≤ǫ11exp(KT)
∫ T

0

∫

Ω

|δn|2dxdt. (2.30)

Integrating (2.30) over [0,T], we obtain

|‖δu|‖≤ǫ11(1+KTexpKT)|‖δn|‖. (2.31)

Thus we are able to choose T and ǫ11 suitable small, such that ǫ11(1+KTexpKT)≤ 1
2 .

Consequently, the map F :S→S is contractive.

Proof of Theorem 1.2. By Banach Fixed Point Theorem and with the help of Lemma 2.1

and Lemma 2.2, we can show that for a small T>0, there exists exactly one fixed point n

with n=F(n) in S , and the fixed point is the unique solution of (1.4)-(1.6).

3 Asymptotic behavior of smooth solution

In this section, we will study the asymptotic behavior of smooth solution by Gagliardo-

Nirenberg inequality. Let (n,θ,E) be a solution to (1.4)-(1.6), and set ρ=n−N ,ϑ=θ−θL,ψ=
E−E , where θL =1.

Lemma 3.1. There exist positive constants δ>0 and α>0 such that for any T>0, if

sup
0≤t≤T

(‖ρ(x,t)‖H2 )≤δ, (3.1)
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and

C−C≤δ,

then

‖ρ(x,t)‖2
H2 ≤C‖ρ(0,t)‖2

H2 exp(−αt) (3.2)

for any t∈ [0,T].

Proof. Since ρ=n−N , ϑ= θ−θL, ψ=E−E ,

n=ρ+N , θ=ϑ+1, E=ψ+E .

Imbedding into (1.4)-(1.6), we have

ρt−div(∇[(ρ+N )(ϑ+1)]−(ρ+N )(ψ+E))=0, (3.3)

div[(ρ+N )·∇ϑ]=(ρ+N )ϑ, (3.4)

divψ=ρ, (3.5)

and the boundary condition

∇ρ·−→n |∂Ω =0, ψ·−→n |∂Ω =0, ∇ϑ ·−→n |∂Ω =0. (3.6)

By using (3.1) and (3.5), combining Theorem 1.1, we obtain
∫

Ω

|ψ|2dx+
∫

Ω

|divψ|2dx≤
∫

Ω

ρ2dx. (3.7)

Multiplying (3.4) by ϑ and integrating it over Ω, by the boundary condition and inte-

gration by parts whenever necessary, we get
∫

Ω

N |∇ϑ|2dx+
∫

Ω

N ϑ2dx=−
∫

Ω

ρϑ2dx−
∫

Ω

ρ|∇ϑ|2dx.

Using Young inequality, Theorem 1.1 and (3.1), we have
∫

Ω

N |∇ϑ|2dx+
∫

Ω

N ϑ2dx≤O(δ)
∫

Ω

ρ2dx. (3.8)

Multiplying (3.4) by △ϑ, integrating it over Ω, we get
∫

Ω

N |△ϑ|2dx=
∫

Ω

N ϑ△ϑdx+
∫

Ω

ρϑ△ϑdx−
∫

Ω

ρ|△ϑ|2dx−
∫

Ω

△ϑ∇ϑ ·∇ρdx

−
∫

Ω

△ϑ∇ϑ ·∇Ndx.

For
∫

Ω
N ϑ△ϑdx, we have

∫

Ω

N ϑ△ϑdx≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ

∫

Ω

N 2ϑ2dx≤ǫ
∫

Ω

|△ϑ|2dx+
C

2

4ǫ

∫

Ω

ϑ2dx.
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Similar to
∫

Ω
N ϑ△ϑdx, we have

∫

Ω

ρϑ△ϑdx≤ǫ
∫

Ω

|△ϑ|2dx+
δ2

4ǫ

∫

Ω

ϑ2dx.

For
∫

Ω
△ϑ∇ϑ ·∇ρdx,

∫

Ω

△ϑ∇ϑ ·∇ρdx≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ

∫

Ω

|∇ϑ ·∇ρ|2dx

≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ

∫

Ω

|∇ϑ|2|∇ρ|2dx

≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ
(
∫

Ω

|∇ϑ|3dx)
2
3 (
∫

Ω

|∇ρ|6dx)
1
3

≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ

∫

Ω

|∇ϑ|2dx
∫

Ω

|∇ρ|2dx

≤ǫ
∫

Ω

|△ϑ|2dx+
δ

4ǫ

∫

Ω

|∇ϑ|2dx.

Here we have used Young inequality, Hölder inequality and Lp →֒ Lq(p<q).

Similar to
∫

Ω
△ϑ∇ϑ ·∇ρdx, we have

∫

Ω

△ϑ∇ϑ ·∇Ndx≤ǫ
∫

Ω

|△ϑ|2dx+
1

4ǫ

∫

Ω

|∇ϑ|2dx
∫

Ω

|∇N |2dx

≤ǫ
∫

Ω

|△ϑ|2dx+
C

4ǫ

∫

Ω

|∇ϑ|2dx,

here C depends on Ω and C. Therefore, we obtain

∫

Ω

N |△ϑ|2dx≤4ǫ
∫

Ω

|△ϑ|2dx+δ
∫

Ω

|△ϑ|2dx+
C

2

4ǫ

∫

Ω

ϑ2dx+
δ2

4ǫ

∫

Ω

ϑ2dx

+
δ

4ǫ

∫

Ω

|∇ϑ|2dx+
C

4ǫ

∫

Ω

|∇ϑ|2dx.

By using (3.8),

∫

Ω

|△ϑ|2dx≤O(δ)
∫

Ω

ρ2dx. (3.9)

Differentiating (3.4) with respect to x and multiplying it by ∇△ϑ, and integrating over

Ω,
∫

Ω

N |∇△ϑ|2dx=−
∫

Ω

ρ|∇△ϑ|2dx−
∫

Ω

△ϑ∇(ρ+N )·∇△ϑdx

−
∫

Ω

∇(∇(ρ+N )·∇ϑ)·∇△ϑdx+
∫

Ω

∇((ρ+N )ϑ)·∇△ϑdx.
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For
∫

Ω
△ϑ∇(ρ+N )·∇△ϑdx, using Young inequality and Hölder inequality,

∫

Ω

△ϑ∇(ρ+N )·∇△ϑdx≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

∫

Ω

|△ϑ|2|∇(ρ+N )|2dx

≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

(

∫

Ω

|△ϑ|3dx

)
2
3
(

∫

Ω

|∇(ρ+N )|6dx

)
1
3

≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

∫

Ω

|△ϑ|2dx
∫

Ω

|∇(ρ+N )|2dx

≤ǫ
∫

Ω

|∇△ϑ|2dx+
C

4ǫ

∫

Ω

|△ϑ|2dx.

Here C depends on Ω, |∇N | and δ.

For −
∫

Ω
∇(∇(ρ+N )·∇ϑ)·∇△ϑdx, we have

−
∫

Ω

∇(∇(ρ+N )·∇ϑ)·∇△ϑdx

≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

∫

Ω

|∇(∇(ρ+N )·∇ϑ)|2dx

≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

(

∫

Ω

|△(ρ+N )|2|∇ϑ|2dx+
∫

Ω

|∇(ρ+N )|2|△ϑ|2dx

)

≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

(

∫

Ω

|△(ρ+N )|2dx
∫

Ω

|∇ϑ|2dx+
∫

Ω

|∇(ρ+N )|2dx
∫

Ω

|△ϑ|2dx

)

≤ǫ
∫

Ω

|∇△ϑ|2dx+
C

4ǫ

(

∫

Ω

|∇ϑ|2dx+
∫

Ω

|△ϑ|2dx

)

.

Here C depends on Ω, |∇N |, |△N | and δ. Similar to
∫

Ω
△ϑ∇(ρ+N )·∇△ϑdx, we have

∫

Ω

∇((ρ+N )ϑ)·∇△ϑdx≤ǫ
∫

Ω

|∇△ϑ|2dx+
1

4ǫ

∫

Ω

|∇((ρ+N )ϑ)|2dx

≤ǫ
∫

Ω

|∇△ϑ|2dx+
C

4ǫ

(

∫

Ω

ϑ2dx+
∫

Ω

|∇ϑ|2dx

)

.

Therefore, we obtain
∫

Ω

N |∇△ϑ|2dx≤(3ǫ+δ)
∫

Ω

|∇△ϑ|2dx+
C

4ǫ

(

∫

Ω

ϑ2dx+
∫

Ω

|∇ϑ|2dx+
∫

Ω

|△ϑ|2dx

)

.

By using (3.8) and (3.9), we have
∫

Ω

|∇△ϑ|2dx≤O(δ)
∫

Ω

ρ2dx. (3.10)

Together (3.10) with (3.8), (3.9), we observe that
∫

Ω

ϑ2+|∇ϑ|2+|△ϑ|2+|∇△ϑ|2dx≤O(δ)
∫

Ω

ρ2dx. (3.11)
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So ‖ϑ‖L∞ <δ.

Multiplying (3.3) by ρ, integrating it over Ω, by the boundary condition and integra-

tion by parts whenever necessary, we get

1

2

d

dt

∫

Ω

ρ2dx+
∫

Ω

|∇ρ|2dx+
∫

Ω

N ρ2dx

=
∫

Ω

ρ∇ρ·(ψ+E−∇ϑ)dx−
∫

Ω

ϑ|∇ρ|2dx−
∫

Ω

ρ∇N ·ψdx−
∫

Ω

ϑ∇ρ·∇Ndx−
∫

Ω

N∇ρ·∇ϑdx.

For
∫

Ω
ϑ|∇ρ|2dx,

∫

Ω

ϑ|∇ρ|2dx≤δ
∫

Ω

|∇ρ|2dx.

For
∫

Ω
∇ρ·∇N ϑdx, since |∇N |≤ a0(C−C)≤ a0δ,

∫

Ω

∇ρ·∇N ϑdx≤ǫ
∫

Ω

|∇ρ|2dx+
1

4ǫ

∫

Ω

|∇N ϑ|2dx

≤ǫ
∫

Ω

|∇ρ|2dx+
a2

0(C−C)2

4ǫ

∫

Ω

ϑ2dx.

For
∫

Ω
ρ∇N ·ψdx, similar to above, we have

∫

Ω

ρ∇N ·ψdx≤ǫ
∫

Ω

ρ2dx+
1

4ǫ

∫

Ω

|∇Nψ|2dx

≤ǫ
∫

Ω

ρ2dx+
a2

0(C−C)2

4ǫ

∫

Ω

ψ2dx.

For
∫

Ω
N∇ρ·∇ϑdx, using Young inequality,

∫

Ω

N∇ρ·∇ϑdx≤ǫ
∫

Ω

|∇ρ|2dx+
1

4ǫ

∫

Ω

N 2|∇ϑ|2dx

≤ǫ
∫

Ω

|∇ρ|2dx+
C

2

4ǫ

∫

Ω

|∇ϑ|2dx.

Since sup0≤t≤T(‖ρ(x,t)‖H2 )≤δ, using Young inequality and Theorem 1.1, we obtain

1

2

d

dt

∫

Ω

ρ2dx+
∫

Ω

|∇ρ|2dx+
∫

Ω

N ρ2dx≤5ǫ
∫

Ω

|∇ρ|2dx+O(δ)
∫

Ω

|∇ρ|2dx

+
C

4ǫ

∫

Ω

|ψ|2+ϑ2+|∇ϑ|2dx.

Here C depends on Ω ,|∇N | and |E |. From (3.11) and (3.6), we obtain

d

dt

∫

Ω

ρ2dx+
∫

Ω

|∇ρ|2dx+
∫

Ω

ρ2dx≤O(δ)
∫

Ω

ρ2+|∇ρ|2dx. (3.12)
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Multiplying (3.3) by −△ρ, integrating it over Ω, by the boundary condition and integra-

tion by parts whenever necessary, we get

1

2

d

dt

∫

Ω

|∇ρ|2dx+
∫

Ω

N |∇ρ|2dx+
∫

Ω

|△ρ|2dx

=
∫

Ω

ϑ|△ρ|2dx−
∫

Ω

ρ∇N ·∇ρdx+
∫

Ω

△ρ(2∇ϑ ·∇ρ+ρ△ϑ+ϑ△N +2∇N ·∇ϑ

+N△ϑ+ρdivE+∇ρ·E+ρ2+∇ρ·ψ+ψ·∇N )dx

For
∫

Ω
ρ∇N ·∇ρdx, since |∇N |≤ a0(C−C)≤ a0δ,

∫

Ω

ρ∇N ·∇ρdx≤ǫ
∫

Ω

|∇ρ|2dx+
1

4ǫ

∫

Ω

ρ2|∇N |2dx

≤ǫ
∫

Ω

|∇ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

|∇ϑ|2dx.

Similar to
∫

Ω
ρ∇N ·∇ρdx, we have

∫

Ω

△ρϑ△Ndx≤ǫ
∫

Ω

|△ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

ϑ2dx;

∫

Ω

△ρ∇ϑ ·∇Ndx≤ǫ
∫

Ω

|△ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

|∇ϑ|2dx;

∫

Ω

△ρ∇ϑ ·ψdx≤ǫ
∫

Ω

|△ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

|ψ|2dx;

∫

Ω

△ρρdivEdx≤ǫ
∫

Ω

|△ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

ρ2dx;

∫

Ω

△ρ∇ρ·Edx≤ǫ
∫

Ω

|△ρ|2dx+
a2

0δ2

4ǫ

∫

Ω

|∇ρ|2dx.

For
∫

Ω
△ρ∇ϑ ·∇ρdx, we have

∫

Ω

△ρ∇ϑ ·∇ρdx≤ǫ
∫

Ω

|△ρ|2dx+
1

4ǫ

∫

Ω

|∇ϑ|2|∇ρ|2dx,

≤ǫ
∫

Ω

|△ρ|2dx+
δ2

4ǫ

∫

Ω

|∇ρ|2dx.

Similar to
∫

Ω
△ρ∇ϑ ·∇ρdx,

∫

Ω

△ρρ△ϑdx≤ǫ
∫

Ω

|△ρ|2dx+
δ2

4ǫ

∫

Ω

|△ϑ|2dx;

∫

Ω

△ρN△ϑdx≤ǫ
∫

Ω

|△ρ|2dx+
C

2

4ǫ

∫

Ω

|△ϑ|2dx.
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For
∫

Ω
△ρ∇ρ·ψdx, using Young inequality and L2 →֒ L3, we have

∫

Ω

△ρ∇ρ·ψdx≤ǫ
∫

Ω

|△ρ|2dx+
1

4ǫ

∫

Ω

|∇ρ|2|ψ|2dx

≤ǫ
∫

Ω

|△ρ|2dx+
1

4ǫ
(
∫

Ω

|∇ρ|3dx)
2
3 (
∫

Ω

|ψ|6dx)
1
3

≤ǫ
∫

Ω

|△ρ|2dx+
1

4ǫ

∫

Ω

|∇ρ|2dx
∫

Ω

|ψ|2dx

≤ǫ
∫

Ω

|△ρ|2dx+
δ2

4ǫ

∫

Ω

|ψ|2dx.

So we obtain that

d

dt

∫

Ω

|∇ρ|2dx+
∫

Ω

|∇ρ|2dx+
∫

Ω

|△ρ|2dx

≤ O(δ)
∫

Ω

|△ρ|2+|∇ρ|2+ρ2+ϑ2+|∇ϑ|2+|△ϑ|2+|ψ|2dx

≤ O(δ)
∫

Ω

|△ρ|2+|∇ρ|2+ρ2dx. (3.13)

Differentiating (3.4) with respect to t and multiplying it by ϑt, and integrating over Ω, by

the boundary condition and integration by parts whenever necessary, we get

∫

Ω

N ϑ2
t dx+

∫

Ω

N |∇ϑt|2dx=−
∫

Ω

ρϑ2
t dx−

∫

Ω

ρ|∇ϑt|2dx−
∫

Ω

ρt∇ϑ ·∇ϑtdx−
∫

Ω

ρtϑϑtdx.

Since ϑ≤δ and |∇ϑ|≤δ,

∫

Ω

ρt∇ϑ ·∇ϑtdx≤ǫ
∫

Ω

|∇ϑt|2dx+
δ2

4ǫ

∫

Ω

|ρt |2dx;

∫

Ω

ρtϑϑtdx≤ǫ
∫

Ω

ϑ2
t dx+

δ2

4ǫ

∫

Ω

|ρt|2dx.

Therefore, we obtain that
∫

Ω

ϑ2
t dx+

∫

Ω

|∇ϑt|2dx≤O(δ)
∫

Ω

ρ2
t dx. (3.14)

We rewrite Eq. (3.3) in the following form,

ρt−div(∇ρ+∇N +ϑ∇ρ+ϑ∇N+ρ∇ϑ+N∇ϑ−ρψ−ρE−Nψ−NE)=0. (3.15)

Differentiating (3.15) with respect to t and multiplying it by ρt, and integrating over Ω,

∫

Ω

ρtρttdx−
∫

Ω

ρtdiv(∇ρ+∇N +ϑ∇ρ+ϑ∇N+ρ∇ϑ+N∇ϑ−ρψ−ρE

−Nψ−NE)tdx=0.



Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors 87

Using the boundary condition and integration by parts whenever necessary, we get

1

2

d

dt

∫

Ω

ρ2
t dx+

∫

Ω

|∇ρt|2dx+
∫

Ω

N ρ2
t dx

=
∫

Ω

ρt∇ρt ·(ψ+E)dx−
∫

Ω

ρt∇ρ·ψtdx−
∫

Ω

ρρ2
t dx−

∫

Ω

ρt∇N ·ψtdx

−
∫

Ω

ϑt∇ρt ·(∇ρ+∇N )dx−
∫

Ω

ρt∇ρt ·∇ϑdx−
∫

Ω

(ρ+N )∇ρt ·∇ϑtdx.

Using Young inequality and Theorem 1.1, we obtain

d

dt

∫

Ω

ρ2
t dx+

∫

Ω

|∇ρt|2dx+
∫

Ω

ρ2
t dx≤O(δ)

∫

Ω

ρ2
t +ρ2+|∇ρ|2dx. (3.16)

Multiplying (3.15) by △ρ, integrating it over Ω, we get
∫

Ω

(ϑ+1)|△ρ|2dx=
∫

Ω

ρt△ρdx+
∫

Ω

ρ2△ρdx+
∫

Ω

ρ(N+divE−△ϑ)△ρdx

+
∫

Ω

△ρ∇ρ·(ψ+E−2∇ϑ)dx+
∫

Ω

△ρ∇N ·ψdx

+
∫

Ω

(E−2∇ϑ)·∇N△ρdx+
∫

Ω

N (△ϑ+divE)△ρdx

−
∫

Ω

(1+ϑ)△N△ρdx.

Using Young inequality and Theorem 1.1, we obtain
∫

Ω

|△ρ|2dx≤O(1)
∫

Ω

ρ2
t +ρ2+|∇ρ|2dx. (3.17)

Combining (3.12)-(3.16) with (3.17) together, and choosing δ small enough, we obtain

the following estimate

d

dt

∫

Ω

(ρ2+|∇ρ|2+ρ2
t )dx+C0

∫

Ω

(ρ2+|∇ρ|2+ρ2
t )dx≤0. (3.18)

Thus by Gronwall inequality, we get

‖ρ(x,t)‖2
H2 ≤C0(‖ρ(x,0)‖2

H2 )exp(−αt).

Remark 3.1. By the standard argument, Theorem 1.3 is proved with the help of Theorem

1.2 and Lemma 3.1.
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