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1 Introduction and main results

In this short note, we will give the Beale-Kato-Majda type criteria for the breakdown of

smooth solutions to the incompressible ideal viscoelastic flow of the following system











∂tu+u·∇u+∇p=∇·FFT ,

∂tF+(u·∇)F=∇uF,

∇·u=0,

(1.1)

where x∈R
3,t≥0,u is the flow velocity, F=F(x,t) represents the local deformation gradi-

ent of the fluid. This system of partial differential equations arises in the Oldroyd model

for ideal viscoelastic flow i.e. a viscoelastic fluid whose elastic properties dominate its

behavior (see [1]). Global existence for solutions near equilibrium of the viscous analog

of (1.1) has been verified by Lin et al. [1] and Lei et al. [2]; A further discussion of these

topics can be found in the work Lin and Zhang [3]. Noting the second equation of system
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(1.1), if ∇Fk = 0 initially, it will remain so for later times. In what follows, we will make

this assumption and also note that it implies the equality

∇·FFT =
3

∑
k=1

(Fk ·∇)Fk.

Under the assumed properties of the deformation gradient in above references, the sys-

tem (1.1) can be rewritten as eqnarray























∂tu+u·∇u+∇p=κ∇·τ,

∂tτ+u·∇τ−µ∆τ−bτ=Q(∇u,τ)+aDu,

∇·u=0,

t=0 : u=u0(x), τ=τ0(x).

(1.2)

For the vanishing viscosity case, Sideris and Thomases [4] also established the global

existence of smooth solutions near the equilibrium using the incompressible limit by im-

posing a null condition on the elastic stress. Using the standard energy method [5], it is

known that for (u0,Fk0)∈Hs, s≥3, there exists T>0 such that the Cauchy problem (1.1)

has a unique smooth solution (u(t,x),F(t,x)) on [0,T] satisfying

(u,F)∈C([0,T];Hs)∩C1([0,T];Hs−1). (1.3)

Recently, Hu and Hynd [6] get an analog of the Beale-Kato-Majda criterion [7] for singu-

larities of smooth solutions of the system of PDE arising in the Oldroyd model for ideal

viscoelastic flow. More precisely, they showed that if the smooth solution (u,F) satisfies

the following condition:

∫ T

0
‖∇×u‖L∞ dt<∞ and

∫ T

0
‖∇×F‖L∞ dt<∞, (1.4)

then the solution (u,F) can be extended beyond t= T, namely, for some T < T⋆,(u,F)∈
C([0,T⋆);Hs(R3))∩C1([0,T⋆);Hs−1(R3)).

More recently, for the following incompressible Euler equations











ut+u·∇u+∇p=0,

∇·u=0,

t=0 : u=u0.

(1.5)

H. Kozono et al. [8] refined the result of Beale et al. [7] and showed that if the solution u

to (1.3) satisfies
∫ T

0
‖∇×u‖Ḃ0

∞,∞
dt≤∞, (1.6)



A New Blowup Criterion for Ideal Viscoelastic Flow 25

then the solution u can be extended beyond t=T. Here and thereafter, Ḃs
p,q denotes the

homogenous Besov space, see Section 2 for definition. We remark that L∞ ⊂ Ḃ0
∞,∞.

Motivated by [9], the purpose of this paper is to obtain a similar extension criterion

for the 3D ideal viscoelastic flow. More precisely, we can get the following theorem:

Theorem 1.1. Let (u,F) be a solution to (1.1) in the class (1.3) for s≥3. Assume that

∫ T

0
‖∇×u‖Ḃ0

∞,∞
dt<∞ and

∫ T

0
‖∇×F‖Ḃ0

∞,∞
dt<∞, (1.7)

Then, the solution (u,F) can be extended beyond t=T. In other words, if the solution blows up

in t=T, then
∫ T

0
‖∇×u‖Ḃ0

∞,∞
+‖∇×F‖Ḃ0

∞,∞
dt=∞. (1.8)

The central result of this work suggests that even if the incompressibility of the de-

formation gradient is imposed, smooth solutions of (1.1) may become singular in finite

time. From this standpoint, the property that the curl of the deformation gradient is

higher order is perhaps the most important when considering global existence.

2 Preliminary

We begin with the Littlewood-Paley decomposition(see also [10]). Let S(R3) be the

Schwartz class of rapidly decreasing function. Given f ∈ S(R3), its Fourier transform

F f = f̂ . We take a couple of smooth functions (χ,ψ) supported on {ξ : |ξ| ≤ 1} with

values in [0,1] such that for all ξ∈R
3,

χ(ξ)+
∞

∑
j=0

ψ(2−jξ)=1, ψ(ξ)=χ(
ξ

2
)−χ(ξ),

and we denote χ(2−jξ) by χj(ξ). The homogeneous dyadic blocks and lower frequency

cut-off functions are defined by

△̇j f =23j
∫

R3
h(2jy) f (x−y)dy, Ṡj f =23j

∫

R3
h̃(2jy) f (x−y)dy, (2.1)

with h=F−1ψ and h̃=F−1χ. Then, we can define the homogeneous Littlewood-Paley

decomposition by

f = ∑
j∈Z

△̇j f . (2.2)

Using this decomposition, for any f ∈S ′(R3), we define the homogeneous Besov space

as follows:

Ḃs
p,q={ f :‖ f‖Ḃs

p,q
=(∑

j∈Z

2jsq‖△̇ju‖
q
Lp)

1
q <∞}, (2.3)
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for s∈R,q<∞.

Ḃs
p,∞={ f :‖ f‖Ḃs

p,∞
=sup

j∈Z

2js‖△̇ju‖Lp <∞}. (2.4)

for q=∞.

Finally, for completeness, we give a logarithmic Sobolev inequalities in terms of Besov

space, which plays an important role in the proof of Theorem 1.1 .

Proposition 2.1. Let m > 3/2. Assume that f ∈ Ḃ0
∞,∞(R

3)∩Hm(R3). Then there holds the

inequality

‖ f‖L∞ ≤C(1+‖ f‖Ḃ0
∞,∞

(1+log+‖ f‖Hm )), (2.5)

where log+ t= logt, for t>1, log+ t=0, for t≤1 and C is an absolute constant independent of f .

Proof. Using the Littlewood-Paley decomposition (2.2), we decompose f as follows:

f = ∑
j<−N

△̇j f +
N

∑
j=−N

△̇j f + ∑
j>N

△̇j f ≡ f1+ f2+ f3, (2.6)

where N is a positive integer to be determined later. We first estimate f1. Notice that

△̇j = Ṡj−Ṡj−1, we have

f1(x)= Ṡ−(N+1) f (x)h̃−(N+1)∗ f (x).

Thus by the Hausdorff-Young inequality, we obtain

‖ f1‖L∞ ≤‖h̃−(N+1)‖L2‖ f‖L2 ≤C2
−3N

2 ‖ f‖L2 . (2.7)

Next we turn to estimate f2. By the definition of Besov space, we have

‖ f2‖L∞ ≤
N

∑
i=−N

‖△j f‖L∞ ≤ (2N+1)‖ f‖Ḃ0
∞,∞

. (2.8)

Finally we estimate f3. By Bernstein inequality, we have

‖ f3‖≤ ∑
j>N

‖△j f‖∞ ≤C ∑
j>N

23j/2‖△j f‖L2

≤C ∑
j>N

2(−m+ 3
2 )j‖ f‖Ḃs

2,∞ ≤C2(−m+ 3
2 )N‖ f‖Hm , (2.9)

where we have use the fact that s>3/2 and Hm →֒ Ḃs
2,∞ in the last inequality of (2.9).

Combining (2.6)-(2.9), we obtain

‖ f‖∞ ≤C2
−3N

2 ‖ f‖L2 +N‖ f‖Ḃ0
∞,∞

+2(−m+ 3
2 )N‖ f‖Hm ).
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Set α=min(3/2,m−3/2), we have

‖ f‖∞ ≤C(2−αN‖ f‖Hm +N‖ f‖Ḃ0
∞,∞

). (2.10)

Now we choose N such that 2−αN‖ f‖Hm ≤1, i.e.,

N≥
log‖ f‖Hm

αlog2
.

Then, the desired estimate (2.5) follows from the above inequality and (2.10)

Remark 2.1. More general result can be found in [11, 12].

3 Proof of Theorem 1.1

In the section, using the energy estimate method, we will give the proof of Theorem 1.1.

Proof. Firstly, we give the basic energy estimate of system (1.1). Multiplying u and F to

the equations and integrating them in R
3, we have

1

2

d

dt

∫

R3
|u|2+|Fk|

2dx=−
∫

R3
(u·∇u)udx+

∫

R3
(Fk ·∇u)Fkdx

+
∫

R3

3

∑
k=1

(Fk ·∇Fk)udx−
∫

R3
(u·∇Fk)Fkdx.

Noting the divergence free of u and Fk, we can get

‖(u(t),Fk(t))‖L2 ≤C‖(u0,Fk0)‖L2 .

Taking the operation ∂α
x on both sides of (1.2) for |α| ≤ s, multiplying (∂α

xu,∂α
xFk) to the

resulting equation, and integrating over R
3 with respect to x, then integrating by parts

and noting the divergence free of u and Fk, we obtain

1

2

d

dt

∫

R3
|∂α

xu|2+|∂α
xFk|

2dx≤−
∫

R3
∂α

x(u·∇u)∂α
xudx+

∫

R3
∂α

x(Fk ·∇u)∂α
xFkdx

+
∫

R3

3

∑
k=1

∂α
x(Fk ·∇Fk)∂

α
xudx−

∫

R3
∂α

x(u·∇Fk)∂
α
xFkdx. (3.1)

Noting the divergence free of u, we have

∫

R3
∂α

x(u·∇u)∂α
xudx=

∫

R3
(∂α

x(u·∇u)−(u·∂α
x∇u))∂α

xudx,

and ∫

R3
∂α

x(u·∇Fk)∂
α
xFkdx=

∫

R3
(∂α

x(u·∇Fk)−(u·∂α
x∇Fk))∂

α
xFkdx.
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Recall the following estimate

‖∂α
x( f g)− f ∂α

x g‖L2 ≤C(‖ f‖Hs‖g‖L∞ +‖∇ f‖L∞‖g‖Hs ), (3.2)

and using the divergence free of Fk

∫

R3
∂α

x(Fk ·∇u)∂α
xFkdx+

∫

R3

3

∑
k=1

∂α
x(Fk ·∇Fk)∂

α
xudx=0.

Then, doing summation over |α|≤ s, we can get

d

dt
(‖u‖2

Hs +‖Fk‖
2
Hs)≤C(‖∇u‖L∞+‖∇Fk‖L∞)(‖u‖2

Hs +‖Fk‖
2
Hs). (3.3)

Then, by Gronwall inequality, we have

‖(u(t),Fk(t))‖Hs ≤‖(u0,Fk0)‖Hs exp

(

C
∫ t

0
(‖∇u(τ)‖L∞ +‖∇Fk(τ)‖L∞)dτ

)

. (3.4)

Using the Proposition 2.1 and divergence free of u and Fk, we can get

‖(∇u,∇Fk)‖L∞ ≤C(1+‖(∇×u,∇×Fk)‖Ḃ0
∞,∞

(1+log+‖(u,Fk)‖Hs)). (3.5)

Combining (3.4) and (3.5), we have

‖(u(t),Fk(t))‖Hs ≤‖(u0,Fk0)‖Hsexp

(

C
∫ t

0
(C(1+‖(∇×u,∇×Fk)‖Ḃ0

∞,∞

×(1+log+‖(u,Fk)‖Hs)))dτ
)

. (3.6)

Applying the Gronwall inequality, we deduce

‖(u(t),Fk(t))‖Hs ≤C‖(u0,Fk0)‖Hsexp

(

t+exp

(

C
∫ t

0
‖(∇×u(τ),∇×Fk(τ))‖Ḃ0

∞,∞
dτ

))

.

Therefore, by the standard argument of continuation of local solutions, we complete the

proof of Theorem 1.1.
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