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Abstract. In this paper, we establish a singular Trudinger-Moser inequality for the
whole hyperbolic space H

n:

sup
u∈W1,n(Hn),

∫

Hn |∇Hn u|ndµ≤1

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk |u|
nk

n−1

k!

ρβ
dµ<∞⇐⇒

α

αn
+

β

n
≤1,

where α > 0,β∈ [0,n), ρ and dµ are the distance function and volume element of H
n

respectively.
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1 Introduction

In the past forty years, Trudinger-Moser inequality has play an important role in analysis

and geometry. People call it Trudinger-Moser inequality because it was first proposed by

Trudinger [1] in 1967: ∃α,C>0, s.t.

sup
u∈W1,n

0 (Ω),
∫

Ω
|∇u|ndx≤1

∫

Ω
eα|u|

n
n−1

dx≤C|Ω|, (1.1)

where |Ω| denotes the Lebesgue measure of Ω, and then improved by Moser [2] in 1971:

the best constant for α is αn =nω
1

n−1

n−1, ωn−1= |Sn−1|. Here the best constant means that: if
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α≤αn, then inequality (1.1) holds; if α>αn, then there exists a sequence {uk}⊂W1,n
0 (Ω)

with
∫

Ω
|∇uk|

ndx≤1, but
∫

Ω
eαu2

k dx→∞ as k→∞. As limit case of the Sobolev embedding

theorem, there is no need to say the importance of (1.1) in analysis. One more word we

want to say here it that, using a similar inequality, Moser [3] solved the prescribing Gauss

curvature problem on RP2.

Roughly speaking, the classical Trudinger-Moser inequality ((1.1) with α=αn) has the

following four kinds of generalizations:

(1) To high order derivatives, i.e., to W
m, n

m
0 (Ω), this work was done by Adams [4] in

1988.

(2) To compact manifolds with or without boundary, this problem was first attempted

by Aubin [5] in 1970, then studied by Cherrier [6] in 1979 and solved by Fontana [7] in

1993.

(3) To the whole Euclidean spaces, this problem was first attempted by Cao [8] in

1992, then studied by Panada [9] in 1995, do Ó [10] in 1997, Ruf [11] in 2005, Li-Ruf [12]

in 2008, Adimurthi-Yang [13] in 2010, and Yang-Zhu [14] in 2013.

(4) To the whole complete noncompact manifolds, this problem was first attempted

by Yang [15] in 2012 for general manifolds. When manifold is H
n, the hyperbolic space

with constant sectional curvature −1, this problem was studied by Mancini-Sandeep [16]

in 2010, Adimurthi-Tintarev [17] in 2010, Battaglia [18] and Mancini [19] in 2011, Wang-

Ye [20] in 2012, Tintarev [21] and Mancini-Sandeep-Tintarev [22] in 2013, and Yang-Zhu

[23] in 2014.

In this paper, we will establish a singular Trudinger-Moser inequality on the whole

hyperbolic space H
n. Before stating the main result, let us review some relevant results

in the past few years. In 2007, Aimurthi-Sandeep [24] first derived a singular Trudinger-

Moser inequality on a bounded domain in R
n containing the origin, they proved

∫

Ω

eα|u|
n

n−1

|x|β
dx<∞ (1.2)

and

sup
u∈W1,n

0 (Ω),
∫

Ω
|∇u|ndx≤1

∫

Ω

eα|u|
n

n−1

|x|β
dx<∞⇐⇒

α

αn
+

β

n
≤1, (1.3)

where α> 0, β ∈ [0,n). In 2010, Adimurthi-Yang [13] generalized (1.3) to the whole Eu-

clidean space R
n, they obtained

sup
||u||1,τ≤1

∫

Rn

eα|u|
n

n−1 −∑
n−2
k=0

αk|u|
nk

n−1

k!

|x|β
dx<∞⇐⇒

α

αn
+

β

n
≤1, (1.4)

where ||u||1,τ =
(∫

Rn(|∇u|n+τ|u|n)dx
)

1
n , α>0 and β∈ [0,n). Then in 2012, with the help

of (1.4), Yang [25] obtained some existence results of positive solutions to quasi-linear
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elliptic equations with exponential growth in R
n. Recently, Yang [26] generalized (1.4) to

the entire Heisenberg group.

In this paper, we will establish the corresponding inequalities of (1.3) and (1.4) in H
n.

In fact, we obtain

Theorem 1.1. ∀α>0,β∈ [0,n), we have

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk |u|
nk

n−1

k!

ρβ
dµ<∞.

Moreover,

sup
u∈W1,n(Hn),

∫

Hn |∇Hn u|ndµ≤1

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk|u|
nk

n−1

k!

ρβ
dµ<∞⇐⇒

α

αn
+

β

n
≤1,

where ρ and dµ are the distance function and volume element of H
n respectively.

This paper is organized as follows: In Section 2, we will state some preliminaries,

including the Poincaré ball model of the hyperbolic space H
n, the symmetric decreasing

rearrangements of functions in W1,n(Hn), and an important radial lemma; In Section 3,

we will complete the proof of Theorem 1.1.

2 Preliminaries

In this section, we will recall the Poincaré ball model of the hyperbolic space H
n and state

an important radial lemma which will be used in the next section.

2.1 Poincaré ball

Denote B1⊂R
n the unit ball centered at the origin, equipped B1 with

ds2 =
4∑

n
i=1dx2

i

(1−r2)2
,

where r=
√

∑
n
i=1 x2

i is the Euclidean distance from the origin to x∈B1. Using dµ to denote

the volume element with respect to ds2, i.e.,

dµ=
2n

(1−r2)n
dx.

Direct calculation tells us,
∫

Hn
|∇Hn u|ndµ=

∫

B1

|∇u|ndx.
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So

W1,n(Hn)={u|
∫

Hn
|∇Hn u|ndµ<∞}

can be identified with W1,n
0 (B1).

Denote W1,n
0,r (B1) the subspace of radially symmetric functions of W1,n

0 (B1).

We will use symmetric decreasing rearrangements of functions in W1,n(Hn). Let u∈
W1,n(Hn), denote u∗ its symmetric decreasing rearrangement function. It is well known

that
∫

Hn
|u∗|ndµ=

∫

Hn
|u|ndµ, and

∫

Hn
|∇Hn u∗|ndµ≤

∫

Hn
|∇Hn u|ndµ.

For more details about symmetric decreasing rearrangements of functions in W1,n(Hn),
we refer the reader to [27, 28].

2.2 Radial lemma

Lemma 2.1. ( [22, Lemma 2.2]) Let u∈W1,n
0,r (B1), then

|u(r)|≤
ln

n−1
n ( 1

r )

ω
1
n
n−1

||∇u||n , r∈ (0,1).

3 Proof of Theorem 1.1

The proof of Theorem 1.1 mainly depends on Lemma 2.1 and the singular Trudinger-

Moser inequality (1.3) of Adimurth and Sandeep .

By the standard rearrangement argument [27, 28] applied on H
n, it suffices to con-

sider the inequality only for radial functions on the Poincaré ball. Let u∈W1,n
0,r (B1) be an

arbitrary function satisfying
∫

B1
|∇u|ndx ≤ 1. We divide the integral into two parts: (i)

0< r< 1
2 and (ii) r≥ 1

2 .

∫

Hn

1

ρβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

dµ=
∫

B1

1
(

ln 1+r
1−r

)β

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx

≤
∫

B1

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx=

∫

B 1
2

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx

+
∫

B1\B 1
2

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx

≤C
∫

B 1
2

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

dx
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+C
∫

B1\B 1
2

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx. (3.1)

For the first integral in (3.1), by (1.2) we have

∫

B 1
2

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

dx≤
∫

B1

1

rβ
eα|u|

n
n−1

dx<∞, ∀α>0, β∈ [0,n).

When α/αn+β/n≤1, by (1.3) we have

∫

B 1
2

1

rβ

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

dx≤
∫

B1

eα|u|
n

n−1

rβ
dx

≤ sup
v∈W1,n

0 (B1),
∫

B1
|∇v|ndx≤1

∫

B1

eα|v|
n

n−1

rβ
dx<∞. (3.2)

For the second integral in (3.1), first noticing

et−
n−2

∑
k=0

tk

k!
≤Ctn−1et, (t≥0). (3.3)

From Lemma 2.1 we know that

eα|u|
n

n−1
≤C, r∈ [

1

2
,1]. (3.4)

By (3.3) and (3.4) we have

∫

B1\B 1
2

(

eα|u|
n

n−1
−

n−2

∑
k=0

αk|u|
nk

n−1

k!

)

2n

(1−r2)n
dx≤C

∫

B1\B 1
2

|u|neα|u|
n

n−1 2n

(1−r2)n
dx

≤C
∫

Hn
|u|ndµ≤C

∫

Hn
|∇Hn u|ndµ≤C, (3.5)

where the third inequality is due to the Poincaré-Sobolev inequality (c.f. in [22, Lemma

2.1]).

By combining (3.2) and (3.5), we have obtained

sup
u∈W1,n(Hn),

∫

Hn |∇Hn u|ndµ≤1

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk |u|
nk

n−1

k!

ρβ
dµ<∞, when

α

αn
+

β

n
≤1. (3.6)
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Next, we use the Moser function to show that (3.6) does not hold if α/αn+β/n> 1. For

0< l<1/2, let ul be the Moser function

ul(x)=
1

ω
1
n
n−1



























(

ln 1
2l

)
n−1

n , 06 |x|6 l,

ln 1
2|x|

(

ln 1
2l

)
1
n

, l6 |x|6 1
2 ,

0, |x|> 1
2 .

Then,

∫

Hn
|∇Hn ul|

ndµ=
∫

B1

|∇ul |
ndx=1,

and

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk|u|
nk

n−1

k!

ρβ
dµ=

∫

B1

eα|u|
n

n−1 −∑
n−2
k=0

αk|u|
nk

n−1

k!
(

ln 1+r
1−r

)β

2n

(1−r2)n
dx

>

∫

Bl

eα|u|
n

n−1 −∑
n−2
k=0

αk|u|
nk

n−1

k!
(

ln 1+r
1−r

)β

2n

(1−r2)n
dx>

∫

Bl

eα|u|
n

n−1 −∑
n−2
k=0

αk |u|
nk

n−1

k!
(

2r
1−r

)β

2n

(1−r2)n
dx

>2−β
∫

Bl

1

rβ
dx

(

eαω
− 1

n−1
n−1 ln 1

2l +O

(

(

ln
1

2l

)n−2
))

=2−βωn−1
ln−β

n−β

(

eαω
− 1

n−1
n−1 ln 1

2l +O

(

(

ln
1

2l

)n−2
))

=2
−n
(

α
αn

+ β
n

)

ωn−1
1

n−β

(

l
−n
(

α
αn

+ β
n−1

)

+o(1)

)

, as l→0+.

Hence, when α/αn+β/n>1, we have

sup
u∈W1,n(Hn),

∫

Hn |∇Hn u|ndµ≤1

∫

Hn

eα|u|
n

n−1 −∑
n−2
k=0

αk |u|
nk

n−1

k!

ρβ
dµ

> sup
∫

Hn |∇Hn ul |ndµ=1

∫

Hn

eα|ul |
n

n−1 −∑
n−2
k=0

αk|ul |
nk

n−1

k!

ρβ
dµ=∞.

This completes the proof of Theorem 1.1.
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