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Abstract. In this paper, we consider the long time behaviors for the partly dissipative
stochastic reaction diffusion equations. The existence of a bounded random absorbing
set is firstly discussed for the systems and then an estimate on the solution is derived
when the time is sufficiently large. Then, we establish the asymptotic compactness
of the solution operator by giving uniform a priori estimates on the tails of solutions
when time is large enough. In the last, we finish the proof of existence a pullback ran-
dom attractor in L2(Rn)×L2(Rn). We also prove the upper semicontinuity of random
attractors when the intensity of noise approaches zero. The long time behaviors are
discussed to explain the corresponding physical phenomenon.
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1 Introduction

The aim of this work is to research the long time behavior of asymptotically compact ran-

dom dynamical systems, which can be generated by solutions of the following stochastic

partly dissipative reaction diffusion systems with additive white noise on unbounded

domains [1],

du+(−µ∆u+λu+αv)dt=(h(u)+ f (x))dt+ε
m

∑
j=1

hjdωj, (1.1)
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dv+(δv−βu)dt= g(x)dt+ε
m

∑
j=1

h∗j dωj, (1.2)

where µ, λ, α, δ, β are positive constants, f , g, hj and h∗j are given functions, h(u) is

a nonlinear function satisfying certain dissipative condition and {ωj}m
j=1 are indepen-

dent two-sided real-valued Wiener processes on a probability space which will be explain

later. The without additive white noise equations [2] is often used to describe the signal

transmission across axon and is a model of FitzHugh-Nagumo equation in neurobiology.

The FitzHugh-Nagumo equation is obtained by simplifying the four variables HudgKin-

Huxley equation. And the simplified H-H equation are very successful in many ways in

describing the behavior of nerve fiber. The mathematical model has become an important

branch of nonlinear science. These equations are known as an excitable system, we can

refer to the literature [3–5]. However,deterministic models often ignore many small per-

turbation, the stochastic model can more accurately describe the physical phenomenon.

In the past decades, consider the long time behavior of infinite dimensional dynamical

system was one of the most important work in mathematical physics [6–8]. One of the

important tasks of investigation of dissipative dynamical system is to find conditions for

the existence of an random dynamical system [9]. A RDS on the phase space is said to

be dissipative if and only if there exists a bounded random absorbing set [10–12]. The

long time behavior of solutions from problem (1.1)-(1.2) in a bounded domain has been

studied by several authors [1, 13], but little is known for unbounded domains. Existence

of random attractor on unbounded domains for stochastic Benjamin-Bona-Mahony equa-

tion and Navier-Stokes equation have investigated distinguish in [14] and [15]. Here we

prove the existence of such a random attractor [16] for the partly dissipative stochastic

reaction diffusion systems (1.1)-(1.2). It is worth mentioning that many researcher are

interested in this research area. As everyone knows that the sobolev embedding are no

longer compact in the unboundedness of the domain, which form a major difficulty for

proving the existence of an attractor [17]. So the asymptotic compactness of solutions can-

not be acquired with the standard method. The energy equation approach is employed

by some authors in the deterministic case on unboundedness domain [18]. In this paper,

we provide uniform estimates on the far-field values of solutions, which can be used to

circumvent the difficulty caused by the unboundedness of the domain. Some authors

have used this method. The master devote in this essay is to develop the method of us-

ing tail estimates to the case of stochastic dissipative systems [9], and prove the existence

of a random attractor for the stochastic partly dissipative reaction diffusion systems in

L2(Rn)×L2(Rn).

The paper is made as follows. In the Section 2, we recall some main definitions and

results concerning the existence of a random attractor for random dynamical systems. In

Section 3, we transform (1.1)-(1.2) into a deterministic systems with random parameter

and come into being a continuous random dynamical system. In Section 4, we devote

to obtaining uniform estimates of solutions when t→∞. These estimates are necessary
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for proving the existence of bounded absorbing set and the asymptotic compactness of

the equation. In the last section, we first establish the asymptotic compactness of the

solution operator by giving uniform estimates on the tails of solutions, and then prove

the existence of a pullback random attractor.

In the paper, we set L2(Rn), H1
0(Rn) and E=L2(Rn)×L2(Rn) with the following inner

products and norms, respectively

(u,v)=
∫

Rn
uvdx, ‖u‖=(u,u)

1
2 , ∀u,v∈L2(Rn).

((u,v))=
∫

Rn
∇u∇vdx, ‖u‖H1

=((u,u))
1
2 =

(∫

Rn
(∇u)2dx

) 1
2

, ∀u,v∈H1
0(Rn).

(y1,y2)E=(u1,u2)+(v1,v2).

‖yi‖E =(yi,yi)
1
2
E =(‖ui‖2+‖vi‖2)

1
2 , ∀yi =(ui,vi)

⊤∈E, i=1,2.

The letters c and ci(i = 1,2,···) are generic positive constants which may change their

values from line to line or even in the same line.

2 Preliminaries on random dynamical systems

In this section, we introduce some basic concepts related to random attractors for stochas-

tic dynamical systems [19]. To different concepts, We can consult these literature [20, 21].

Let (X, ‖·‖X) be a separate Hilbert space with Borel σ-algebra B(X) and the three parts

(Ω,F ,P) is a probability space.

Definition 2.1. A quadruple (Ω,F ,P,(θt)t∈R) is called a metric dynamical system if θ :R×Ω→
Ω is (B(R)×F ,F) -measurable, θ0 is the identity on Ω , θs+t=θt◦θs, for all s,t∈R and θtP=P

for all t∈R.

Definition 2.2. A continuous random dynamical system over (Ω,F ,P,(θt)t∈R) is a (B(R+)×
F×B(X),B(X))-measurable mapping. S : R+×Ω×X →X,(t,ω,x)→ ϕ(t,ω,x) and satisfies

for P-a.e. ω∈Ω.

(1)S(0,ω,·) is the identify on X;

(2)S(t+s,ω,·)=S(t,θsω,·)◦S(s,ω,·) for all s,t≥0 and ω∈Ω.

(3)S(t,ω,·) : x→ x is continuous for all t∈R+.

Definition 2.3. (1) Let X is a Banach space, A set-valued mapping ω → H(ω) : Ω → 2X is

said to be a random set if the mapping ω → d(x,H(ω)) is measurable for any x ∈ X, If H(ω)
is closed(compact) for each ω ∈Ω, the mapping ω → H(ω) is called a random closed(compact)

set. A random set ω→ H(ω) is said to be bounded if there exist x0 ∈X and a random variable

R(ω)>0 such that H(ω)⊂{x∈X :‖x−x0‖≤R(ω)} for all ω∈Ω.
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(2) A random set ω→B(ω) is called tempered if for P-a.e. ω∈Ω. lim
t→∞

e−βtd(B(θ−tω))=0

for all β>0, where d(B(θ−tω))=supx∈B(θ−tω)‖x‖X .

(3) Let D be a collection of random subsets of X and {K(ω)}ω∈Ω∈D. Then {K(ω)}ω∈Ω is

called a random absorbing set for S in D if for every B∈D and P-a.e. ω∈Ω, there exists tB(ω)>0

such that S(t,θ−tω,B(θ−tω))⊂K(ω) for all t≥ tB(ω).

Definition 2.4. Let D be a collection of random subsets of X. A random set {A(ω)}ω∈Ω of X

is called a D-pullback attractor(D-random attractor) for S if the following conditions are satisfied

for P-a.e. ω∈Ω.

(i) {A(ω)}ω∈Ω is compact and ω→d(x,A(ω)) is measurable for x∈X;

(ii) {A(ω)}ω∈Ω is invariant, that is S(t,ω,A(ω))=A(θtω) for all t≥0;

(iii) {A(ω)}ω∈Ω attracts every set in D, that is, for every B={B(ω)}ω∈Ω∈D,

lim
t→∞

dH(S(t,θ−tω,B(θ−tω)),A(ω))=0,

where dH is the Hausdorff semi-distance given by d(Y,Z)= sup
y∈Y

inf
z∈Z

‖y−z‖X for any Y⊆X and

Z⊆X.

The following existence result for a random attractor for a continuous RDS can be

found in [9, 14–16, 22]. First, recall that a collection D of random subsets is called inclu-

sion closed if whenever S(ω)ω∈Ω is an arbitrarily random set and T(ω)ω∈Ω is in D with

S(ω)⊂T(ω) for all ω∈Ω, then S(ω)ω∈Ω must belong to D.

Definition 2.5. A measurable RDS (ϕ,θ) on a metric space X over MDS (θt)t∈R is said to be

asymptotically compact, if and only if for any sequence {tn : n ∈ N},tn → ∞ and any bounded

sequence {xn ∈X : n∈ N}, the set {ϕ(tn,θ−tn ω)xn : n∈ N} is relatively compact in X for each

ω∈Ω.

Proposition 2.1. Let D be an inclusion-closed collection of random subset of E = L2(Rn)×
L2(Rn) and φ is a continuous RDS on E over (Ω,F ,P,(θt)t∈R). Suppose that {S(ω)}ω∈Ω is a

closed random absorbing set for φ in D and φ is D-pullback asymptotically compact in E, then φ

has a unique D-random attractor {A(ω)}ω∈Ω which is definite by

{A(ω)}=
⋂

τ≥0

⋃

t≥τ

φ(t,θ−tω,S(θ−tω)).

In this paper, we will take D as the collection of all tempered random subsets of E

and prove the stochastic reaction-diffusion equation in E has a D-random attractor.
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3 The partly dissipative systems on L2(Rn)×L2(Rn) with

additive noise

Here we show that there is a continuous random dynamical system generated by the

stochastic partly dissipative systems defined on L2(Rn)×L2(Rn) with additive noise:

du+(−µ∆u+λu+αv)dt=(h(u)+ f (x))dt+ε
m

∑
j=1

hjdωj, (3.1)

dv+(δv−βu)dt= g(x)dt+ε
m

∑
j=1

h∗j dωj, (3.2)

with the initial conditions

u(x,0)=u0(x), v(x,0)=v0(x). (3.3)

Here µ,λ,α,δ,β are positive constants, f ,g,hj and h∗j are given functions, h(u) is a nonlin-

ear function satisfying the following condition:

h(t)t≤−α1|t|q, |h(t)|≤α2|t|q−1,
∂h(s)

∂s
≤α3. (3.4)

where α1,α2 and α3 are positive constants.

In the sequel, we consider the probability space (Ω,F ,P) where

Ω={ω=(ω1,ω2,···), ωm∈C(R,Rm) : ω(0)=0},

F is the Borel σ-algebra induced by the compact-open topology of Ω, and P the corre-

sponding Wiener measure on (Ω,F), then we will identify ω with

W(t)≡ (ω1(t),ω2(t),··· ,ωm(t))=ω(t) for t∈R.

We definite the time shift by θtω(·)=ω(·+t)−ω(t), ω∈Ω,t∈R. Then (Ω,F ,P,(θt)t∈R) is

a metric dynamical system. To this end, we need to convert the stochastic systems with a

random additive term into a deterministic systems with random parameter.

Given j = 1,2,··· ,m, we consider the one-dimensional Ornstein-Uhlenbeck equation

[23],

dzj+λzjdt=dωj(t). (3.5)

The equation have a solution zj(t)=zj(θtωj)≡−λ
∫ 0
−∞

eλτ(θtωj)(τ)dτ,t∈R. Note that the

random variable |zj(ωj)| is tempered and zj(θtωj) is P-a.e. continuous. So there exists a

tempered function r(ω)>0 such that

m

∑
j=1

(|zj(ωj)|2+|zj(ωj)|p)≤ r(ω), (3.6)
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where r(ω) satisfies, for P-a.e. ω∈Ω,

r(θtω)≤ eǫ|t|r(ω), for t∈R, ω>0. (3.7)

Then it get from(3.6)-(3.7) that, for P-a.e. ω∈Ω,

m

∑
j=1

(|zj(θtωj)|2+|zj(θtωj)|p)≤ eǫ|t|r(ω), t∈R. (3.8)

We can refer to literature [1] to acquaintance more.

Let z(θtω)= ε∑
m
j=1hjzj(θtωj), z∗(θtω)= ε∑

m
j=1 h∗j zj(θtωj), by(3.5) we have

dz+λzdt= ε
m

∑
j=1

hjdωj, dz∗+λz∗dt= ε
m

∑
j=1

h∗j dωj. (3.9)

Lemma 3.1. Suppose hj,h
∗
j ∈ H2⋂W2,q(D), j= 1,2,··· ,m. For ǫ> 0, there is a constant c> 0

such that

‖z(θtω)‖q
q+‖z(θtω)‖2+‖z∗(θtω)‖2+‖∇z(θtω)‖2≤ l1eǫ|t|r(ω), (3.10)

‖∆z(θtω)‖q
q+‖∆z(θtω)‖2+‖z∗(θtω)‖2≤ l2eǫ|t|r(ω), (3.11)

‖∇z(θtω)‖2+‖∇z∗(θtω)‖2≤ l3eǫ|t|r(ω), (3.12)

for all t∈R,ω∈Ω, where

l1=(
m

∑
j=1

‖hj‖
q

q−1
q )q−1+

m

∑
j=1

(‖hj‖2+‖∇h∗j ‖2‖hj‖2),

l2=(
m

∑
j=1

‖∆hj‖
q

q−1
q )q−1+

m

∑
j=1

(‖hj‖2+‖h∗j ‖2), and l3=
m

∑
j=1

(‖∇hj‖2+‖∇h∗j ‖2).

Proof. Since z(θtω)=
m

∑
j=1

hjzj(θtωj), we get

‖z(θtω)‖q ≤
m

∑
j=1

‖hj‖q|zj(θtωj)|≤ (
m

∑
j=1

‖hj‖
q

q−1
q )

q−1
q (

m

∑
j=1

|zj(θtωj)|q)
1
q .

We have known that

‖z(θtω)‖q
q ≤ ((

m

∑
j=1

‖hj‖
q

q−1
q )q−1)eǫ|t|r(ω),

similarly,

‖z(θtω)‖2≤ (
m

∑
j=1

‖hj‖2)eǫ|t|r(ω), ‖z∗(θtω)‖2≤ (
m

∑
j=1

‖h∗j ‖2)eǫ|t|r(ω),
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and

‖∇z(θtω)‖2≤ (
m

∑
j=1

‖∇hj‖2)eǫ|t|r(ω).

Adding the above three inequalities implies (3.10) holds. Similar to the prove of (3.10),
we can prove the other two inequalities.

The existence of a solution to the stochastic partly dissipative systems (3.1)-(3.2), with

initial condition (3.3) have proved. To show (3.1)-(3.2) generates a random dynamical

system, we let n(t) = u(t)−z(θtω), m(t) = v(t)−z∗(θtω), where (u,v) is a solution of

problem (3.1)-(3.2), then n(t),m(t) satisfies

∂n

∂t
−µ∆n+λn+αm=µ∆z(θt ω)−αz∗(θtω)+h(u)+ f (x), (3.13)

∂m

∂t
+δm−βn=βz(θtω)+(λ−δ)z∗(θtω)+g(x), (3.14)

with the initial date (n0,m0)=(u0−z(ω),v0−z∗(ω)) and homogeneous boundary condi-

tions. For each invariability ω∈Ω, (3.13)-(3.14) is a deterministic differential equations.

By a Galerkin method, one can show that if h satisfies (3.4), then (3.13)-(3.14) have a

unique solution (n,m)∈C([0,∞);L2×L2)
⋂

L2((0,T);H1×L2) with (n0,m0) for every T≥0,

Let ϕ0=(n0,m0)=(u0−z(ω),v0−z∗(ω)) and ϕ(t,ω,ϕ0)=(n(t,ω,n0),m(t,ω,m0)), then the

process φ= ϕ+(z(θtω),z∗(θtω)) is the solution of problem (3.1)-(3.3). Therefore, φ is a

continuous random dynamical system associated with the stochastic partly dissipative

reaction-diffusion equations. In the next section, we establish uniform estimates for the

solutions of problem (3.1)-(3.3), and prove the existence of a random attractor for φ.

4 Uniform estimates of solutions

Let ϕ=(n,m) be the solution of (3.13)-(3.14). For ω∈Ω, we need the priori estimates of

the solution ϕ=(n,m) in E=L2(Rn)×L2(Rn). From now on, we always assume that D is

the collection of all tempered subset of E with respect to (Ω,F ,P,(θt)t∈R), the next lemma

will show that φ has a random absorbing set in D.

Lemma 4.1. Assume that f ,g∈ L2(Rn) and (3.4) hold, LetB= B(ω)ω∈Ω ∈D which is the col-

lection of all tempered subsets of E, and φ0(ω)=(u0(ω),v0(ω))∈B(ω), Then for P-a.e. ω∈Ω,

there exists TB(ω)>0, such that for all t≥TB(ω).

φ(t,θ−t(ω),φ0(θ−tω))⊆K(ω),

where c is a positive deterministic constant independent of TB(ω) and r(ω) is tempered function.
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Proof. Taking the inner product of both sides of (3.13) with βn, similarity, taking the inner

product of both sides of (3.14) with αm, then we add the two equation together, we can

obtain

1

2

d

dt
(β‖n‖2+α‖m‖2)+µβ‖∇n‖2+λβ‖n‖2+δα‖m‖2

=β(h(u),n)+βµ(∆z(θt ω),n)−αβ(z∗(θtω),n)+αβ(z(θtω),m)

+(λ−δ)(z∗(θtω),m)+β( f ,n)+α(g,m). (4.1)

Now, we start to estimate the above equation, firstly we magnify the equation’s terms

as follows

β(h(u),n)=β
∫

Rn
h(u)ndx=β

∫

Rn
h(u)udx−β

∫

Rn
h(u)z(θtω)dx

≤−βα1

∫

Rn
|u|qdx+βα2

∫

Rn
|u|q−1|z(θtω)|dx≤−1

2
βα1‖u‖q

q+c‖z(θtω)‖q
q, (4.2)

|βµ(∇z(θtω),n)|= |βµ
∫

Rn
∆z(θtω)ndx|≤ 1

2
βµ‖∇n‖2+

1

2
βµ‖∇z(θtω)‖2, (4.3)

|−αβ(z∗(θtω),n)|= |αβ
∫

Rn
z∗(θtω)ndx|≤ λβ

4
‖n‖2+

1

λ
βα2‖z∗(θtω)‖2, (4.4)

|αβ(z(θtω),m)|≤ 1

8
αδ‖m‖2+

2

δ
αβ2‖z(θtω)‖2, (4.5)

|α(λ−δ)(z∗(θtω),m)|≤ 1

8
αδ‖m‖2+

2

δ
α(λ−δ)2‖z∗(θtω)‖2, (4.6)

|β( f ,n)|= |β
∫

Rn
f ndx|≤ 1

4
βλ‖n‖2+

1

λ
β‖ f‖2, (4.7)

|α(g,m)|= |α
∫

Rn
gmdx|≤ 1

8
αδ‖m‖2+

2

δ
α‖g‖2. (4.8)

By(4.1)-(4.8), we obtain

d

dt
(β‖n‖2+α‖m‖2)+µβ‖∇n‖2+λβ‖n‖2+δα‖m‖2+βα1‖u‖q

q

≤c(‖z(θtω)‖q
q+‖z(θtω)‖2+‖z∗(θtω)‖2+‖∇z(θtω)‖2)+c≤ p0(θtω)+c, (4.9)

where p0(θtω)=c(‖z(θtω)‖q
q+‖z(θtω)‖2+‖z∗(θtω)‖2+‖∇z(θtω)‖2), we let ν=min{δ,λ},

σ=min{α,β} and γ=max{α,β}, and ‖ϕ‖2
E =‖m‖2+‖n‖2 then we find,

d

dt
(σ‖ϕ‖2

E)+νσ(‖ϕ‖2
E)≤ p0(θtω)+c. (4.10)

Applying Gronwall’s lemma, we find that, for all t≥0

‖ϕ(t,ω,ϕ0(ω))‖2
E ≤

1

σ

(
γe−νt‖ϕ0(ω)‖2

E+
∫ t

0
eν(τ−t)p0(θτω)dτ+

c

ν

)
. (4.11)



Random Attractor for Stochastic Partly Dissipative Systems on Unbounded Domains 55

By replacing ω by θ−t(ω) in (4.11), and by Lemma 3.1 with ǫ=ν/2, we obtain, for all t≥0,

‖ϕ(t,θ−tω,ϕ0(θ−tω))‖2
E

≤ 1

σ

(
γe−νt‖ϕ0(θ−tω)‖2

E+
∫ t

0
eν(τ−t)p0(θτ−tω)dτ+

c

ν

)

≤ 1

σ

(
γe−νt‖ϕ0(θ−tω)‖2

E+
∫ −t

0
eντ p0(θτω)dτ+

c

ν

)

≤ 1

σ

(
γe−νt‖ϕ0(θ−tω)‖2

E+cl1

∫ −t

0
e

1
2 ντr(ω)dτ+

c

ν

)

≤ 1

σ

(
γe−νt‖ϕ0(θ−tω)‖2

E+
2cl1

ν
r(ω)+

c

ν

)
, (4.12)

Because {B(ω)}ω∈Ω ∈D is tempered and ‖z(ω)‖2,‖z∗(ω)‖2 is also tempered, therefore,

then there exist TB(ω)>0, such that for all t≥TB(ω),

γe−νt‖ϕ0(θ−tω)‖2
E ≤γe−νt(‖u0(θ−tω)‖2+‖z(θ−tω)‖2+‖v0(θ−tω)‖2+‖z∗(θ−tω)‖2)

≤2cl1
ν

r(ω)+
c

ν
. (4.13)

It follows from (4.12) and (4.13) that, we have

‖ϕ(t,θ−tω,ϕ0(θ−tω))‖2
E ≤

1

νσ
(2cl1+c)(1+r(ω)). (4.14)

Attention that φ= ϕ+(z(θtω),z∗(θtω)), and in Lemma 3.1 ‖z(ω)‖2+‖z∗(ω)‖2 ≤ l1r(ω),
we have

‖u‖2+‖v‖2 ≤ 2

νσ
(2cl1+l1+c)(1+r(ω)).

Denote by K(ω)={(u,v)∈L2(Rn)×L2(Rn) :‖u‖2+‖v‖2≤ 2
νσ (2cl1+l1+c)(1+r(ω))}, then

{K(ω)}ω∈Ω∈D is a random bounded absorbing set.

Lemma 4.2. Assume that f ,g ∈ L2(Rn) and (3.4) hold, Let B = B(ω)ω∈Ω ∈ D which is the

collection of all tempered subsets of E, and φ0(ω) = (u0(ω),v0(ω)) ∈ B(ω). Then for P-a.e.

ω∈Ω, there exists TB(ω)> 0, such that the solution (u,v) of problem (3.1)-(3.3) and (n,m) of

(3.13)-(3.14) satisfy, for t≥T,

∫ t

T
eν(s−t)‖ϕ(s,θ−tω,ϕ0(θ−tω))‖2

Eds≤ c(1+r(ω)+‖ϕ0(θ−tω)‖2
Ee−νt)(t−T), (4.15)

∫ t

T
eν(s−t)(‖∇n(s,θ−tω,ϕ0(θ−tω))‖2+‖u(s,θ−tω,ϕ0(θ−tω))‖q

q)ds

≤c(1+r(ω)+‖ϕ0(θ−tω)‖2
Ee−νt), (4.16)

∫ t

T
eν(s−t)(‖∇u(s,θ−tω,ϕ0(θ−tω))‖2ds≤ c(1+r(ω)+‖ϕ0(θ−tω)‖2

Ee−νt), (4.17)

where ϕ0(ω)=φ0(ω)−(z(ω),z∗(ω)), c is a positive constant and r(ω) is a tempered function.
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Proof. First, replacing t by T and ω by θ−tω in (4.11), we obtain

‖ϕ(T,θ−tω,ϕ0(θ−tω))‖2
E ≤

1

σ

(
γe−νT‖ϕ0(θ−tω)‖2

E+
∫ T

0
eν(τ−T)p0(θτ−tω)dτ+

c

ν

)
. (4.18)

By eν(T−t) to multiply the above inequality and by lemma 3.1 with ǫ=ν/2, we can get

eν(T−t)‖ϕ(T,θ−tω,ϕ0(θ−tω))‖2
E

≤ 1

σ

(
γe−νt‖ϕ0(θ−tω)‖2

E+
∫ T−t

−t
eντ p0(θτω)dτ+

c

ν
eν(T−t)

)

≤ 1

σ
γe−νt‖ϕ0(θ−tω)‖2

E+
1

σ

(
l1

∫ T−t

−t
e

1
2 ντr(ω)dτ+

c

ν

)

≤ 1

σ
γe−νt‖ϕ0(θ−tω)‖2

E+
1

σ

(
2

ν
l1r(ω)+

c

ν

)

≤c(1+r(ω)+‖ϕ0(θ−tω)‖2
Ee−νt). (4.19)

Integral above inequality from T to t, we can get the (4.15). By (4.9) and (4.10), we can

obtain that, for all t≥T,

µβ
∫ t

T
eν(s−t)‖∇n(s,ω,ϕ0(ω))‖2ds+βα1

∫ t

T
eν(s−t)‖u(s,ω,ϕ0(ω))‖q

qds

≤σeν(T−t)‖ϕ(T,ω,ϕ0(ω))‖2
E+

∫ t

T
eν(s−t)p0(θsω)ds+c

∫ t

T
eν(s−t)ds. (4.20)

Replacing ω by θ−tω in above inequality, we get that, for all t≥T,

µβ
∫ t

T
eν(s−t)‖∇n(s,θ−tω,ϕ0(θ−tω))‖2ds+βα1

∫ t

T
eν(s−t)‖u(s,θ−tω,ϕ0(θ−tω))‖q

qds

≤σeν(T−t)‖ϕ(T,θ−tω,ϕ0(θ−tω))‖2
E+

∫ t

T
eν(s−t)p0(θs−tω)ds+c

∫ t

T
eν(s−t)ds

≤σeν(T−t)‖ϕ(T,θ−tω,ϕ0(θ−tω))‖2
E+

∫ 0

T−t
eνs p0(θsω)ds+

c

ν

≤σeν(T−t)‖ϕ(T,θ−tω,ϕ0(θ−tω))‖2
E+

2

ν
l1r(ω)+

c

ν
. (4.21)

It follows from (4.19) and (4.21), we can obtain the (4.16). By the inequality (4.16), we can

obtain
∫ t

T
eν(s−t)‖∇n(s,θ−tω,ϕ0(θ−tω))‖2ds≤ c(1+r(ω)+‖ϕ0(θ−tω)‖2

Ee−νt).

We know that ∇u(s,θ−tω,ϕ0(θ−tω))=∇n(s,θ−tω,ϕ0(θ−tω))+∇z(θs−tω).
So ‖∇u(s,θ−tω,ϕ0(θ−tω))‖2≤2‖∇n(s,θ−tω,ϕ0(θ−tω))‖2+2‖∇z(θs−tω)‖2. By the in-

equality (3.6) we know ‖∇z(θtω)‖2≤ l3eǫ|t|r(ω). From above, we can get (4.17).
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Lemma 4.3. Assume that f ,g ∈ L2(Rn) and (3.4) hold, Let B = B(ω)ω∈Ω ∈ D which is the

collection of all tempered subsets of E, and φ0(ω) = (u0(ω),v0(ω)) ∈ B(ω). Then for P-a.e.

ω∈Ω, there exists TB(ω)> 0, such that the solution (u,v) of problem (3.1)-(3.3) and (n,m) of

(3.13)-(3.14) satisfy, for t≥TB(ω),

∫ t+1

t
‖ϕ(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds≤ c(1+r(ω)), (4.22)

∫ t+1

t
(‖∇n(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2+‖u(s,θ−t−1ω,ϕ0(θ−t−1ω))‖q

q)ds

≤c(1+r(ω)), (4.23)
∫ t+1

t
‖∇u(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds≤ c(1+r(ω)), (4.24)

where c is a positive deterministic constant independent of TB(ω) and r(ω) is tempered function.

Proof. First replacing t by t+1 and then replacing T by t in inequality (4.15), we obtain

∫ t+1

t
eν(s−t−1)‖ϕ(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2

Eds

≤c(1+r(ω)+‖ϕ0(θ−t−1ω)‖2
Ee−ν(t+1)). (4.25)

We know that

‖ϕ0(θ−t−1ω)‖2
E = ‖n0(θ−t−1ω)‖2+‖m0(θ−t−1ω)‖2

≤ 2‖u0(θ−t−1ω)‖2+2‖z(θ−t−1ω)‖2+2‖v0(θ−t−1ω)‖2+2‖z∗(θ−t−1ω)‖2.

And ‖u0(θ−tω)‖2,‖z(θ−tω)‖2,‖v0(θ−tω)‖2 and ‖z∗(θ−tω)‖2 are tempered, there is TB(ω)>
0 such that for t≥TB(ω)

‖ϕ0(θ−t−1ω)‖2
Ee−ν(t+1)≤ c(1+r(ω)).

Hence, from (4.25), we have, for all t≥TB(ω)

∫ t+1

t
‖ϕ(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds≤ c(1+r(ω)).

By (4.16), we can also find that for all t≥TB(ω), so the (4.23) is established.

By means of above, we know that

‖∇u(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2

=‖∇n(s,θ−t−1ω,ϕ0(θ−t−1ω))+∇z(θs−t−1ω)‖2

≤2(‖∇n(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2+‖∇z(θs−t−1ω)‖2). (4.26)
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By Lemma 3.1, when ǫ=ν/2, we obtain

‖∇z(θs−t−1ω)‖2≤ l3e
ν
2 (t+1−s)r(ω)≤ l3e

ν
2 r(ω). (4.27)

From inequality (4.27) and integrate (4.26), we can have

∫ t+1

t
‖∇u(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds

≤2

(∫ t+1

t
‖∇n(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds+

∫ t+1

t
‖∇z(θs−t−1ω)‖2ds

)

≤2c(1+r(ω))+2l3e
ν
2 r(ω)≤ c(1+r(ω)). (4.28)

The result (4.24) hold from (4.28).

Lemma 4.4. Assume that f ,g ∈ L2(Rn) and (3.4) hold, let B= {B(ω)}ω∈Ω ∈D which is the

collection of all tempered subsets of E and φ0(ω)=(u0(ω),v0(ω))∈B(ω), then for P-a.e. ω∈Ω,

there exists TB(ω)>0 such that for t≥TB(ω)

‖∇u(t,θ−t(ω),φ0(θ−tω))‖2≤ c(1+r(ω)).

Proof. Taking the inner product of (3.13) with −∆n in L2, we get that

1

2

d

dt
‖∇n‖2+µ‖∆n‖2+λ‖∇n‖2+α(m,−∆n)

=(h(u),−∆n)+µ(∆z,−∆n)+( f ,−∆n)−α(z∗ ,−∆n). (4.29)

Note that

−
∫

Rn
h(u)∆ndx=−

∫

Rn
h(u)∆udx+

∫

Rn
h(u)∆z(θtω)dx

≤
∫

Rn
h′(u)|∇u|2dx+

∫

Rn
|h(u)∆z(θtω)|dx≤α3‖∇u‖2+α2

∫

Rn
|u|q−1|∆z(θtω)|dx

≤c(‖∇u‖2+‖u‖q
q)+c‖∆z(θtω)‖q

q, (4.30)

and

|−α(m,−∆n)+µ(∆z,−∆n)+( f ,−∆n)−α(z∗ ,−∆n)|

≤µ

2
‖∆n‖2+2

α2

µ
‖m‖2+2µ‖∆z(θtω)‖2+2

1

µ
‖ f‖2+2

α2

µ
‖z∗(θtω)‖2. (4.31)

It follows from(4.29)-(4.31), we find that

d

dt
‖∇n‖2 ≤ c(‖m‖2+‖∇u‖2+‖u‖q

q)+p1(θtω), (4.32)
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where p1(θtω) is a tempered function, and p1(θtω)≤ cr(ω)e−
1
2 νt+c, let TB(ω) is the pos-

itive constant in Lemma 4.1, take t ≥ TB(ω) and s ∈ (t,t+1), then integrate (4.32) over

(s,t+1) to get

‖∇n(t+1),ω,ϕ0(ω)‖2−‖∇n(s,ω,ϕ0(ω))‖2

≤
∫ t+1

s
p1(θτω)dτ+c

∫ t+1

s
‖m(τ,ω,ϕ0(ω))‖2dτ

+c
∫ t+1

s
(‖∇u(τ,ω,ϕ0(ω))‖2+‖u(τ,ω,ϕ0(ω))‖q

q)dτ

≤
∫ t+1

t
p1(θτω)dτ+c

∫ t+1

t
‖m(τ,ω,ϕ0(ω))‖2dτ

+c
∫ t+1

t
(‖∇u(τ,ω,ϕ0(ω))‖2+‖u(τ,ω,ϕ0(ω))‖q

q)dτ. (4.33)

Now replacing ω by θ−t−1ω, and integrating the inequality with respect to s over (t,t+1),
we obtain that

‖∇n(t+1),θ−t−1ω,ϕ0(θ−t−1ω)‖2−
∫ t+1

t
‖∇n(s,θ−t−1ω,ϕ0(θ−t−1ω))‖2ds

≤
∫ t+1

t
p1(θτ−t−1ω)dτ+c

∫ t+1

t
‖m(τ,θ−t−1ω,ϕ0(θ−t−1ω))‖2dτ

+c
∫ t+1

t
(‖∇u(τ,θ−t−1ω,ϕ0(θ−t−1ω))‖2+‖u(τ,θ−t−1ω,ϕ0(θ−t−1ω))‖q

q)dτ. (4.34)

Since ‖m(τ,θ−t−1ω,ϕ0(θ−t−1ω))‖2≤‖ϕ(τ,θ−t−1ω,ϕ0(θ−t−1ω))‖2, by Lemma 3.1, Lemma

4.2, and Lemma 4.3, and it follows from (4.34) that for all t≥TB(ω),

‖∇n(t+1,θ−t−1ω,ϕ0(θ−t−1ω))‖2≤ c(1+r(ω)).

So the result is accomplished.

In the following, we prove v is precompact in L2(Rn), we decompose v=m1+m2+
z∗(θtω),mi(i=1,2) solves respectively,

∂

∂t
m1+δm1=0, (4.35)

m1,0(0)=m0=v0−z∗(ω), (4.36)

and

∂

∂t
m2+δm2=βu+g(x)+(λ−δ)z∗(θtω), (4.37)

m2,0(0)=0. (4.38)

For m1,m2, we have the following lemma.
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Lemma 4.5. Assume that f ,g ∈ L2(Rn) and (3.4) hold, let B= {B(ω)}ω∈Ω ∈D which is the

collection of all tempered subsets of E and φ0(ω)=(u0(ω),v0(ω))∈B(ω), then for P-a.e. ω∈Ω,

there exists TB(ω)>0 such that for t≥TB(ω)

‖∇v(t,θ−tω,z∗(θ−tω))‖2≤ c(1+r(ω)), (4.39)

where c is a positive deterministic constant independent of TB(ω) and r(ω) is tempered function.

Proof. Taking the inner product of (4.35) with m1 in L2, we obtain

d

dt
‖m1‖+2δ‖m1‖=0. (4.40)

Applying Gronwall’s Lemma, we find that, for all t≥0

‖m1(t,ω,m0(ω))‖2= e−2δt‖m0(ω)‖2. (4.41)

Replacing ω by θ−tω, we have

‖m1(t,θ−tω,m0(θ−tω))‖2= e−2δt‖m0(θ−tω)‖2. (4.42)

Multiplying (4.37) by −∆m2 and integrating over (0,t), we obtain

1

2

d

dt
‖∇m2‖2+δ‖∇m2‖2

= β(u,−∆m2)+(g,−∆m2)+(λ−δ)(z∗(θtω),−∆m2)

≤ δ

2
‖∇m2‖2+

2β2

δ
‖∇u‖2+

2

δ
‖∇g‖2+

2

δ
(λ−δ)2‖z∗(θtω)‖2. (4.43)

Since ν =min{δ,µ}, afterwards, by Gronwall’s inequality and replacing ω by θ−tω, we

can obtain(refer to literature [1] to acquaintance more)

‖∇m2(t,θ−tω)‖2≤ 4

ν
β2c(1+r(ω)+‖ϕ0(θ−Tω)‖2

Ee−νt)

+
4

ν2
‖∇g‖2+

8

ν2
(λ−δ)2l1r(ω),

(4.44)

where we have used Lemma 3.1 and (4.17)with T= 0, then there exists TB(ω)> 0, such

that for t≥TB(ω), we obtain

‖∇m2(t,θ−tω)‖2≤ c(1+r(ω)). (4.45)

‖∇v‖2 =‖∇(m1+m2+z∗(θtω))‖2≤2‖∇m1‖2+2‖∇(m2+z∗(θtω))‖2. (4.46)

The result hold from (4.42), (4.45) and (4.46), we completed the proof.
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Lemma 4.6. Assume that f ,g ∈ L2(Rn) and (3.4) hold, let B= {B(ω)}ω∈Ω ∈D which is the

collection of all tempered subsets of E and u0(ω)∈B(ω). Then for every ǫ>0 and P-a.e. ω∈Ω,

there exist T∗ = TB∗(ω,ǫ)> 0 and R∗ = R∗(ω,ǫ)> 0 such that the solution ϕ(t,ω,v0(ω)) of

(3.13)-(3.14) with ϕ0(ω)=φ0(ω)−(z(ω),z∗(ω)) satisfies, for all t≥T∗=T∗
B(ω,ǫ).

∫

|x|≥R∗
|ϕ(t,θ−tω,ϕ0(θ−tω))(x)|2dx≤ǫ.

Proof. Let ρ be a smooth function defined on R+, such that 0≤ρ(s)≤1 for all s∈R+, and

ρ(s)=

{
0, for 0≤ s≤1,

1, for s≥2.
(4.47)

Then there exist a positive constant c such that |ρ′(s)|≤ c for all s∈R+. Taking the inner

product of (3.13) with βρ(|x|2/k2)n in L2(Rn), we get that

L1(t,ω)=R1(t,ω), (4.48)

where

L1(t,ω)=
1

2

d

dt

∫

Rn
βρ

( |x|2
k2

)
|n|2dx−

∫

Rn
µβρ

( |x|2
k2

)
∆nndx+

∫

Rn
λβρ

( |x|2
k2

)
|n|2dx

+
∫

Rn
αβρ

( |x|2
k2

)
mndx.

R1(t,ω)=
∫

Rn
µβρ

( |x|2
k2

)
n∆z(θtω)dx−

∫

Rn
αβρ

( |x|2
k2

)
nz∗(θtω)dx

+
∫

Rn
βρ

( |x|2
k2

)
n(h(u)+ f (x))dx.

Equally important, we taking the inner product of (3.14) with αρ(|x|2/k2)m in L2(Rn), we

get that

L2(t,ω)=R2(t,ω), (4.49)

where

L2(t,ω)=
1

2

d

dt

∫

Rn
αρ

( |x|2
k2

)
|m|2dx+

∫

Rn
δαρ

( |x|2
k2

)
|m|2dx−

∫

Rn
αβρ

( |x|2
k2

)
mndx.

R2(t,ω)=
∫

Rn
αβρ

( |x|2
k2

)
mz(θtω)dx+

∫

Rn
α(λ−δ)ρ

( |x|2
k2

)
mz∗(θtω)dx

+
∫

Rn
αρ

( |x|2
k2

)
mg(x)dx.

Summing up (4.48) and (4.49) two equation, we have U1(t,ω)=U2(t,ω).

U1(t,ω)=
1

2

d

dt

∫

Rn
(βn2+αm2)ρ

( |x|2
k2

)
dx−

∫

Rn
µβ∆nρ

( |x|2
k2

)
ndx
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+
∫

Rn
λβρ

( |x|2
k2

)
|n|2dx+

∫

Rn
δαρ

( |x|2
k2

)
|m|2dx.

U2(t,ω)=
∫

Rn
µβ∆z(θtω)ρ

( |x|2
k2

)
ndx−

∫

Rn
αβz∗(θt)ω)ρ

( |x|2
k2

)
ndx

+
∫

Rn
(h(u)+ f (x))βρ

( |x|2
k2

)
ndx+

∫

Rn
αβz(θtω)ρ

( |x|2
k2

)
mdx

+
∫

Rn
α(λ−δ)z∗(θtω)ρ

( |x|2
k2

)
mdx+

∫

Rn
αg(x)ρ

( |x|2
k2

)
mdx.

Let σ=min{α,β},γ=max{α,β},ν=min{δ,λ}, we can get that V1(t,ω)≤V2(t,ω).

V1(t,ω)=
1

2

d

dt

∫

Rn
σ(m2+n2)ρ

( |x|2
k2

)
dx+

∫

Rn
(n2+m2)σνρ

( |x|2
k2

)
dx.

V2(t,ω)=
∫

Rn
µβ∆nρ

( |x|2
k2

)
ndx+

∫

Rn
(µβ∆z(θtω)−αβ)z∗(θtω)ρ

( |x|2
k2

)
ndx

+
∫

Rn
(h(u)+ f (x))βρ

( |x|2
k2

)
ndx+

∫

Rn
αg(x)ρ

( |x|2
k2

)
mdx

+
∫

Rn
(αβz(θtω)+α(λ−δ)z∗(θtω))ρ

( |x|2
k2

)
mdx.

We now estimate the terms in V2(t,ω) as follows. First we have

−
∫

Rn
µβρ

( |x|2
k2

)
∆n·ndx=−

∫

Rn
µβ∆nρ

( |x|2
k2

)
ndx=

∫

Rn
µβ∇n

(
ρ

( |x|2
k2

)
n

)′
dx

=
∫

Rn
µβ|∇n|2ρ

( |x|2
k2

)
dx+

∫

Rn
µβnρ′

( |x|2
k2

)
2x

k2
∇ndx

=
∫

Rn
µβ|∇n|2ρ

( |x|2
k2

)
dx+

∫

k≤|x|≤
√

2k
µβnρ′

( |x|2
k2

)
2x

k2
∇ndx. (4.50)

Attention that the second term on the right-hand side of (4.50) is bounded by

∣∣∣∣
∫

k≤|x|≤
√

2k
µβnρ′

( |x|2
k2

)
2x

k2
∇ndx

∣∣∣∣≤
2
√

2

k

∫

k≤|x|≤
√

2k
µβ|n||ρ′

( |x|2
k2

)
||∇n|dx

≤ c2
√

2µβ

k

∫

Rn
|n||∇n|dx≤ c

k
(‖n‖2+‖∇n‖2). (4.51)

By (4.50) and (4.51), we find that

−
∫

Rn
µβρ

( |x|2
k2

)
∆n·ndx≥

∫

Rn
µβ|∇n|2ρ

( |x|2
k2

)
dx− c

k
(‖n‖2+‖∇n‖2). (4.52)
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Now we estimate the second term in V2(t,ω), by Cauchy-Schwarz inequality we can get

that
∫

Rn
(µ∆z(θtω)−αz∗(θtω))βρ

( |x|2
k2

)
ndx

≤1

8
λβ

∫

Rn
ρ

( |x|2
k2

)
|n|2dx+

2β

λ

∫

Rn
(µ∆z(θtω)−αz∗(θtω))2ρ

( |x|2
k2

)
dx

≤1

8
λβ

∫

Rn
ρ

( |x|2
k2

)
|n|2dx+

2β

λ

∫

Rn
[µ2(∆z(θtω))2+α2(z∗(θtω))2]ρ

( |x|2
k2

)
dx. (4.53)

By(4.2) and (4.7) we can estimate the third terms in V2(t,ω), and we can get that

∫

Rn
(h(u)+ f (x))βρ

( |x|2
k2

)
ndx

=
∫

Rn
(h(u)+ f (x))βρ

( |x|2
k2

)
udx−

∫

Rn
(h(u)+ f (x))βρ

( |x|2
k2

)
z(θt)ωdx

=
∫

Rn
(h(u)u−h(u)z(θt ω))βρ

( |x|2
k2

)
dx+

∫

Rn
[ f (x)u− f (x)z(θtω)]βρ

( |x|2
k2

)
dx

≤
∫

Rn
(−1

2
βα1|u|q+c|z(θtω)|q)ρ

( |x|2
k2

)
dx+

∫

Rn
(

1

4
βλ|n|2+ 1

λ
β| f |2)ρ

( |x|2
k2

)
dx. (4.54)

By (4.5) and (4.6), (4.8) we can estimate the last terms in V2(t,ω), and we can get that

∫

Rn
(αβz(θtω)+α(λ−δ)z∗(θtω))ρ

( |x|2
k2

)
mdx+

∫

Rn
αg(x)ρ

( |x|2
k2

)
mdx

=
∫

Rn
(αβz(θtω)ρ

( |x|2
k2

)
mdx+

∫

Rn
α(λ−δ)z∗(θtω)ρ

( |x|2
k2

)
mdx

+
∫

Rn
αg(x)ρ

( |x|2
k2

)
mdx

≤
∫

Rn
(

1

8
αδ|m|2+ 2

δ
αβ2z2(θtω))ρ

( |x|2
k2

)
dx

+
∫

Rn
(

α

8
δ|m|2+ 2α

δ
(λ−δ)2(z∗(θtω))2)ρ

( |x|2
k2

)
dx

+
∫

Rn
(

1

8
αδ|m|2+ 2

δ
α(g(x))2)ρ

( |x|2
k2

)
dx

≤
∫

Rn
(

3

8
αδ|m|2+c(z(θtω))2+c(z∗(θtω))2)ρ

( |x|2
k2

)
dx+

∫

Rn

2

δ
αg2(x)ρ

( |x|2
k2

)
dx. (4.55)

Finally, from (4.52)-(4.55) we can get that

1

2

d

dt

∫

Rn
σϕ2ρ

( |x|2
k2

)
dx+

5

8
σν

∫

Rn
ϕ2ρ

( |x|2
k2

)
dx
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≤ c

k
(‖n‖2+‖∇n‖2)+c

∫

Rn
(2 f 2(x)+g2(x))ρ

( |x|2
k2

)
dx

+c
∫

Rn
(|∆z(θtω)|2+|z(θtω)|2+|z(θtω)|q+|z∗(θtω)|2)ρ

( |x|2
k2

)
dx. (4.56)

Attention that (4.56) implies that

d

dt

∫

Rn
ϕ2ρ

( |x|2
k2

)
dx+

5

4
ν
∫

Rn
ϕ2ρ

( |x|2
k2

)
dx

≤ c

k
(‖n‖2+‖∇n‖2)+c

∫

Rn
(2 f 2(x)+g2(x))ρ

( |x|2
k2

)
dx

+c
∫

Rn
(|∆z(θtω)|2+|z(θtω)|2+|z(θtω)|q+|z∗(θtω)|2)ρ

( |x|2
k2

)
dx. (4.57)

By Lemmas 4.1 and 4.5, there is T1=T1(B,ω)>0 such that for all t≥T1

‖n(t,ω,ϕ0(ω))‖2
H1(Rn)≤ c(1+r(ω)).

Now we integrate the (4.57) over (T1,t), and we can get that for all t≥T1

∫

Rn
|ϕ(t,ω,ϕ0(ω))|2ρ

( |x|2
k2

)
dx

≤eλ(T1−t)
∫

Rn
ρ

( |x|2
k2

)
|ϕ(T1,ω,ϕ0(ω))|2dx

+
c

k

∫ t

T1

eλ(s−t)(‖∇n(s,ω,ϕ0(ω))‖2+‖n(s,ω,ϕ0(ω))‖2)ds

+c
∫ t

T1

eλ(s−t)
∫

Rn
(2 f 2(x)+g2(x))ρ

( |x|2
k2

)
dxds

+c
∫ t

T1

eλ(s−t)
∫

Rn
V3(t,ω)dxds, (4.58)

where V3(t,ω)= (|∆z(θsω)|2+|z(θsω)|2+|z∗(θsω)|2+|z(θsω)|q)ρ
(
|x|2/k2

)
. Replacing ω

by θ−tω, we obtain from (4.58) that for all t≥T1,

∫

Rn
|ϕ(t,θ−tω,ϕ0(θ−tω))|2ρ

( |x|2
k2

)
dx

≤eλ(T1−t)
∫

Rn
ρ

( |x|2
k2

)
|ϕ(T1,θ−tω,ϕ0(θ−tω))|2dx

+
c

k

∫ t

T1

eλ(s−t)(‖∇n(s,θ−tω,ϕ0(θ−tω))‖2+‖n(s,θ−tω,ϕ0(θ−tω))‖2)ds

+c
∫ t

T1

eλ(s−t)
∫

Rn
(2 f 2(x)+g2(x))ρ

( |x|2
k2

)
dxds
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+c
∫ t

T1

eλ(s−t)
∫

Rn
V4(t,ω)dxds, (4.59)

where V4(t,ω)= (|∆z(θs−tω)|2+|z(θs−tω)|2+|z∗(θs−tω)|2+|z(θs−tω)|q)ρ(|x|2/k2). Now

we estimate the terms in (4.59). First replacing t by T1, and then replacing ω by θ−tω in

(4.13), we have the following bounds for the first term

eλ(T1−t)
∫

Rn
ρ

( |x|2
k2

)
|ϕ(t,θ−tω,ϕ0(θ−tω))|2dx

≤ eλ(T1−t)(e−λT1‖ϕ0(θ−tω)‖2+
∫ T1

0
eλ(s−T1)p0(θs−tω)ds+c)

≤ e−λt‖ϕ0(θ−tω)‖2+ceλ(T1−t)+
∫ T1−t

−t
eλτ p0(θτω)dτ

≤ e−λt‖ϕ0(θ−tω)‖2+ceλ(T1−t)+
∫ T1−t

−t
ce

1
2 λτr(ω)dτ

≤ e−λt‖ϕ0(θ−tω)‖2+ceλ(T1−t)+
2

λ
cr(ω)e

1
2 λ(T1−t), (4.60)

then we have found that, given ǫ>0, there is T2(B,ω,ǫ)>T1 such that for all t≥T2

eλ(T1−t)
∫

Rn
ρ

( |x|2
k2

)
|ϕ(t,θ−tω,ϕ0(θ−tω))|2dx≤ǫ. (4.61)

By Lemma 4.2, there is T3=T3(B,ω)>T1 such that the term satisfies

c

k

∫ t

T1

eλ(s−t)‖∇n(s,θ−tω,ϕ0(θ−tω))‖2ds≤ c

k
(1+r(ω)).

Hence, there is R1=R1(ω,ǫ)>0, such that for all t≥T3 and k≥R1

c

k

∫ t

T1

eλ(s−t)‖∇n(s,θ−tω,ϕ0(θ−tω))‖2ds≤ǫ. (4.62)

Estimate the next term

c

k

∫ t

T1

eλ(s−t)‖n(s,θ−tω,ϕ0(θ−tω))‖2ds

≤ c

k

∫ t

T1

e−λt‖ϕ0(θ−tω)‖2ds+
c

k

∫ t

T1

eλ(s−t)
∫ s

0
eλ(τ−s)p0(θτ−tω)dτds+

c

k

∫ t

T1

eλ(s−t)ds

≤ c

k
e−λt(t−T1)‖ϕ0(θ−tω)‖2+

c

k
+

c

k

∫ t

T1

∫ s

0
eλ(τ−t)p0(θτ−tω)dτds

≤ c

k
e−λt(t−T1)‖ϕ0(θ−tω)‖2+

c

k
+

c

k

∫ t

T1

∫ s−t

−t
eλτ p0(θτω)dτds
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≤ c

k
e−λt(t−T1)‖ϕ0(θ−tω)‖2+

c

k
+

c

k
lr(ω)

∫ t

T1

∫ s−t

−t
e

1
2 λτdτds

≤ c

k
e−λt(t−T1)‖ϕ0(θ−tω)‖2+

c

k
+

4c

λ2k
lr(ω), (4.63)

where l > 0, this implies that there exist T4 =T4(B,ω,ǫ)>T1 and R2 =R2(ω,ǫ) such that

for all t≥T4 and k≥R2

c

k

∫ t

T1

eλ(s−t)‖n(s,θ−tω,ϕ0(θ−tω))‖2ds≤ǫ. (4.64)

Attention that f (x),g(x)∈L2(Rn), therefore, there is R3=R3(ǫ) , such that for all k≥R3,

∫

|x|≥k
(2 f 2(x)+g2(x))dx≤λǫ.

Then for the fourth term on the equation’s the right-hand side of (4.59), we have found

c
∫ t

T1

eλ(s−t)
∫

Rn
(2 f 2(x)+g2(x))ρ

( |x|2
k2

)
dxds≤ c

∫ 0

T1−t
eλζ

∫

|x|≥k
(2 f 2(x)+g2(x))dxdζ

≤cλǫ
∫ 0

T1−t
eλζdζ≤ǫ. (4.65)

Note that z(θtω)=∑
m
j=1hjzj(θtωj),z

∗(θtω)=∑
m
j=1 h∗j z∗j (θtωj) and hj,h

∗
j ∈H2(Rn)

⋂
W2,q(Rn),

hence there is R4=R4(ω,ǫ), such that for all k≥R4 and j=1,2,··· ,m,

∫

|x|≥k
(|hj(x)|2+|hj(x)|q+|∆hj(x)|2+|h∗j (x)|2)dx≤min

{
λǫ

4cmqr(ω)
,

ǫ

2m2r(ω)

}
, (4.66)

where r(ω) is the tempered function and c is the positive constant. By above and (3.6),

(3.7), we have the following bounds for the last term on the right hand side of (4.59),

c
∫ t

T1

eλ(s−t)
∫

Rn
V4dxds

≤c
∫ 0

T1−t
eλζ

∫

|x|≥k
(|∆z(θζ ω)|2+|z(θζ ω)|2+|z∗(θζω)|2+|z(θζ ω)|q))dxdζ

≤cmq
∫ 0

T1−t
eλζ

m

∑
j=1

∫

|x|≥k
(|∆hj |2|∆zj(θζ ωj)|2+|hj|2|zj(θζωj)|2+|h∗j |2|z∗j (θζ ωj)|2

+|hj|q|zj(θζωj)|q)dxdζ

≤ λǫ

2r(ω)

∫ 0

T1−t
eλζ

m

∑
j=1

(|∆zj(θζωj)|2+|zj(θζωj)|2+|z∗j (θζωj)|2+|zj(θζωj)|q)dζ

≤ λǫ

2r(ω)

∫ 0

T1−t
eλζr(θζ ω)dζ≤ λǫ

2r(ω)

∫ 0

T1−t
eλζr(θζ ω)dζ
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≤ λǫ

2r(ω)

∫ 0

T1−t
e

1
2 λζr(ω)dζ≤ǫ. (4.67)

Let T5 = T5(B,ω,ǫ) = max{T1,T2,T3,T4} and R5 = R5(ω,ǫ) = max{R1,R2,R3,R4}, then it

follows from above all, we have

∫

Rn
ρ

( |x|2
k2

)
|ϕ(t,θ−tω,ϕ0(θ−tω))|2dx≤5ǫ,

which shows that for all t≥T5, and k≥R5.

∫

|x|≥
√

2k
|ϕ(t,θ−tω,ϕ0(θ−tω))|2dx≤

∫

Rn
ρ

( |x|2
k2

)
|ϕ(t,θ−tω,ϕ0(θ−tω))|2dx≤5ǫ.

We have completed the proof.

5 The asymptotic compactness and existence of random attractor

In this section, we will prove the existence of a random attractor for the random dy-

namical system φ which is associated with stochastic partly dissipative reaction diffusion

systems (3.1)-(3.3) in L2(Rn)×L2(Rn), It follows from Lemma 4.1 that φ has a closed ran-

dom absorbing set. The follow will be using the uniform estimate on the tails of solution

to get the D-pullback asymptotic compactness of φ. Finally, we will get the existence of

the random attractor.

Lemma 5.1. Assume that f ,g ∈ L2(Rn) and (3.4) hold, let B= {B(ω)}ω∈Ω ∈D which is the

collection of all tempered subset of E, and φ0(ω)=(u0(ω),v0(ω))∈B(ω), then for every ǫ>0,

and P-a.e. ω∈Ω, there exist T∗=T∗
B(ω,ǫ)>0 and R∗=R∗(ω,ǫ)>0 such that for all t≥ t∗

∫

|x|≥R∗
|φ(t,θ−tω,φ0(θ−tω))(x)|2dx≤ǫ.

Proof. Let T∗ and R∗ be the constants in Lemma 4.6, By (3.6) and (4.66) we have for all

t≥T∗ and |x|≥R∗,

∫

|x|≥R∗
|z(ω)|2dx=

∫

|x|≥R∗
|

m

∑
j=1

hjzj(ωj)|2dx≤m2
∫

|x|≥R∗

m

∑
j=1

|hj|2|zj(ωj)|2dx

≤ ǫ

2r(ω)

m

∑
j=1

|zj(ωj)|2≤
ǫ

2r(ω)
r(ω)≤ 1

2
ǫ. (5.1)

Then we can also obtain that,
∫

|x|≥R∗
|z∗(ω)|2dx≤ ǫ

2
. (5.2)
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By (5.1)-(5.2) and Lemma 4.6, we get that, for all t≥ t∗, and |x|≥R∗,

∫

|x|≥R∗
|φ(t,θ−tω,φ0(θ−tω))(x)|2dx

=
∫

|x|≥R∗
|ϕ(t,θ−tω,ϕ0(θ−tω))+(z(ω),z∗(ω))|2dx

≤2
∫

|x|≥R∗
ϕ(t,θ−tω,ϕ0(θ−tω))2dx+2

∫

|x|≥R∗
|(z(ω),z∗(ω))|2dx

=2
∫

|x|≥R∗
ϕ(t,θ−tω,ϕ0(θ−tω))2dx+2

∫

|x|≥R∗
z(ω)2dx+2

∫

|x|≥R∗
z∗(ω)2dx

≤2ǫ+2
ǫ

2
+2

ǫ

2
=4ǫ. (5.3)

The proof is completed.

Lemma 5.2. Assume that f ,g ∈ L2(Rn) and (3.4) hold, then the random dynamical system φ

is D-pullback asymptotically compact in E= L2(Rn)×L2(Rn); that is for P-a.e. ω∈Ω, the se-

quence {φ(tn,θ−tn ω,φ0,n(θ−tn ω))}∞
n=1 has a convergent subsequence in E, provided tn→∞,B=

{B(ω)}ω∈Ω∈D and φ0,n(θ−tn ω)=(u0,n(θ−tn ω),v0,n(θ−tn ω))∈B(θ−tω).

Proof. Let tn→∞,B={B(ω)}ω∈Ω∈D and φ0,n(θ−tn ω)∈B(θ−tω). Then by Lemma 4.1 for

P-a.e. ω∈Ω, we have known that the sequence {φ(tn,θ−tn ω,φ0,n(θ−tn ω))}∞
n=1 is bounded

in E=L2(Rn)×L2(Rn), hence, there is ξ∈L2(Rn)×L2(Rn), such that, up to a subsequence

φ(tn,θ−tn ω,φ0,n(θ−tn ω))→ ξ weakly in L2(Rn)×L2(Rn). (5.4)

Next, we prove the weak convergence of (5.4) is actually strong convergence, given

ǫ>0, by Lemma(5.1), there is T1=T1(B,ω,ǫ) and R1=R1(ω,ǫ) such that for all t≥T1,

∫

|x|≥R1

|φ(t,θ−tω,φ0(θ−tω))|2dx≤ǫ. (5.5)

Since tn → ∞, there is N1 = N1(B,ω,ǫ) such that tn ≥ T1 for every n ≥ N1, hence, it

follows from (5.5) that for all n≥N1,
∫

|x|≥R1

|φ(tn,θ−tnω,φ0,n(θ−tn ω))|2dx≤ǫ. (5.6)

On the other hand, by Lemmas 4.1 and 4.5, there is T2 = T2(B,ω), such that for all

t≥T2,

‖φ(t,θ−tω,φ0(θ−tω))‖2
H1(Rn)×H1(Rn)≤ c(1+r(ω)). (5.7)

Let N2 = N2(B,ω) be large enough such that tn ≥T2 for n≥ N2, then by (5.7) we find

that, for all n≥N2,

‖φ(tn,θ−tn ω,φ0,n(θ−tn ω))‖2
H1(Rn)×H1(Rn)≤ c(1+r(ω)). (5.8)
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Denote by QR1
the set {x∈Rn :|x|≤R1}. By the compactness of embedding H1(QR1

)×
H1(QR1

) →֒ L2(QR1
)×L2(QR1

), it follows from (5.8) that, up to a subsequence,

φ(tn,θ−tnω,φ0,n(θ−tn ω))→ ξ strongly in L2(QR1
)×L2(QR1

),

which shows that for the given ǫ>0, there exists N3=N3(B,ω,ǫ) such that for all n≥N3,

‖φ(tn,θ−tn ω,φ0,n(θ−tn ω))−ξ‖2
L2(QR1

)×L2(QR1
)≤ǫ. (5.9)

Attention that ξ∈L2(Rn)×L2(Rn), there for there exists R2=R2(ǫ) such that,

∫

|x|≥R2

|ξ(x)|2dx≤ǫ. (5.10)

Let R3=max{R1,R2} and N4=max{N1,N3}, by (5.6), (5.9) and (5.10), we find that for

all n≥N4,

‖φ(tn,θ−tn ω,φ0,n(θ−tn ω))−ξ‖2
L2(Rn)×L2(Rn)

≤
∫

|x|≤R3

|φ(tn,θ−tn ω,φ0,n(θ−tn ω))−ξ|2dx+
∫

|x|≥R3

|φ(tn,θ−tn ω,φ0,n(θ−tn ω))−ξ|2dx≤2ǫ,

which show that

φ(tn,θ−tnω,φ0,n(θ−tn ω))→ ξ strongly in L2(Rn)×L2(Rn),

which is desiring.

We are now in a position to present our main result: the existence of a D-random

attractor for φ in L2(Rn)×L2(Rn).

Theorem 5.1. Assume that f ,g∈ L2(Rn) and (3.4) hold, then the random dynamical system φ

has a unique D-random attractor in L2(Rn)×L2(Rn).

Proof. Attention that φ has a bounded random absorbing set {K(ω)}ω∈Ω∈D by Lemma

4.1, and φ is D-pullback asymptotically compact in L2(Rn)×L2(Rn) by Lemmas 5.1 and

5.2, hence the existence of a unique D-random attractor for φ allows from Proposition 2.1

immediately.

6 Upper semicontinuity of attractors

In this section, we consider the upper semicontinuity of attractors of system (3.1)-(3.3)

when ε → 0. To show the dependence of solution on ε, we will write the solution of

system (3.1)-(3.2) as (uε,vε), and we define the corresponding random dynamical system
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as φε. When ε=0, the stochastic system (3.1)-(3.2) transform the following deterministic

autonomous one:

du

dt
−µ∆u+λu+αv=h(u)+ f (x), (6.1)

dv

dt
+δv−βu= g(x). (6.2)

By ahead Theorem we know that given ε∈ [0,1], φε has a D-pullback attractor Aε∈D. Let

φ0 be the dynamical system associated with system (6.1)-(6.2) in L2(Rn)×L2(Rn) over R.

Denote by D0 the collection of families D={D(τ)⊆L2(Rn)×L2(Rn) :τ∈R} satisfying the

condition: there exists δ0=δ0(D)∈ (0,δ) such that,

lim
t→∞

eδ0t‖D(τ+t)‖2 =0.

Let A0 be the D0-global attractor of φ0. Given 0<ε≤1, for ω∈Ω, let Kε be the D-pullback

absorbing set of φε, and we let K0 is a D0-bounded absorbing set of φ0 when ε=0.

Given ω∈Ω, denote by

B(ω)={(uε,vε)∈L2(Rn)×L2(Rn) : ‖uε‖2+‖vε‖2≤R(ω)}.

So we know that Kε(ω)⊆B(ω) for all ε∈(0,1], and ω∈Ω, this implies that for every ω∈Ω,

⋃

0<ε≤1

Aε(ω)⊆
⋃

0<ε≤1

Kε(ω)⊆R(ω). (6.3)

From ahead lemma we can find for all ε∈(0,1] and ω∈Ω, ‖û‖2
H1(Rn)

+‖ṽ‖2
H1(Rn)

≤R(ω), for

all (ũ,ṽ)∈Aε(ω), and we can also know that the set
⋃

0<ε≤1Aε(ω) of pullback attractors

is precompact in L2(Rn)×L2(Rn), we can refer literature [24] to know more.

Lemma 6.1. Suppose ahead information is hold, let (uε,vε) and (ũ,ṽ) be the solutions of (1.1)-

(1.2) and (6.1)-(6.2), respectively. Then for every t∈R, ω∈Ω, we can obtain that,

‖uε(t,ω,(uε)0)−ũ(t,ũ0)‖2+‖vε(t,ω,(vε)0)− ṽ(t,ṽ0)‖2

≤1

2
γe−νt(‖(uε)0−ũ0−z(ω)‖2+‖(vε)0− ṽ0−z∗(ω)‖2)+

1

2σ
e−νt

∫ t

0
eνs p1(θsω)ds. (6.4)

Proof. Let n−ũ=ñ,m−ṽ=m̃, and we let (3.13)-(3.14) and (6.1)-(6.2) subtract, we can obtain

that,

dñ

dt
−µ∆ñ+λñ+αm̃=µ∆z(θtω)−αz∗(θtω), (6.5)

dm̃

dt
+δm̃−βñ=βz(θtω)+(λ−δ)z∗(θtω). (6.6)
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Taking the inner product of both sides of (6.5) with βñ, similarity, taking the inner product

of both sides of (6.6) with αm̃, then we add the two equation together, we can obtain that,

1

2

d

dt
(β‖ñ‖2+α‖m̃‖2)+µβ‖∇ñ‖2+λβ‖ñ‖2+δα‖m̃‖2

=βµ(∆z(θtω),ñ)−αβ(z∗(θtω),ñ)+αβ(z(θtω),m̃)+α(λ−δ)(z∗(θtω),m̃). (6.7)

Now, we start to estimate the above equation,

|βµ(∆z(θt ω),ñ)|= |βµ
∫

Rn
∆z(θtω)ñdx|≤ 1

2
βµ‖∇ñ‖2+

1

2
βµ‖∇z(θtω)‖2. (6.8)

|−αβ(z∗(θtω),ñ)|= |αβ
∫

Rn
z∗(θtω)ñdx|≤ λβ

2
‖ñ‖2+

1

2λ
βα2‖z∗(θtω)‖2. (6.9)

|αβ(z(θtω),m̃)|≤ 1

4
αδ‖m̃‖2+

αβ2

δ
‖z(θtω)‖2. (6.10)

|α(λ−δ)(z∗(θtω),m̃)|≤ 1

4
αδ‖m̃‖2+

1

δ
α(λ−δ)2‖z∗(θtω)‖2. (6.11)

By (6.7)-(6.11), we can get that,

d

dt
(β‖ñ‖2+α‖m̃‖2)+µβ‖∇ñ‖2+λβ‖ñ‖2+δα‖m̃‖2

≤βµ‖∇z(θtω)‖2+
βα2

λ
‖z∗(θtω)‖2+

2αβ2

δ
‖z(θtω)‖2+

2α(λ−δ)2

δ
‖z∗(θtω)‖2. (6.12)

We let ν=min{δ,λ}, σ=min{α,β} and γ=max{α,β}, so we can from (6.12) get that,

d

dt
(σ(‖ñ‖2+‖m̃‖2))+νσ(‖ñ‖2+‖m̃‖2)≤ p1(θtω), (6.13)

where

p1(θtω)=βµ‖∇z(θtω)‖2+
βα2

λ
‖z∗(θtω)‖2+

2αβ2

δ
‖z(θtω)‖2+

2α(λ−δ)2

δ
‖z∗(θtω)‖2.

Applying Gronwall’s lemma on (6.13), we can find that,

‖ñ‖2+‖m̃‖2≤γe−νt(‖ñ0‖2+‖m̃0‖2)+
1

σ

∫ t

0
eν(s−t)p1(θsω)ds. (6.14)

From (6.14), we can also get that,

‖n−ũ‖2+‖m− ṽ‖2≤γe−νt(‖n0−ũ0‖2+‖m0− ṽ0‖2)+
1

σ

∫ t

0
eν(s−t)p1(θsω)ds. (6.15)

Because n(t,ω,n0)=uε(t,ω,n0−z(ω))−z(θtω), m(t,ω,m0)=vε(t,ω,m0−z∗(ω))−z∗(θtω),
so we can get that,

‖uε(t,ω,(uε)0)−ũ(t,ũ0)−z(θtω)‖2+‖vε(t,ω,(vε)0)− ṽ(t,ṽ0)−z∗(θtω)‖2
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≤γe−νt(‖(uε)0−ũ0−z(ω)‖2+‖(vε)0− ṽ0−z∗(ω)‖2)+
1

σ

∫ t

0
eν(s−t)p1(θsω)ds. (6.16)

From above, we can also obtain that,

‖uε(t,ω,(uε)0)−ũ(t,ũ0)‖2+‖vε(t,ω,(vε)0)− ṽ(t,ṽ0)‖2

≤1

2
γe−νt(‖(uε)0−ũ0−z(ω)‖2+‖(vε)0− ṽ0−z∗(ω)‖2)+

1

2σ
e−νt

∫ t

0
eνs p1(θsω)ds. (6.17)

We are finally in a position to present the upper semicontinuity of pullback attractors.

Theorem 6.1. Suppose ahead information is hold, Aε(ω) be the pullback attractor of φε and A0

be the global attractor of φ0. Foe all ω∈Ω, then we have

lim
ε 7→0

dist(Aε(ω),A0)=0.

Proof. We know that Kε and K0 be the families of subset of L2(Rn)×L2(Rn), then Kε is the

Dε-pullback absorbing set of φε, and K0 is the D0-bounded absorbing set of φ0, we can

obtain that, for every ω∈Ω,

limsup
ε→0

‖Kε(ω)‖=‖K0‖. (6.18)

If εn →0 and (ũ0,n,ṽo,n)→ (ũ0,ṽo) in L2(Rn)×L2(Rn), then we find taht, for every t∈R+

and ω∈Ω,

φεn(t,ω,(ũ0,n,ṽo,n))→φ0(t,(ũ0,ṽo)). (6.19)

Based on (6.18), (6.19), and the set
⋃

0<ε≤1Aε(ω) of pullback random attractors is precom-

pact in L2(Rn)×L2(Rn), so the theorem is proved.
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